Variateur CA
Contrôle Vectoriel de Flux
pour moteurs synchrones

ADV200

Description des fonctions
et liste des paramètres

GEFRAN
Informations concernant ce manuel

Ce manuel contient des informations détaillées sur les fonctions ainsi que la description des paramètres. Les informations relatives à l'installation mécanique, à la sécurité, au raccordement électrique et à la mise en service rapide figurent dans le manuel Guide Rapide. Le CD fourni avec le drive contient tous les manuels en format électronique (y compris ceux des expansions et des bus de terrain).

Version du logiciel

Ce manuel est mis à jour avec la version logiciel V7.X.16.

A partir de la version progicielle V.7.X.14, il est possible d’utiliser l’Outil SOFTSCOPE (Oscilloscope Numérique Gefran). Pour plus d’informations sur son utilisation, se reporter au manuel 1S9SFTEN Softscope.

Informations générales

Remarque !
Les termes “Inverter”, “Régulateur” et “Variateur” sont quelques fois interchangeables dans l’industrie. Dans ce document, on utilisera le terme “Variateur”.

Avant l’installation du produit, lire attentivement le chapitre concernant les consignes de sécurité.
Pendant sa période de fonctionnement conserver la notice dans un endroit sûr et à disposition du personnel technique.

GEFRAN S.p.A. se réserve le droit d’apporter des modifications et des variations aux produits, données et dimensions, à tout moment et sans préavis.

Les informations fournies servent uniquement à la description des produits et ne peuvent en aucun cas revêtir un aspect contractuel.

Nous vous remercions pour avoir choisi un produit GEFRAN.
Nous serons heureux de recevoir à l’adresse e-mail techdoc@gefran.com toute information qui pourrait nous aider à améliorer ce catalogue.
Tous droits réservés.

Symboles utilisés dans le manuel

Mise en garde
Indique une procédure ou une condition de fonctionnement qui, si elle n’est pas respectée, peut entraîner des accidents ou la mort de personnes.

Attention
Indique une procédure ou une condition de fonctionnement qui, si elle n’est pas respectée, peut entraîner la détérioration ou la destruction de l’appareil.

Important
Indique que la présence de décharges électrostatiques peut détériorer l’appareil. Lorsqu’on manipule les cartes, il faut toujours porter un bracelet avec mise à la terre.

Remarque !
Rappelle l’attention sur des procédures particulières et des conditions de fonctionnement.
Sommaire

Informations concernant ce manuel ..2
 Symboles utilisés dans le manuel ...2

A - Programmation ...5
 A.1 Visualisation Menu ...5
 A.2 Programmation des signaux analogiques et numériques d’entrée aux “blocages fonction”5
 A.3 Mode d’interconnexions des variables ..5
 A.4 Destination multiple ..7

B - Description des paramètres et fonctions (liste Expert) ...8
 Légende ..8
 1 – AFFICHAGE ..9
 2 – INFO VARIATEUR ...14
 3 – MISE SERVICE GUIDE ..18
 4 – CONFIGURATION ..19
 5 – CONSIGNES ..24
 6 – RAMPES ..29
 7 – MULTI-VITESSE ..33
 8 – MOTOPOTENTIOMÈTRE ..36
 9 – FONCTION JOG ...42
 10 – FONCTION AFFICHAGE ..43
 11 – GESTION PARAM ...47
 12 – ENTRÉES DIGITALES ...57
 13 – SORTIES DIGITALES ...60
 14 – ENTRÉES ANA ...62
 15 – SORTIES ANA ...72
 16 – DONNEES MOTEURS ..78
 17 – CODEUR ...81
 17.1 - CODEUR/CODEUR CONFIG ...82
 17.2 - CODEUR/CODEUR 1 ..84
 17.3 - CODEUR/CODEUR 2 ..84
 17.4 - CODEUR/CODEUR 3 ..81
 17.5 - CODEUR/RESOLVER ..93
 18 – REGULATEUR VITESSE ..94
 19 – PARAM DE REGUL ..97
 20 – COUPLE ..109
 21 – SANS CAPTEUR ...103
 22 – FONCTIONS ...106
 22.1 - FONCTIONS/RAPPORT VITESSE ...106
 22.2 - FONCTIONS/DOOP ..107
 22.3 - FONCTIONS/COMP INERTIE ...109
 22.4 - FONCTIONS/SURCHARGE MOTEUR ...110
 22.5 - FONCTIONS/SURC RES FREIN ..113
 22.6 - FONCTIONS/DROPJEUPARAM ..114
 22.7 - FONCTIONS/SPEED CAPTURE ..115
 22.8 - FONCTIONS/POWER LOSS ...117
 22.9 - FONCTIONS/COMPARAISON ...124
 22.10 - FONCTIONS/MOT INTERNES ..126
 22.11 - FONCTIONS/CONTRÔLE VDC ...127
 22.12 - FONCTIONS/CONTRÔLE FREIN ...128
 22.13 - FONCTIONS/FACATEUR DIMENS. ...133
 22.14 - FONCTIONS/CONTROL MODE ...135
 22.15 - FONCTIONS/TIM TEMP CONTROL ...137
 22.16 - FONCTIONS/CTRL LIQUIDE ..138
 22.17 - FONCTIONS/MINUTEUR ...142
 22.18 - FONCTIONS/ADAPT LIM COUPLE ...143
 23 – COMMUNICATION ..144
 23.1 - COMMUNICATION/RS485 ..144
 23.2 - COMMUNICATION/BUS CONF ...145
 23.3 - COMMUNICATION/BUS M->S ...146
 23.4 - COMMUNICATION/BUS S->M ..151
 23.5 - COMMUNICATION/COMP WORD ..154
 23.6 - COMMUNICATION/MOTDECOMP ..154
 23.7 - COMMUNICATION/ENT/SORT EXTERNE ...155
 23.8 - COMMUNICATION/FAST LINK ...156
 24 – ALARM CONFIG ..160
 25 – REGISTRE ALARME ...173
 26 – APPLICATION ...174
 27 – RECETTE CONFIG ...175
 28 – RECETTE ...175
A - Programmation

A.1 Visualisation Menu

La visualisation du menu de programmation est disponible dans deux modes sélectionnés par le paramètre Mode d’accès (menu 04 - CONFIGURATION):

- **Facile** (par défaut) on ne visualise que les paramètres principaux.
- **Expert** on visualise tous les paramètres.

A.2 Programmation des signaux analogiques et numériques d’entrée aux “blocages fonction”

Les signaux, les variables et les paramètres de chaque “blocage fonction” du drive, sont interconnectés entre eux pour réaliser les configurations et les contrôles à l’intérieur du système de régulation.

La gestion et la modification des signaux, des variables et des paramètres peuvent être effectuées par le clavier, par le port série à l’aide du configurateur pour ordinateur ou par la programmation de bus de terrain.

Le mode de programmation s’effectue selon la logique indiquée ci-dessous:

- **src** (source; ex.: Ramp ref 1 src, PAR: 610)

 Par cette dénomination, on définit la provenance de l’entrée au blocage fonction, c’est-à-dire le signal à élaborer à l’intérieur du blocage fonction. Les différentes configurations sont définies dans les listes de sélection correspondantes.

- **cfg** (configuration ; ex. : Mpot init cfg, PAR: 880)

 Par cette dénomination, on définit la programmation du paramètre et l’action qu’il effectuera sur le blocage fonction.

 Par exemple : temps de Rampe, régulation des références internes, etc…

- **visu** (visualisation ; ex. : Ramp ref 1 visu, PAR: 620)

 Par cette dénomination, on définit la variable à la sortie du blocage fonction, résultant des élaborations effectuées dans le blocage même.

A.3 Mode d’interconnexions des variables

La source (src) permet d’attribuer le signal de contrôle désiré à l’entrée du blocage fonction

Cette opération est réalisée à l’aide des listes de sélection prévues à cet effet.

La provenance des signaux de contrôle peut être de :

1 – **Borne physique**

Les signaux analogiques et numériques proviennent du bornier de la carte de régulation et/ou de ceux des cartes d’expansion.

2 – **Variables à l’intérieur du drive**

Variables à l’intérieur du système de régulation du drive, provenant d’élaborations des “blocages fonction”, effectuées par le clavier, le configurateur de l’ordinateur ou le bus de terrain.
Exemple pratique
Les exemples fournis ci-après indiquent avec quelle philosophie et mode peuvent être effectuées des opérations plus ou moins complexes à l’intérieur de chaque “blocages fonction”, dont le résultat représentera la sortie du blocage même.

• Exemple : modification de la source de la Référence de Vitesse
La référence principale du drive (dans la configuration par défaut) **Ramp ref 1 visu** (PAR: 620) est produite par la sortie du blocage fonction **“Blocage setpoint rampe”** et a comme source par défaut le signal **Visu entré Ana 1** (PAR: 1500), provenant de la sortie du blocage fonction **“Blocage Entrée analogique 1”**, dans ce cas correspondant à l’entrée analogique 1 du bornier des signaux.
Pour modifier la source de la référence d’entrée analogique en une référence numérique interne au drive, il faut changer le signal à l’entrée du **“Blocage setpoint rampe”**, en se portant sur le paramètre **Ramp ref 1 src** (PAR: 610) en configurant une nouvelle référence parmi figurant sur la liste de sélection **L_MLTREF**, par exemple **Dig ramp ref 1** (PAR: 600).

• Exemple : inversion du signal de la référence analogique
Pour effectuer l’inversion du signal à la sortie du blocage de l’entrée analogique 1 **“Blocage Entrée analogique 1”**, il faut modifier la valeur du paramètre **E ana 1 signe src** (PAR: 1526), par défaut paramétré sur Zéro (aucune opération) et sélectionner la source du signal de commande parmi celles figurant sur la liste de sélection **L_DIGSEL2**, par exemple **Visu entrée dig X**, Un (fonction toujours active), etc..

On peut donc constater, des schémas figurant ci-dessus, la philosophie d’élaboration interne des “blocages fonction” individuels et le résultat de ces modifications sur les autres “blocages fonction” interconnectés.

Remarque !
Voici la description rapide des fonctions des autres paramètres figurant dans les blocages fonction et n’étant pas indiquées pour les modification en exemple.

Le paramètre **E ana 1 val Alt src** (PAR: 1528) permet de sélectionner une référence alternative pour la sortie **Visu entré Ana 1** (PAR: 1500).
Le paramètre **E ana 1 valeur Alt** (PAR: 1524) détermine la valeur de la référence alternative pour la sortie **Visu entré Ana 1** (PAR: 1500).
Le paramètre **Ramp ref invert src** (PAR: 616) permet de sélectionner la source pour la commande d’inversion de la sortie du blocage fonction de **“Blocage setpoint rampe”**.
Le signal résultant à la sortie du blocage de **“Blocage setpoint rampe”** sera visualisé dans le paramètre **Ramp ref 1 visu** (PAR: 620).
A.4 Destination multiple

On peut attribuer à chaque entrée plusieurs fonctions en même temps : pour visualiser combien et quelles fonctions ont été attribuées à la simple entrée, il faut aller sur le paramètre correspondant «dest» et contrôler s’il y a un numéro entre parenthèses carrées à la droite du numéro du paramètre sélectionné (comme indiqué sur la figure suivante).

![Tableau]

Si un numéro est présent, il faut appuyer sur la touche pour passer à la visualisation de la source suivante appliquée à l’entrée sélectionnée.

![Tableau]
B - Description des paramètres et fonctions (liste Expert)

Légende

- **Indexation du menu et paramètre**
- **Identificateur paramètre (IPA)**
- **Description du paramètre**
- **UM: Unité de mesure**
- **Type du paramètre**
- **Format de la données d’échange sur le Fieldbus (16BIT, 32BIT)**
- **Valeur par défaut**
- **Valeur minimale**
- **Valeur maximale**
- **Accessibilité**
- **Disponible dans le mode de régulation**
- **Listes de sélection**

Tableau des paramètres

<table>
<thead>
<tr>
<th>Menu</th>
<th>Description</th>
<th>UM</th>
<th>Type</th>
<th>FB</th>
<th>BIT</th>
<th>Def</th>
<th>Min</th>
<th>Maxi</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 - AFFICHAGE</td>
<td></td>
</tr>
<tr>
<td>1.1</td>
<td>250 Intensité de sortie</td>
<td>A</td>
<td>FLOAT</td>
<td>16/32</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>R</td>
<td>FVS</td>
<td></td>
</tr>
<tr>
<td>1.2</td>
<td>252 Tension de sortie</td>
<td>V</td>
<td>FLOAT</td>
<td>16/32</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>R</td>
<td>FVS</td>
<td></td>
</tr>
</tbody>
</table>

Tableau des fonctions/rapport vitesse (Menu niveau 2)

- **3000 Rapport de vitesse**
- **3002 Rapport vitesse src**

<table>
<thead>
<tr>
<th>Menu</th>
<th>Description</th>
<th>UM</th>
<th>Type</th>
<th>FB</th>
<th>BIT</th>
<th>Def</th>
<th>Min</th>
<th>Maxi</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>22.1 - FONCTIONS/RAPPORT VITESSE</td>
<td></td>
</tr>
<tr>
<td>22.1.1</td>
<td>3000 Rapport de vitesse</td>
<td>perc</td>
<td>INT16</td>
<td>16/32</td>
<td>100</td>
<td>CALCI</td>
<td>CALCI</td>
<td>ERW</td>
<td>FVS</td>
<td></td>
</tr>
<tr>
<td>22.1.2</td>
<td>3002 Rapport vitesse src</td>
<td>LINK</td>
<td>16/32</td>
<td>3000</td>
<td>0</td>
<td>16384</td>
<td>ERW</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **L_VREF**

Listes de sélection:
- Les paramètres format "... src" sont associés à une liste de sélection.
- Il est possible de sélectionner, dans la liste indiquée, l’origine (source) du signal qui commandera le paramètre.
- Les listes sont indiquées dans le chapitre C de ce manuel.
En usine, le drive est configuré pour contrôler les moteurs Asynchrones ; pour passer à la modalité de contrôle de moteurs Synchrones, exécuter la commande Chg.Ctrl.Synchrone (Dans le menu 4 CONFIGURATION, régler initialement le PAR 554 Mode d’accès = Expert, puis, toujours dans le menu 4 - CONFIGURATION, exécuter le paramètre 6100 Chg.Ctrl.Synchrone); le drive est ensuite redémarré (dans cette modalité, faire référence au manuel "ADV200 - Onduleur vectoriel à orientation de champ pour moteurs synchrones - Description des fonctions et liste paramètres", disponible sur le CD fourni avec l’onduleur ou téléchargeable sur le site www.gefran.com).

Pour revenir à la modalité de contrôle de moteurs Asynchrones, exécuter la commande Chg.Ctrl.Asynchrone (paramètre 6100), le drive est ensuite redémarré dans la nouvelle modalité.

1 – AFFICHAGE

Dans le menu MONITEUR sont affichées les valeurs mesurées des gradeurs et des paramètres de fonctionnement du drive.

<table>
<thead>
<tr>
<th>Rapports entre les paramètres du moniteur Vitesse-Couple-Puissance</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Sollwert und Rampe</th>
<th>Drehzahl/Drehmoment Kontrolle</th>
<th>Motorsteu.</th>
</tr>
</thead>
<tbody>
<tr>
<td>MehrfachSollw</td>
<td>Rampen</td>
<td></td>
</tr>
<tr>
<td>RampSollw</td>
<td>DrehSollw</td>
<td></td>
</tr>
<tr>
<td>5314° - Encoder sel Anzeige</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>5310 - Encoder sel Quelle</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Drehzahlrückführung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Geber 1</td>
</tr>
<tr>
<td>260° - SpdFehlloss code</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Befehle Monitor</th>
</tr>
</thead>
<tbody>
<tr>
<td>1066° - Enable Status Anz</td>
</tr>
<tr>
<td>1068° - Start Status Anzeige</td>
</tr>
<tr>
<td>1070° - FastStop Status Anz</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>250° - Ausgangstrom</td>
</tr>
<tr>
<td>252° - Ausgangsspannung</td>
</tr>
<tr>
<td>254° - Ausgangsfrequenz</td>
</tr>
<tr>
<td>256° - Ausgangskraft</td>
</tr>
<tr>
<td>260° - Motordrehzahl</td>
</tr>
<tr>
<td>2172° - SpdFehlloss code</td>
</tr>
</tbody>
</table>

Rapports entre les paramètres du moniteur Vitesse-Couple-Puissance

<table>
<thead>
<tr>
<th>Speed</th>
<th>Line Direction</th>
</tr>
</thead>
<tbody>
<tr>
<td>IPA 260 Motor speed</td>
<td>Positive</td>
</tr>
<tr>
<td>IPA 284 Torque current</td>
<td>Negative</td>
</tr>
<tr>
<td>IPA 3354 Output active curr</td>
<td>Negative</td>
</tr>
<tr>
<td>IPA 256 Output power</td>
<td>Positive</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Torque</th>
<th>Line Direction</th>
</tr>
</thead>
<tbody>
<tr>
<td>IPA 260 Motor speed</td>
<td>Negative</td>
</tr>
<tr>
<td>IPA 284 Torque current</td>
<td>Positive</td>
</tr>
<tr>
<td>IPA 3354 Output active curr</td>
<td>Positive</td>
</tr>
<tr>
<td>IPA 256 Output power</td>
<td>Negative</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Line Direction</th>
</tr>
</thead>
<tbody>
<tr>
<td>IPA 260 Motor speed</td>
</tr>
<tr>
<td>IPA 284 Torque current</td>
</tr>
<tr>
<td>IPA 3354 Output active curr</td>
</tr>
<tr>
<td>IPA 256 Output power</td>
</tr>
<tr>
<td>Menu PAR</td>
</tr>
<tr>
<td>----------</td>
</tr>
<tr>
<td>1.1 250</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>1.2 252</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>1.3 254</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>1.4 256</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>1.5 628</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>1.6 664</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>1.7 260</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>1.8 270</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>1.9 272</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>1.10 290</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>1.11 292</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>1.12 1544</td>
</tr>
<tr>
<td>1.13 1594</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>
Ces paramètres sont inclus dans la liste de sélection L_TEMPCTRL et ils peuvent être attribués, en tant que sélection, au paramètre source 6040 Temp.liquide.src.

Menu PAR Description

<table>
<thead>
<tr>
<th>PAR</th>
<th>Description</th>
<th>UM</th>
<th>Type</th>
<th>FB</th>
<th>BIT</th>
<th>Def</th>
<th>Min</th>
<th>Maxi</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.14</td>
<td>1610 E ana 1x temp visu</td>
<td>degC</td>
<td>FLOAT</td>
<td>16</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>ER</td>
<td>FVS</td>
<td></td>
</tr>
<tr>
<td>1.15</td>
<td>1660 E ana 2X temp visu</td>
<td>degC</td>
<td>FLOAT</td>
<td>16</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>ER</td>
<td>FVS</td>
<td></td>
</tr>
</tbody>
</table>

Affiche la température mesurée en °C avec PT100/PT1000/NI1000 depuis l’entrée 1 (PAR 1610) ou l’entrée 2 (PAR 1660) de la carte EXP-IO-SENS-100-ADV ou EXP-IO-SENS-1000-ADV, indépendamment de la manière dont l’alarme de sur-température moteur est gérée.

Menu PAR Description

<table>
<thead>
<tr>
<th>PAR</th>
<th>Description</th>
<th>UM</th>
<th>Type</th>
<th>FB</th>
<th>BIT</th>
<th>Def</th>
<th>Min</th>
<th>Maxi</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.16</td>
<td>2342 Charge actuelle %</td>
<td>perc</td>
<td>FLOAT</td>
<td></td>
<td></td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>ER</td>
<td>F_S</td>
</tr>
</tbody>
</table>

Couple nominal du moteur mis à l’échelle selon la valeur du paramètre Mis.ech.coeff.couple IPA 2340. Cette valeur de couple est exprimée en %.

Ce paramètre est obtenu à partir de la formule suivante :

\[
\text{Couple mis à l'échelle} = \frac{\text{Couple} \times (IPA 2394)}{\text{Mis.ech.coeff.couple}} \times 100
\]

Menu PAR Description

<table>
<thead>
<tr>
<th>PAR</th>
<th>Description</th>
<th>UM</th>
<th>Type</th>
<th>FB</th>
<th>BIT</th>
<th>Def</th>
<th>Min</th>
<th>Maxi</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.17</td>
<td>280 Consigne Couple</td>
<td>A</td>
<td>FLOAT</td>
<td>16/32</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>ER</td>
<td>F_S</td>
<td></td>
</tr>
</tbody>
</table>

Visualisation de la consigne de courant utilisé pour le contrôle de couple (en mode vectoriel sensorless et vectoriel à orientation de champ).

Menu PAR Description

<table>
<thead>
<tr>
<th>PAR</th>
<th>Description</th>
<th>UM</th>
<th>Type</th>
<th>FB</th>
<th>BIT</th>
<th>Def</th>
<th>Min</th>
<th>Maxi</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.18</td>
<td>282 Consigne I magnét</td>
<td>A</td>
<td>FLOAT</td>
<td>16/32</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>ER</td>
<td>F_S</td>
<td></td>
</tr>
</tbody>
</table>

Visualisation de consigne du courant magnétisant (en mode vectoriel sensorless et vectoriel à orientation de champ).

Menu PAR Description

<table>
<thead>
<tr>
<th>PAR</th>
<th>Description</th>
<th>UM</th>
<th>Type</th>
<th>FB</th>
<th>BIT</th>
<th>Def</th>
<th>Min</th>
<th>Maxi</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.19</td>
<td>284 Courant de couple</td>
<td>A</td>
<td>FLOAT</td>
<td>16/32</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>ER</td>
<td>FVS</td>
<td></td>
</tr>
</tbody>
</table>

Visualisation de la valeur actuelle du courant de couple.

Menu PAR Description

<table>
<thead>
<tr>
<th>PAR</th>
<th>Description</th>
<th>UM</th>
<th>Type</th>
<th>FB</th>
<th>BIT</th>
<th>Def</th>
<th>Min</th>
<th>Maxi</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.20</td>
<td>286 Courant magnétisant</td>
<td>A</td>
<td>FLOAT</td>
<td>16/32</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>ER</td>
<td>FVS</td>
<td></td>
</tr>
</tbody>
</table>

Visualisation de la valeur actuelle du courant magnétisant.

Menu PAR Description

<table>
<thead>
<tr>
<th>PAR</th>
<th>Description</th>
<th>UM</th>
<th>Type</th>
<th>FB</th>
<th>BIT</th>
<th>Def</th>
<th>Min</th>
<th>Maxi</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.21</td>
<td>3212 Cumul surchg moteur</td>
<td>perc</td>
<td>UINT16</td>
<td>16/32</td>
<td>0</td>
<td>0</td>
<td>100</td>
<td>ER</td>
<td>FVS</td>
<td></td>
</tr>
</tbody>
</table>

Visualisation du niveau de surcharge du moteur (100% = seuil d’alarme).

Menu PAR Description

<table>
<thead>
<tr>
<th>PAR</th>
<th>Description</th>
<th>UM</th>
<th>Type</th>
<th>FB</th>
<th>BIT</th>
<th>Def</th>
<th>Min</th>
<th>Maxi</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.22</td>
<td>368 Drive surcharge cum</td>
<td>perc</td>
<td>UINT16</td>
<td>16/32</td>
<td>0</td>
<td>0</td>
<td>100</td>
<td>ER</td>
<td>FVS</td>
<td></td>
</tr>
</tbody>
</table>

Visualisation du niveau de surcharge du drive Une surcharge instantanée de 200% du courant nominal du drive est permise pendant 3 sec. L’image thermique I²t agit sur les limites du courant de sortie du drive. Pendant le fonctionnement normal, la valeur instantanée du courant de sortie peut atteindre 200% du courant nominal du drive. Après 3 sec à 200%, la limite du courant de sortie est réduite à 160%. Quand le niveau de surcharge par. 368 Drive surcharge cum atteint 100%, la limite du courant de sortie est réduite à 100% par rapport à celle du courant nominal et maintient cette valeur tant que le cycle d’intégration I²t n’est pas terminé. Dans ces conditions, la surcharge instantanée de 200% est réactivée.

Menu PAR Description

<table>
<thead>
<tr>
<th>PAR</th>
<th>Description</th>
<th>UM</th>
<th>Type</th>
<th>FB</th>
<th>BIT</th>
<th>Def</th>
<th>Min</th>
<th>Maxi</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.23</td>
<td>3260 Cumul surch R frein</td>
<td>perc</td>
<td>UINT16</td>
<td>16/32</td>
<td>0</td>
<td>0</td>
<td>100</td>
<td>ER</td>
<td>FVS</td>
<td></td>
</tr>
</tbody>
</table>

Visualisation de la limite de surcharge de la résistance de freinage (100% = seuil alarme).

Menu PAR Description

<table>
<thead>
<tr>
<th>PAR</th>
<th>Description</th>
<th>UM</th>
<th>Type</th>
<th>FB</th>
<th>BIT</th>
<th>Def</th>
<th>Min</th>
<th>Maxi</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.24</td>
<td>1066 Visu état validé</td>
<td>BIT</td>
<td>16</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>R</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Visualisation de l’état de la commande de validation du drive. La présence de tension à la borne 7 est nécessaire. Pour activer la rotation du moteur, il est nécessaire d’activer la commande Avance FR.
1 Validé Variateur habilité
0 Désactivé Variateur exclu

<table>
<thead>
<tr>
<th>Menu</th>
<th>PAR</th>
<th>Description</th>
<th>UM</th>
<th>Type</th>
<th>FB</th>
<th>BIT</th>
<th>Def</th>
<th>Min</th>
<th>Maxi</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.25</td>
<td>1068</td>
<td>Visu état Start</td>
<td>BIT</td>
<td>16</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>R</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Visu état Start</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Visualisation de l’état de la commande de Marche du drive.

<table>
<thead>
<tr>
<th>Menu</th>
<th>PAR</th>
<th>Description</th>
<th>UM</th>
<th>Type</th>
<th>FB</th>
<th>BIT</th>
<th>Def</th>
<th>Min</th>
<th>Maxi</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.26</td>
<td>1070</td>
<td>Visu état Arr rapid</td>
<td>BIT</td>
<td>16</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>R</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Visu état Arr rapid</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Visualisation de l’état de la commande d’arrêt rapide du drive.

<table>
<thead>
<tr>
<th>Menu</th>
<th>PAR</th>
<th>Description</th>
<th>UM</th>
<th>Type</th>
<th>FB</th>
<th>BIT</th>
<th>Def</th>
<th>Min</th>
<th>Maxi</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.27</td>
<td>1100</td>
<td>Visu entrées digit</td>
<td>UINT16</td>
<td>16</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>R</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Visu entrées digit</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Visualisation de l’état des entrées numériques sur le drive. Peut être également lu moyennant une ligne sérieelle ou un bus de terrain. Les informations sont contenues dans un mot où chaque bit correspond à 1 s’il y a de la tension sur la borne d’entrée correspondante.

1 = Entrée activée
0 = Entrée désactivée

Exemple :

000000000011

Activé DI 1
Activé DI 2

<table>
<thead>
<tr>
<th>Menu</th>
<th>PAR</th>
<th>Description</th>
<th>UM</th>
<th>Type</th>
<th>FB</th>
<th>BIT</th>
<th>Def</th>
<th>Min</th>
<th>Maxi</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.28</td>
<td>1300</td>
<td>Visu Sorties digital</td>
<td>UINT16</td>
<td>16</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>R</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Visu Sorties digital</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Visualisation de l’état des sorties numériques sur le drive. Peut être également lu moyennant une ligne sérieelle ou bus de terrain. Les informations sont contenues dans un mot où chaque bit correspond à 1 s’il y a de la tension sur la borne d’entrée correspondante.

1 = sortie activée
0 = sortie non activée

Exemple :

000000000011

Activée DO 1
Activée DO 2

<table>
<thead>
<tr>
<th>Menu</th>
<th>PAR</th>
<th>Description</th>
<th>UM</th>
<th>Type</th>
<th>FB</th>
<th>BIT</th>
<th>Def</th>
<th>Min</th>
<th>Maxi</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.29</td>
<td>1200</td>
<td>Visu entrée num X</td>
<td>UINT16</td>
<td>16</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>R</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Visu entrée num X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1 = Entrée activée
0 = Entrée désactivée

Exemple :

000000000011

Activé DI 1
Activé DI 2

<table>
<thead>
<tr>
<th>Menu</th>
<th>PAR</th>
<th>Description</th>
<th>UM</th>
<th>Type</th>
<th>FB</th>
<th>BIT</th>
<th>Def</th>
<th>Min</th>
<th>Maxi</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.30</td>
<td>1400</td>
<td>Visu Sortie num virt</td>
<td>UINT16</td>
<td>16</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>R</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Visu Sortie num virt</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Visualisation de l’état des sorties de la carte d’expansion. Peut être également lu moyennant une ligne sérieelle ou bus de terrain. Les informations sont contenues dans un mot où chaque bit correspond à 1 s’il y a de la tension sur la borne d’entrée correspondante.

1 = sortie activée
0 = sortie non activée
Exemple :

000000000011

Activée DO 2

Activée DO

<table>
<thead>
<tr>
<th>Menu</th>
<th>PAR</th>
<th>Description</th>
<th>UM</th>
<th>Type</th>
<th>FB Bit</th>
<th>Def</th>
<th>Min</th>
<th>Maxi</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.31</td>
<td>5400</td>
<td>Visu Ent dig 0 Ext</td>
<td>UNT16</td>
<td>32</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>4294967295</td>
<td>ER</td>
<td>FVS</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

Affichage de l’état des entrées distantes externes 0 à 31 à l’aide de la carte optionnelle EXP-FL-XCAN-ADV.

<table>
<thead>
<tr>
<th>Menu</th>
<th>PAR</th>
<th>Description</th>
<th>UM</th>
<th>Type</th>
<th>FB Bit</th>
<th>Def</th>
<th>Min</th>
<th>Maxi</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.32</td>
<td>5402</td>
<td>Visu Ent dig 1 Ext</td>
<td>UNT16</td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>4294967295</td>
<td>ER</td>
<td>FVS</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

Affichage de l’état des entrées distantes externes 32 à 63 à l’aide de la carte optionnelle EXP-FL-XCAN-ADV.

<table>
<thead>
<tr>
<th>Menu</th>
<th>PAR</th>
<th>Description</th>
<th>UM</th>
<th>Type</th>
<th>FB Bit</th>
<th>Def</th>
<th>Min</th>
<th>Maxi</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.33</td>
<td>5450</td>
<td>Visu Sort dig 0 Ext</td>
<td>UNT16</td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>R</td>
<td>FVS</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

Affichage de l’état des sorties distantes externes 0 à 31 à l’aide de la carte optionnelle EXP-FL-XCAN-ADV.

<table>
<thead>
<tr>
<th>Menu</th>
<th>PAR</th>
<th>Description</th>
<th>UM</th>
<th>Type</th>
<th>FB Bit</th>
<th>Def</th>
<th>Min</th>
<th>Maxi</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.34</td>
<td>5452</td>
<td>Visu Sort dig 1 Ext</td>
<td>UNT16</td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>R</td>
<td>FVS</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

Affichage de l’état des sorties distantes externes 32 à 63 à l’aide de la carte optionnelle EXP-FL-XCAN-ADV.
Dans ce menu, les informations relatives à l'identification du drive et à sa configuration sont affichées.

<table>
<thead>
<tr>
<th>Menu</th>
<th>PAR</th>
<th>Description</th>
<th>UM</th>
<th>Type</th>
<th>FB</th>
<th>BIT</th>
<th>Def</th>
<th>Min</th>
<th>Maxi</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>480</td>
<td>Type de contrôle</td>
<td>ENUM</td>
<td>Asynchrone</td>
<td>0</td>
<td>0</td>
<td>R</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Visualisation de la modalité de contrôle type moteur.

1. Synchrone
2. Asynchrone

<table>
<thead>
<tr>
<th>Menu</th>
<th>PAR</th>
<th>Description</th>
<th>UM</th>
<th>Type</th>
<th>FB</th>
<th>BIT</th>
<th>Def</th>
<th>Min</th>
<th>Maxi</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.2</td>
<td>482</td>
<td>Calibre du variateur</td>
<td>UINT16</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>RS</td>
<td>FV</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Visualisation du code d'identification de la grandeur du drive.

<table>
<thead>
<tr>
<th>Size code</th>
<th>Size text</th>
<th>Family code</th>
<th>Family text</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.75/1.5 kW</td>
<td>1</td>
<td>380V..480V</td>
</tr>
<tr>
<td>2</td>
<td>1.5/2.2 kW</td>
<td>1</td>
<td>380V..480V</td>
</tr>
<tr>
<td>3</td>
<td>2.2/3.0 kW</td>
<td>1</td>
<td>380V..480V</td>
</tr>
<tr>
<td>4</td>
<td>3.0/4.0 kW</td>
<td>1</td>
<td>380V..480V</td>
</tr>
<tr>
<td>5</td>
<td>4.0/5.5 kW</td>
<td>1</td>
<td>380V..480V</td>
</tr>
<tr>
<td>6</td>
<td>5.5/7.5 kW</td>
<td>1</td>
<td>380V..480V</td>
</tr>
<tr>
<td>7</td>
<td>7.5/11.0 kW</td>
<td>1</td>
<td>380V..480V</td>
</tr>
<tr>
<td>8</td>
<td>11.0/15.0 kW</td>
<td>1</td>
<td>380V..480V</td>
</tr>
<tr>
<td>9</td>
<td>15.0/18.5 kW</td>
<td>1</td>
<td>380V..480V</td>
</tr>
<tr>
<td>10</td>
<td>18.5/22.0 kW</td>
<td>1</td>
<td>380V..480V</td>
</tr>
<tr>
<td>11</td>
<td>22.0/30.0 kW</td>
<td>1</td>
<td>380V..480V</td>
</tr>
<tr>
<td>12</td>
<td>30.0/37.0 kW</td>
<td>1</td>
<td>380V..480V</td>
</tr>
<tr>
<td>13</td>
<td>37.0/45.0 kW</td>
<td>1</td>
<td>380V..480V</td>
</tr>
<tr>
<td>14</td>
<td>45.0/55.0 kW</td>
<td>1</td>
<td>380V..480V</td>
</tr>
<tr>
<td>15</td>
<td>55.0/75.0 kW</td>
<td>1</td>
<td>380V..480V</td>
</tr>
<tr>
<td>16</td>
<td>75.0/90.0 kW</td>
<td>1</td>
<td>380V..480V</td>
</tr>
<tr>
<td>17</td>
<td>90.0/110.0 kW</td>
<td>1</td>
<td>380V..480V</td>
</tr>
<tr>
<td>18</td>
<td>110.0/132.0 kW</td>
<td>1</td>
<td>380V..480V</td>
</tr>
<tr>
<td>19</td>
<td>132.0/160.0 kW</td>
<td>1</td>
<td>380V..480V</td>
</tr>
<tr>
<td>20</td>
<td>160.0/200.0 kW</td>
<td>1</td>
<td>380V..480V</td>
</tr>
<tr>
<td>21</td>
<td>160.0/200.0 kW</td>
<td>1</td>
<td>380V..480V</td>
</tr>
<tr>
<td>22</td>
<td>200.0/250.0 kW</td>
<td>1</td>
<td>380V..480V</td>
</tr>
<tr>
<td>23</td>
<td>200.0/250.0 kW</td>
<td>1</td>
<td>380V..480V</td>
</tr>
<tr>
<td>24</td>
<td>250.0/315.0 kW</td>
<td>1</td>
<td>380V..480V</td>
</tr>
<tr>
<td>25</td>
<td>250.0/315.0 kW</td>
<td>1</td>
<td>380V..480V</td>
</tr>
<tr>
<td>26</td>
<td>315.0/355.0 kW</td>
<td>1</td>
<td>380V..480V</td>
</tr>
<tr>
<td>27</td>
<td>315.0/355.0 kW</td>
<td>1</td>
<td>380V..480V</td>
</tr>
<tr>
<td>28</td>
<td>355.0/400.0 kW</td>
<td>1</td>
<td>380V..480V</td>
</tr>
<tr>
<td>29</td>
<td>400.0/500.0 kW</td>
<td>1</td>
<td>380V..480V</td>
</tr>
<tr>
<td>30</td>
<td>500.0/630.0 kW</td>
<td>1</td>
<td>380V..480V</td>
</tr>
<tr>
<td>31</td>
<td>630.0/710.0 kW</td>
<td>1</td>
<td>380V..480V</td>
</tr>
<tr>
<td>32</td>
<td>710.0/800.0 kW</td>
<td>1</td>
<td>380V..480V</td>
</tr>
<tr>
<td>33</td>
<td>0.9/1.0 MW</td>
<td>1</td>
<td>380V..480V</td>
</tr>
<tr>
<td>34</td>
<td>1.0/1.2 MW</td>
<td>1</td>
<td>380V..480V</td>
</tr>
<tr>
<td>35</td>
<td>75.0/90.0 kW</td>
<td>3</td>
<td>690V</td>
</tr>
</tbody>
</table>
Tableau des Tailles de Code et Tailles de Famille

<table>
<thead>
<tr>
<th>Size code</th>
<th>Size text</th>
<th>Family code</th>
<th>Family text</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>90.0/110.0 kW</td>
<td>3</td>
<td>690V</td>
</tr>
<tr>
<td>3</td>
<td>110.0/132.0 kW</td>
<td>3</td>
<td>690V</td>
</tr>
<tr>
<td>4</td>
<td>132.0/160.0 kW</td>
<td>3</td>
<td>690V</td>
</tr>
<tr>
<td>5</td>
<td>160.0 kW</td>
<td>3</td>
<td>690V</td>
</tr>
<tr>
<td>6</td>
<td>200.0 kW</td>
<td>3</td>
<td>690V</td>
</tr>
<tr>
<td>7</td>
<td>250.0 kW</td>
<td>3</td>
<td>690V</td>
</tr>
<tr>
<td>8</td>
<td>315.0 kW</td>
<td>3</td>
<td>690V</td>
</tr>
<tr>
<td>9</td>
<td>355.0 kW</td>
<td>3</td>
<td>690V</td>
</tr>
<tr>
<td>10</td>
<td>400.0 kW</td>
<td>3</td>
<td>690V</td>
</tr>
<tr>
<td>11</td>
<td>500.0 kW</td>
<td>3</td>
<td>690V</td>
</tr>
<tr>
<td>12</td>
<td>630.0 kW</td>
<td>3</td>
<td>690V</td>
</tr>
<tr>
<td>13</td>
<td>710.0 kW</td>
<td>3</td>
<td>690V</td>
</tr>
<tr>
<td>14</td>
<td>800.0 kW</td>
<td>3</td>
<td>690V</td>
</tr>
<tr>
<td>15</td>
<td>1000.0 kW</td>
<td>3</td>
<td>690V</td>
</tr>
<tr>
<td>16</td>
<td>1200.0 kW</td>
<td>3</td>
<td>690V</td>
</tr>
<tr>
<td>17</td>
<td>160.0/200.0 kW</td>
<td>3</td>
<td>690V</td>
</tr>
<tr>
<td>18</td>
<td>200.0/250.0 kW</td>
<td>3</td>
<td>690V</td>
</tr>
<tr>
<td>19</td>
<td>250.0/315.0 kW</td>
<td>3</td>
<td>690V</td>
</tr>
<tr>
<td>20</td>
<td>315.0/355.0 kW</td>
<td>3</td>
<td>690V</td>
</tr>
<tr>
<td>21</td>
<td>355.0/400.0 kW</td>
<td>3</td>
<td>690V</td>
</tr>
<tr>
<td>22</td>
<td>400.0/500.0 kW</td>
<td>3</td>
<td>690V</td>
</tr>
<tr>
<td>23</td>
<td>500.0/630.0 kW</td>
<td>3</td>
<td>690V</td>
</tr>
<tr>
<td>24</td>
<td>630.0/710.0 kW</td>
<td>3</td>
<td>690V</td>
</tr>
<tr>
<td>25</td>
<td>710.0/800.0 kW</td>
<td>3</td>
<td>690V</td>
</tr>
<tr>
<td>26</td>
<td>0.9/1.0 MW</td>
<td>3</td>
<td>690V</td>
</tr>
<tr>
<td>27</td>
<td>1.0/1.2 MW</td>
<td>3</td>
<td>690V</td>
</tr>
<tr>
<td>28</td>
<td>1.35/1.5 MW</td>
<td>3</td>
<td>690V</td>
</tr>
<tr>
<td>29</td>
<td>1.65/1.8 MW</td>
<td>3</td>
<td>690V</td>
</tr>
</tbody>
</table>

Menu PAR Description UM Type FB BIT Def Min Maxi Acc Mod

2.3 484 **Famille de variateur** ENUM Pas de Puiss 0 0 RS FVS

Affichage de la typologie de tension secteur disponible (ex. 380V...480V pour secteur 400V). La détection de l’alarme de sous-tension fait référence à cette valeur. La condition **Pas de Puissance** se présente lorsque la carte de réglage ne reconnaît pas la carte de puissance à cause d’une mauvaise configuration. La configuration d’un nouveau réglage pour une puissance donnée s’effectue en la branchant sur une puissance et en enregistrant les paramètres (**Sauvegarde paramètre**).

- 0 Pas de Puiss
- 1 380V...480V
- 2 500V...575V
- 3 690V
- 4 230V
- 5 380V..480V LC (**ADV200-LC**)

Menu PAR Description UM Type FB BIT Def Min Maxi Acc Mod

2.4 486 **Région du variateur** ENUM EU 0 1 R FVS

Visualisation de la zone géographique, Europe ou USA, qui détermine les valeurs de tension et de fréquence d’alimentation utilisées par le drive comme paramétrages d’usine.

<table>
<thead>
<tr>
<th></th>
<th>ADV200-4</th>
<th>ADV200-6</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>EU (400V / 50Hz)</td>
<td>EU (690V / 50Hz)</td>
</tr>
<tr>
<td>1</td>
<td>USA (460V / 60Hz)</td>
<td>USA (690V o 575V / 60Hz)</td>
</tr>
</tbody>
</table>

Menu PAR Description UM Type FB BIT Def Min Maxi Acc Mod

2.5 488 **Courant nominal drv** A FLOAT CALCF 0.0 0.0 RZS FVS

Visualisation du courant que le drive peut distribuer de manière continue en fonction de la grandeur, de la tension d’alimentation et de la fréquence de switching programmée.
Visualisation du numéro de version et du numéro de révision du firmware présent sur le drive. Sur le moniteur, ces données s’affichent au format version.révision. Dans la lecture du paramètre de communication série ou de bus de champ, sur l’octet élevé est indiquée la version et sur l’octet bas la révision.

Visualisation du type de firmware installé dans le drive.

Visualisation du nombre de versions et du nombre de release de l’application MDPlc opérant dans le drive. Dans le clavier de paramétrage, ils sont affichés dans le format version.release. Dans la lecture du paramètre de communication série ou de bus de terrain, il restitue dans l’octet haut la version et dans l’octet bas la release.

Visualisation du type d’application actuellement utilisée dans le drive.

Affichage de l’indice de Révision de l’application en place dans l’entraînement.

Indication du temps total durant lequel le drive a été alimenté.

Indication du temps pendant lequel le drive est resté avec le contact d’activation matérielle inséré.

Visualisation du nombre de fois pendant lequel le drive a été alimenté.

Visualisation du temps total de fonctionnement de la ventilation du drive

Visualisation de la release de la carte de puissance du drive.

Visualisation du type de carte d’expansion montée dans le slot correspondant du drive.
0 Aucun
769 E/S 1 (EXP-IO-D6A4R1-ADV)
1793 E/S 2
2305 E/S 3
3329 E/S 4
1544 Codeur 1 (EXP-DE-I1R1F2-ADV)
1800 Codeur 2 (EXP-SE-I1R1F2-ADV)
520 Codeur 3 (EXP-SESC-I1R1F2-ADV)
776 Codeur 4 (EXP-EN/SSI-I1R1F2-ADV)
1032 Codeur 5 (EXP-HIP-I1R1F2-ADV)
2056 Codeur 7 (EXP-DE-I2R1F2-ADV)
4 Can/Dnet (EXP-CAN-ADV)
260 Profibus (EXP-PDP-ADV)
516 RTE (EXP-ETH-...)
576 FastLink
320 I/O Ext
832 I/O FastLink (EXP-FL-XCAN-ADV)
255 Inconnu
2312 Codeur 8 (EXP-ASC-I1-ADV)
1288 Codeur 6 (EXP-RES-I1R1-ADV)
5633 E/S 6 (EXP-IO-SENS-1000-ADV)
6401 E/S 7 (EXP-IO-D5R8-ADV)
7681 E/S 8 (EXP-IO-SENS-100-ADV)

<table>
<thead>
<tr>
<th>Menu</th>
<th>PAR</th>
<th>Description</th>
<th>UM</th>
<th>Type</th>
<th>FB BIT</th>
<th>Def</th>
<th>Min</th>
<th>Maxi</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.19</td>
<td>546</td>
<td>Fw ver.rel cod sl2</td>
<td>UINT16</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>R</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

Visualisation du numéro de la version et du numéro de la révision du firmware codeur (installé dans le slot 2) fonctionnant dans le drive. Lors de la lecture du paramètre de communication port série ou bus de terrain, il restitue dans l’octet élevé la version et dans l’octet bas la révision.

<table>
<thead>
<tr>
<th>Menu</th>
<th>PAR</th>
<th>Description</th>
<th>UM</th>
<th>Type</th>
<th>FB BIT</th>
<th>Def</th>
<th>Min</th>
<th>Maxi</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.20</td>
<td>548</td>
<td>Fw type de cod sl2</td>
<td>UINT16</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>R</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

Visualisation de la version de firmware de la carte codeur installée sur le logement 2.

<table>
<thead>
<tr>
<th>Menu</th>
<th>PAR</th>
<th>Description</th>
<th>UM</th>
<th>Type</th>
<th>FB BIT</th>
<th>Def</th>
<th>Min</th>
<th>Maxi</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.21</td>
<td>5300</td>
<td>Fw ver.rel cod s1-3</td>
<td>UINT16</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>R</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

Visualisation de la version et du numéro de révision du firmware de la carte codeur (installée dans le logement 1 ou 3) fonctionnant sur le drive. Lors de la lecture du paramètre de communication série ou bus de champ, sur l’octet élevé est indiquée la version et sur l’octet bas la révision.

<table>
<thead>
<tr>
<th>Menu</th>
<th>PAR</th>
<th>Description</th>
<th>UM</th>
<th>Type</th>
<th>FB BIT</th>
<th>Def</th>
<th>Min</th>
<th>Maxi</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.22</td>
<td>5302</td>
<td>Fw type cod sl1-3</td>
<td>UINT16</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>R</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

Visualisation de la version de firmware de la carte codeur installée dans le logement 1 ou 3.

<table>
<thead>
<tr>
<th>Menu</th>
<th>PAR</th>
<th>Description</th>
<th>UM</th>
<th>Type</th>
<th>FB BIT</th>
<th>Def</th>
<th>Min</th>
<th>Maxi</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.23</td>
<td>5724</td>
<td>Fw Ver.Rel FastLink</td>
<td>UINT16</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>ER</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

Visualisation de la version et du numéro de révision du firmware de la carte fastlink fonctionnant sur le drive. Lors de la lecture du paramètre de communication série ou bus de champ, sur l’octet élevé est indiquée la version et sur l’octet bas la révision.

<table>
<thead>
<tr>
<th>Menu</th>
<th>PAR</th>
<th>Description</th>
<th>UM</th>
<th>Type</th>
<th>FB BIT</th>
<th>Def</th>
<th>Min</th>
<th>Maxi</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.24</td>
<td>5726</td>
<td>Type carte FastLink</td>
<td>UINT16</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>ER</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

Visualisation du type de firmware de la carte fastlink fonctionnant sur le drive.
3 – MISE SERVICE GUIDE

4 – CONFIGURATION

<table>
<thead>
<tr>
<th>Menu</th>
<th>PAR</th>
<th>Description</th>
<th>UM</th>
<th>Type</th>
<th>FB BIT</th>
<th>Def</th>
<th>Min</th>
<th>Maxi</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1</td>
<td>550</td>
<td>Sauvegarde paramètre</td>
<td>BIT</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>RW</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Toute modification apportée à la valeur des paramètres a un effet immédiat sur les opérations du drive, mais n’est pas automatiquement mémorisée dans la mémoire permanente.

La commande “Sauvegarde paramètre” est utilisée pour mémoriser dans la mémoire permanente la valeur des paramètres en cours d’utilisation.

Toutes les modifications apportées et non enregistrées seront perdues lors de la mise hors tension du drive sera coupée.

Pour sauvegarder les paramètres, se reporter à la séquence décrite dans le STEP 6 de la procédure de Mise Service Guide.

<table>
<thead>
<tr>
<th>Menu</th>
<th>PAR</th>
<th>Description</th>
<th>UM</th>
<th>Type</th>
<th>FB BIT</th>
<th>Def</th>
<th>Min</th>
<th>Maxi</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.2</td>
<td>552</td>
<td>Mode de Régulation</td>
<td>ENUM</td>
<td>Flux Vect B.F.</td>
<td>1</td>
<td>3</td>
<td>RWZ</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

L’ADV200 peut opérer selon différents modes de contrôle:

1. Flux Vect B.O.
2. Flux Vect B.F.
3. Autoétalonnage

Dans le contrôle vectoriel sensorless (Flux Vect B.O.), il est possible d’obtenir de hautes précisions de vitesse à faible régime de rotation du moteur. L’algorithme du drive, en mesurant selon une procédure d’étalonnage automatique toutes les grandeurs électriques du moteur, permet d’estimer la vitesse et la position de l’arbre moteur permettant ainsi un fonctionnement semblable à celui du drive rétroactionné, aussi bien en ce qui concerne la réponse en couple aux variations de charge que pour la régularité de la rotation du moteur y compris à faible régime.

En mode vectoriel à orientation de champ (Flux Vect B.F.) il est nécessaire d’utiliser un encodeur pour la rétroaction à boucle fermée. Dans ce mode, on obtient des réponses dynamiques très élevées grâce à la largeur de la bande passante du réglage, couple maxi même avec le rotor bloqué, contrôle de vitesse et contrôle de couple. L’on peut agir sur de différentes paramètres de réglage pour adapter le drive à chaque application spécifique tel que par exemple les gains d’adaptation, compensation de l’inertie du système, etc.

La modalité Autoétalonnage permet d’effectuer le calibrage automatique des paramètres du moteur dans le cas où la procédure de Startup guidé ne serait pas utilisée. Pour pouvoir exécuter la commande, il est tout d’abord nécessaire d’activer le drive en ouvrant le contact hardware entre les bornes 7 et S3. Régler ensuite le paramètre Mode de Régulation sur Autoétalonnage. Ensuite, si la modalité Local n’est pas déjà activée, appuyer sur la touche Local (le voyant lumineux LOC s’allume) puis refermer le contact d’activation hardware (bornes 7 et S3). Il est à présent possible d’activer l’autoétalonnage (faire référence au paramètre 2022 ou 2224). Au terme de la procédure d’autoétalonnage, ouvrir à nouveau le contact hardware entre les bornes 7 et S3 et rétablir les paramètres modifiés.

Cette procédure doit être employée aussi bien pour l’autoétalonnage avec moteur à l’arrêt, que pour celui avec moteur en train de tourner dans le cas de Flux Vect B.F.. Dans le cas de Flux Vect B.O., il est possible d’effectuer l’étalonnage automatique des paramètres du moteur.

Note!
When switching from the “Flux Vect B.O.” mode to the “Flux Vect B.F.” mode and vice versa, certain parameters of the drive are recalculated and then deleted or overwritten. Therefore, prior to changing the mode, it is advisable to manually save the configuration on the keypad (PAR 590 Stoker param -> Clav, menu 4 – CONFIGURATION) or on the double set of parameters (menu 22.6 - FONCTIONS/DUPLICATE JEPPARAM).

<table>
<thead>
<tr>
<th>Menu</th>
<th>PAR</th>
<th>Description</th>
<th>UM</th>
<th>Type</th>
<th>FB BIT</th>
<th>Def</th>
<th>Min</th>
<th>Maxi</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.3</td>
<td>554</td>
<td>Mode d’accès</td>
<td>ENUM</td>
<td>Facile</td>
<td>0</td>
<td>1</td>
<td>RW</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Avec ce paramètre, on peut limiter l’accès à la paramétrisation avancée.

0. Facile
1. Expert

En mode Facile, on peut interagir avec une liste de paramètres qui consentent une mise en service rapide du drive, permettant ainsi une configuration adéquate pour la plus grande partie des applications.

En configurant le paramètre sur Expert, on accède à tous les paramètres contenus dans le firmware, ce qui permet de personnaliser considérablement le drive et réussir ainsi à exploiter à fond toutes les potentialités.
fournies par l’ADV200.

Menu PAR Description UM Type FB BIT Def Min Maxi Acc Mod

| 4.4 | 558 | Application select | ENUM | Aucun | 0 | 2 | ERWZ | FVS |

Sélection de l’application MDPlc développée en milieu IEC 61131-3.

0 Aucun
1 Application 1
2 Application 2

Le drive est fourni avec quelques applications développées en milieu IEC 61131-3 déjà présents. Pour pouvoir les utiliser, il faut sélectionner l’application souhaitée, effectuer Sauvegarde paramètre, éteindre et allumer le drive.

Remarque : la commande Chgt param d’usine (par. 580) ne modifie pas ce paramètre.

Menu PAR Description UM Type FB BIT Def Min Maxi Acc Mod

| 4.5 | 560 | Tension réseau | ENUM | 400 V | SIZE | SIZE | ERWZS | VS |

Configuration de la valeur en Volt de la tension de réseau disponible. La détection de l’alarme de sous-tension se réfère à cette valeur.

Pour l’entraînement taille 7 (et ses parallèles), le contacteur S1 sur la carte R-PSM définit le niveau de détection de l’alarme Sous-tension. Il doit donc être réglé de la même manière que le paramètre P560.

0 Aucun
1 230 V
2 380 V
3 400 V
4 415 V
5 440 V
6 460 V
7 480 V
8 500 V
9 575 V
10 690 V

Menu PAR Description UM Type FB BIT Def Min Maxi Acc Mod

| 4.6 | 586 | DC supply | ENUM | Aucun | 0 | 3 | ERWZS | FVS |

Sélection de la valeur de tension appliquée sur le DC link en cas d’alimentation du drive par un alimentateur CA/CC, aussi bien standard que régénérateur (AFE200 par exemple). En cas de sélection d’une valeur autre que “Aucun”, le calcul de tous les paramètres liés à la Tension réseau (PAR. 560) est effectué en fonction de la tension indiquée dans le tableau ci-dessous, alors que la valeur du PAR. 560 Tension réseau est réglée automatiquement.

En cas de sélection de la valeur « Aucun », les calculs sont effectués d’après la valeur du paramètre 560 Tension réseau.

<table>
<thead>
<tr>
<th>Alimentation CC</th>
<th>Famille drive 380V..480V Tension de secteur</th>
<th>Famille drive 690V Tension de secteur</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Aucun (Vcc)</td>
<td>Utiliser P560</td>
</tr>
<tr>
<td>1</td>
<td>540 V (380-480V)</td>
<td>400 V N/A</td>
</tr>
<tr>
<td>2</td>
<td>650 V (380-480V)</td>
<td>460 V N/A</td>
</tr>
<tr>
<td>3</td>
<td>750 V (380-480V)</td>
<td>460 V N/A</td>
</tr>
<tr>
<td>10</td>
<td>675 V (690V)</td>
<td>N/A</td>
</tr>
<tr>
<td>11</td>
<td>810 V (690V)</td>
<td>N/A</td>
</tr>
<tr>
<td>12</td>
<td>935 V (690V)</td>
<td>N/A</td>
</tr>
<tr>
<td>13</td>
<td>1120 V (690V)</td>
<td>N/A</td>
</tr>
</tbody>
</table>

Menu PAR Description UM Type FB BIT Def Min Maxi Acc Mod

| 4.7 | 450 | Sous tension | V | FLOAT | CALCF | CALCF | CALCF | ERWZS | FVS |

Configuration de la tension minimum de fonctionnement du drive. Les valeurs minimum et maximum par défaut sont automatiquement calculées par le drive d’après la configuration du paramètre 560 Tension réseau, comme le montre le tableau suivant.

Tableau des seuils de sous-tension

<table>
<thead>
<tr>
<th>Tension réseau</th>
<th>Def</th>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Aucun (Vcc)</td>
<td>(Vcc)</td>
<td>(Vcc)</td>
</tr>
<tr>
<td>1</td>
<td>230 V</td>
<td>225</td>
<td>200</td>
</tr>
<tr>
<td>2</td>
<td>380 V</td>
<td>372</td>
<td>330</td>
</tr>
</tbody>
</table>
Tension réseau

<table>
<thead>
<tr>
<th>Tension réseau</th>
<th>Def</th>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 400 V</td>
<td>392</td>
<td>330</td>
<td>490</td>
</tr>
<tr>
<td>4 415 V</td>
<td>407</td>
<td>360</td>
<td>509</td>
</tr>
<tr>
<td>5 440 V</td>
<td>431</td>
<td>382</td>
<td>539</td>
</tr>
<tr>
<td>6 460 V</td>
<td>451</td>
<td>400</td>
<td>564</td>
</tr>
<tr>
<td>7 480 V</td>
<td>470</td>
<td>417</td>
<td>588</td>
</tr>
<tr>
<td>8 500 V</td>
<td>490</td>
<td>434</td>
<td>613</td>
</tr>
<tr>
<td>9 575 V</td>
<td>563</td>
<td>500</td>
<td>705</td>
</tr>
<tr>
<td>10 690 V</td>
<td>676</td>
<td>600</td>
<td>846</td>
</tr>
</tbody>
</table>

Menu PAR Description UM Type FB BIT Def Min Maxi Acc Mod

4.8 562 Freq de découpage

ENUM | SIZE | SIZE | SIZE | ERWS | FVS

Configuration de la valeur de la fréquence de modulation en kHz. La valeur maximale configurable dépend de la grandeur du drive.

- **0** 1 kHz
- **1** 2 kHz
- **2** 4 kHz
- **3** 6 kHz
- **4** 8 kHz
- **5** 10 kHz
- **6** 12 kHz
- **7** 16 kHz

Configuration de la valeur de la fréquence de modulation en kHz. La valeur maximale configurable dépend de la grandeur du drive.

0 | 1 kHz
1 | 2 kHz
2 | 4 kHz
3 | 6 kHz
4 | 8 kHz
5 | 10 kHz
6 | 12 kHz
7 | 16 kHz

4.9 564 Température ambiante

ENUM | 40 °C | 0 | 1 | ERWZ | FVS

Configuration de la valeur de la température ambiante. Avec ce paramètre, on configure le déclassement du courant de sortie.

- **0** 40 °C Le variateur est en mesure de distribuer le courant continu (nominal du drive) avec une tempéramure ambiante allant jusqu’à 40°C.
- **1** 50 °C Le variteur est en mesure de distribuer le courant continu avec une température allant jusqu’à 50°C.

En configurant la valeur 1, le courant de sortie du drive sera inférieur de 10% par rapport au courant nominal à 40°C.

<table>
<thead>
<tr>
<th>Altitude d’installation au-dessus du niveau de la mer</th>
<th>Déclassement du courant de sortie à la température ambiante de :</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 … 1000 m</td>
<td>20°C</td>
</tr>
<tr>
<td></td>
<td>100%</td>
</tr>
</tbody>
</table>

4.10 566 Mode surcharge drive

ENUM | Forte Charge | 1 | 2 | ERWZ | FVS

Configuration de la courant surcharge que le drive est en mesure de distribuer, en fonction de l’application.

1 | Forte Charge
2 | Faible Charge

Configurer **Forte Charge** lorsqu'une surcharge lourde est demandée:

- (contrôle moteurs synchrones) : le drive est en mesure de distribuer 200% du courant nominal pendant 3 secondes et 160% pendant 1 minute toutes les 5 minutes.
- (contrôle moteurs asynchrones) : le drive est en mesure de distribuer 180% du courant nominal pendant 0,5 seconde et 150% pendant 1 minute toutes les 5 minutes.

La surcharge légère (**Faible Charge**) consent au drive de distribuer un courant de 110% par rapport au courant nominal pendant 1 minute toutes les 5 minutes.

4.11 568 Freq découpe mode

Configuration du mode de fonctionnement de la fréquence. La fréquence de modulation est configurée en usine à 4 kHz pour les grandeurs de 2,2 kW à 37 kW (en ce qui concerne les grandeurs inférieures, la fréquence de modulation est configurée en usine à 8 kHz); cette valeur peut comporter une augmentation de la nuisance acoustique. La configuration d’une fréquence de modulation plus élevée provoque une augmentation.
des pertes du drive et par conséquent une augmentation de la température du dissipateur même si la nuisance acoustique est inférieure. Pour combiner les avantages dérivant des deux configurations, le drive ADV permet de contrôler la température du dissipateur en abaissant la fréquence de modulation en cas d’augmentation de cette dernière.

0 Constant
1 Variable

En réglant sur Constant, la fréquence de modulation est fixe et est configurée à travers le paramètre Freq de découpage en fonction de la grandeur du drive. Si l’on sélectionne une valeur de la fréquence de modulation supérieure à celle configurée par défaut, un déclassement du courant de sortie du drive est appliqué.

En réglant sur Variable, la fréquence de modulation est programmée sur 8 kHz (dans le cas des grandeurs de 2,2 kW à 37 kW / des valeurs inférieures sont définies pour les drives de puissance supérieure) et est également effectué un contrôle de la valeur de température du dissipateur du drive et de la fréquence de sortie.

Dans le cas où la température du dissipateur serait supérieure à un seuil programmé (en fonction de la grandeur du drive) ou dans le cas où elle serait inférieure à 5 Hz, la fréquence de modulation est automatiquement ramenée à 4 kHz (toujours en fonction de grandeurs de 2,2 kW à 37 kW), permettant ainsi d’éviter le déclassement de la valeur du courant de sortie. (au dépassement de la fréquence de sortie de 7 Hz, la fréquence de commutation est ramenée à la valeur de 8 kHz). La diminution de la fréquence de modulation s’effectue en un seul step. Avec cette configuration, la valeur de la fréquence de modulation sélectionnée avec le paramètre Freq de découpage n’aura aucun effet.

Remarque
Si la tension secteur est réglée sur la valeur maximum, le seuil d’activation de la résistance de freinage prendra une seule valeur possible et il ne pourra être modifié.

Menu PAR Description UM Type FB BIT Def Min Maxi Acc Mod

4.12 454 Act.Résist.freinage V FLOAT CALCF CALCF CALCF ERWZS FVS

Menu PAR Description UM Type FB BIT Def Min Maxi Acc Mod

4.13 570 Mot de passe UINT32 0 0 99999 ERW FVS

On peut saisir un mot de passe pour que l’utilisateur puisse protéger les paramètres contre toute intervention accidentelle. Il peut être constitué de 5 numéros maximum, librement choisis par le client. Tous les paramètres sont bloqués sauf celui-ci et le paramètre Sauvegarde paramètre.

Lorsque le mot de passe est entré, il faut appuyer sur la touche E une première fois pour l’enregistrer dans la mémoire et une deuxième fois pour l’activer (l’afficheur affiche la visualisation indiquant que le mot de passe est activé = Validé). Afin que le mot de passe soit toujours valable, même après avoir éteint et rallumé l’appareil, il faut le mémoriser moyennant la commande Sauvegarde paramètre.

Lorsque le mot de passe est activé, toute tentative de modifier un paramètre sera bloqué et l’écran affichera le message Password enabled.

Pour désactiver le mot de passe, il faut aller sur le paramètre Mot de passe (570) du menu CONFIGURATION. Vérifier que le mot de passe est activé (validé), presser la touche E et saisir la combinaison de numéros qui forment le mot de passe. Appuyer encore une fois sur E. L’afficheur indiquant que le mot de passe n’est plus activé (désactivé) apparaît.

Pour que le mot de passe soit toujours désactivé même après avoir éteint et rallumé l’appareil, il faut mémoriser cette configuration à l’aide de la commande Sauvegarde paramètre.

Si l’on tente de saisir un mot de passe étranger, le message Password wrong s’affiche.

Menu PAR Description UM Type FB BIT Def Min Maxi Acc Mod

4.14 572 Clé d’Application UINT32 0 0 4294967295 ERW FVS

Avec ce paramètre, on peut saisir la clé de validation d’application MDPlc. Certaines applications peuvent demander l’utilisation d’une clé pour pouvoir être habilitées de manière définitive. Pour savoir quelles applications demandent l’utilisation d’une clé, s’adresser aux techniciens Gefran.

Si une application est en cours et qu’elle prévoit la vérification de la clé et la clé est erronée, on aura 200 heures (time drive enabled) à disposition de validation forcée. Durant cette phase, un message est affiché pour avertir que la période de validation forcée est en train de terminer. Au power-on du drive qui suit les 200 heures une alarme se déclencherà et l’application ne sera plus activée. S’adresser au personnel Gefran pour demander la valeur numérique de la clé.
4.15 574 Affichage initial

<table>
<thead>
<tr>
<th>Menu</th>
<th>PAR</th>
<th>Description</th>
<th>UM</th>
<th>Type</th>
<th>FB BIT</th>
<th>Def</th>
<th>Min</th>
<th>Maxi</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
</table>

Permet de configurer le paramètre qui sera utilisé automatiquement lors du démarrage du drive.

-1 En entrant la valeur -1 (par défaut), la fonction est désactivée et lors du démarrage on visualise le menu principal.

0 Affichage des paramètres du menu “DISP” (moniteur des variables de sortie du variateur : tension, courant, fréquence, vitesse, etc.). Ce menu peut être affiché aussi en appuyant sur la touche DISP du clavier.

1 Affichage des paramètres du menu RECETTE.

N’importe quel PAR (IPA) existant.

4.16 576 Rétroéclair display

<table>
<thead>
<tr>
<th>Menu</th>
<th>PAR</th>
<th>Description</th>
<th>UM</th>
<th>Type</th>
<th>FB BIT</th>
<th>Def</th>
<th>Min</th>
<th>Maxi</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
</table>

Valide le rétroéclairage de l’afficheur du drive.

En programmant 0, le rétroéclairage de l’afficheur s’éteindra après trois minutes à compter de l’alimentation de l’actionnement.

En programmant 1, le rétroéclairage restera activé pendant tout le temps que le drive sera alimenté.

4.17 578 Sélecteur de langue

<table>
<thead>
<tr>
<th>Menu</th>
<th>PAR</th>
<th>Description</th>
<th>UM</th>
<th>Type</th>
<th>FB BIT</th>
<th>Def</th>
<th>Min</th>
<th>Maxi</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
</table>

Configuration de la langue à utiliser dans la programmation du drive.

0 Anglais
1 Italien
2 Français
3 Allemand
4 Espagnole
5 Polonais
6 Roumain
7 Russe
8 Turc
9 Portugais

Remarque !
La commande Chgt param d’usine (par. 580) ne modifie pas ce paramètre.

4.18 580 Chgt param d’usine

<table>
<thead>
<tr>
<th>Menu</th>
<th>PAR</th>
<th>Description</th>
<th>UM</th>
<th>Type</th>
<th>FB BIT</th>
<th>Def</th>
<th>Min</th>
<th>Maxi</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
</table>

Transfère dans la mémoire du drive les valeurs standards configurées en usine (colonne “Def” du tableau des paramètres).

4.19 590 Stocker param -> Clav

<table>
<thead>
<tr>
<th>Menu</th>
<th>PAR</th>
<th>Description</th>
<th>UM</th>
<th>Type</th>
<th>FB BIT</th>
<th>Def</th>
<th>Min</th>
<th>Maxi</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
</table>

Transfère et sauvegarde dans la mémoire du clavier les paramètres actuellement mémorisés dans le drive (voir le manuel ADV200 Guide Rapide, chapitre 6.8).

4.20 592 Chgt Clavier->Drive

<table>
<thead>
<tr>
<th>Menu</th>
<th>PAR</th>
<th>Description</th>
<th>UM</th>
<th>Type</th>
<th>FB BIT</th>
<th>Def</th>
<th>Min</th>
<th>Maxi</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
</table>

Transfère les paramètre de la mémoire du clavier au drive (voir le manuel ADV200 Guide Rapide, chapitre 6.9).

4.21 594 Sélect mém Clavier

<table>
<thead>
<tr>
<th>Menu</th>
<th>PAR</th>
<th>Description</th>
<th>UM</th>
<th>Type</th>
<th>FB BIT</th>
<th>Def</th>
<th>Min</th>
<th>Maxi</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
</table>

Sélection de la zone de mémoire du clavier dans laquelle transférer et sauvegarder les paramètres mémorisés dans le drive.

4.22 6100 Chg.Ctrl.Asynchrone

<table>
<thead>
<tr>
<th>Menu</th>
<th>PAR</th>
<th>Description</th>
<th>UM</th>
<th>Type</th>
<th>FB BIT</th>
<th>Def</th>
<th>Min</th>
<th>Maxi</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
</table>

Commande qui permet de passer à la modalité contrôle de moteur Asynchrones. Sur le moniteur, s’affiche la demande de confirmation de la commande, puisque le drive est redémarré pour être utilisé dans la nouvelle modalité.
Les drives ADV disposent d’un circuit de réglage de la vitesse pouvant facilement s’adapter aux différentes applications. Dans la fourniture standard, le régulateur a un comportement PI et les paramètres du régulateur restent les mêmes pour tout le champ de régulation.

En fonction de la configuration du paramètre **552 Mode de Régulation** contrôle, on peut utiliser différentes sources pour les consignes de vitesse et de couple.

Exemple 1:
- **Ramp ref 1** = + 500 tours/min
- **Ramp ref 2** = + 300 tours/min
- **Ramp ref** = 500 tours/min + 300 tours/min = 800 tours/min

Exemple 2:
- **Ramp ref 1** = + 400 tours/min
- **Ramp ref 2** = - 600 tours/min
- **Ramp ref** = 400 tours/min – 600 tours/min = - 200 tours/min

En mode **Distance** la consigne globale pour la rampe est le résultat de la somme des valeurs avec signe de **Ramp ref 1** et **Ramp ref 2**.
Exemple 1: \(\text{Ramp ref 1} = +500 \text{ tours/min} \quad \text{Ramp ref 2} = +300 \text{ tours/min} \)
\(\text{Ramp ref} = 500 \text{ tours/min} + 300 \text{ tours/min} = 800 \text{ tours/min} \)

Exemple 2: \(\text{Ramp ref 1} = +400 \text{ tours/min} \quad \text{Ramp ref 2} = -600 \text{ tours/min} \)
\(\text{Ramp ref} = 400 \text{ tours/min} – 600 \text{ tours/min} = -200 \text{ tours/min} \)

En mode **Locale**, la consigne globale pour la rampe est le résultat de la somme des valeurs avec signe de **Ramp ref 3 et Ramp ref 2**.

Exemple 1: \(\text{Ramp ref 3} = +500 \text{ tours/min} \quad \text{Ramp ref 2} = +300 \text{ tours/min} \)
\(\text{Ramp ref} = 500 \text{ tours/min} + 300 \text{ tours/min} = 800 \text{ tours/min} \)

Exemple 2: \(\text{Ramp ref 3} = +400 \text{ tours/min} \quad \text{Ramp ref 2} = -600 \text{ tours/min} \)
\(\text{Ramp ref} = 400 \text{ tours/min} – 600 \text{ tours/min} = -200 \text{ tours/min} \)

<table>
<thead>
<tr>
<th>Menu</th>
<th>PAR</th>
<th>Description</th>
<th>UM</th>
<th>Type</th>
<th>FB BIT</th>
<th>Def</th>
<th>Min</th>
<th>Maxi</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.3</td>
<td>604</td>
<td>Dig ramp ref 3</td>
<td>FF</td>
<td>INT16</td>
<td>16/32</td>
<td>0</td>
<td>CALCI</td>
<td>CALCI</td>
<td>ERW</td>
<td>FVS</td>
</tr>
</tbody>
</table>

Configuration de la consigne numérique à la rampe. Avec la consigne à la rampe, la vitesse que le drive doit atteindre après le dépassement de la phase d’accélération est configurée. Des variations de la consigne à la rampe sont indiquées avec les temps de rampe choisis. La valeur de la consigne à la rampe détermine la vitesse du moteur alors que le signe en détermine le sens de rotation. Le paramètre **Ramp ref** se réfère aussi à une vitesse minimales éventuellement configurée. Lorsque l’on sélectionne les fonctions “**Motopotentiomètre**” ou bien “**Multi-vitesse**” les consignes correspondantes sont employées Cette consigne ne peut être utilisée qu’en mode **Locale**.

La consigne globale pour la rampe est le résultat de la somme des valeurs avec le signe **Ramp ref 3 et Ramp ref 2**.

Exemple 1: \(\text{Ramp ref 3} = +500 \text{ tours/min} \quad \text{Ramp ref 2} = +300 \text{ tours/min} \)
\(\text{Ramp ref} = 500 \text{ tours/min} + 300 \text{ tours/min} = 800 \text{ tours/min} \)

Exemple 2: \(\text{Ramp ref 3} = +400 \text{ tours/min} \quad \text{Ramp ref 2} = -600 \text{ tours/min} \)
\(\text{Ramp ref} = 400 \text{ tours/min} – 600 \text{ tours/min} = -200 \text{ tours/min} \)

<table>
<thead>
<tr>
<th>Menu</th>
<th>PAR</th>
<th>Description</th>
<th>UM</th>
<th>Type</th>
<th>FB BIT</th>
<th>Def</th>
<th>Min</th>
<th>Maxi</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.4</td>
<td>610</td>
<td>Ramp ref 1 src</td>
<td>LINK</td>
<td>16/32</td>
<td>1500</td>
<td>0</td>
<td>16384</td>
<td>RW</td>
<td>FVS</td>
<td></td>
</tr>
<tr>
<td>5.5</td>
<td>612</td>
<td>Ramp ref 2 src</td>
<td>LINK</td>
<td>16/32</td>
<td>602</td>
<td>0</td>
<td>16384</td>
<td>ERW</td>
<td>FVS</td>
<td></td>
</tr>
<tr>
<td>5.6</td>
<td>614</td>
<td>Ramp ref 3 src</td>
<td>LINK</td>
<td>16/32</td>
<td>894</td>
<td>0</td>
<td>16384</td>
<td>ERW</td>
<td>FVS</td>
<td></td>
</tr>
</tbody>
</table>

Sélection de l’origine (source) des signaux de consigne à l’entrée du bloc fonction de la rampe qui établit la vitesse principale du drive. Les grandeurs utilisées comme consigne pour la rampe, peuvent être configurées parmi celles qui sont disponibles dans la liste de sélection “**L_MLTREF**”.

Pour une attribution de la consigne à l’aide des bornes, on peut utiliser les signaux avec ±10V, 0 ... 10V, 0 ... 20 mA et 4 ... 20 mA.

<table>
<thead>
<tr>
<th>Menu</th>
<th>PAR</th>
<th>Description</th>
<th>UM</th>
<th>Type</th>
<th>FB BIT</th>
<th>Def</th>
<th>Min</th>
<th>Maxi</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.7</td>
<td>616</td>
<td>Ramp ref invert src</td>
<td>LINK</td>
<td>16</td>
<td>1050</td>
<td>0</td>
<td>16384</td>
<td>ERW</td>
<td>FVS</td>
<td></td>
</tr>
</tbody>
</table>

Sélection de l’origine (source) du signal qui invertit la consigne de rampe à la sortie du bloc “Ramp ref”. Le signal utilisable pour cette fonction peut être configuré parmi ceux qui sont disponibles dans la liste de sélection “**L_DIGSEL2**”.

<table>
<thead>
<tr>
<th>Menu</th>
<th>PAR</th>
<th>Description</th>
<th>UM</th>
<th>Type</th>
<th>FB BIT</th>
<th>Def</th>
<th>Min</th>
<th>Maxi</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.8</td>
<td>620</td>
<td>Ramp ref 1 visu</td>
<td>FF</td>
<td>INT16</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>R</td>
<td>FVS</td>
<td></td>
</tr>
<tr>
<td>5.9</td>
<td>622</td>
<td>Ramp ref 2 visu</td>
<td>FF</td>
<td>INT16</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>ER</td>
<td>FVS</td>
<td></td>
</tr>
<tr>
<td>5.10</td>
<td>624</td>
<td>Ramp ref 3 visu</td>
<td>FF</td>
<td>INT16</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>ER</td>
<td>FVS</td>
<td></td>
</tr>
</tbody>
</table>

Visualisation de la valeur de la consigne correspondant à la rampe de sortie du bloc fonction “Ramp ref”.
5.11 634 Lim.haut Rampe ref
FF INT32 0 0 CALCI ERWZ FVS
Définit la valeur maximum de la sortie du blocage de la consigne de rampe, indépendamment du signal présent. La consigne de rampe suivra le signal de consigne de la valeur paramétrée dans le paramètre 636 Lim.bas Rampe ref jusqu'à la valeur paramétrée avec ce paramètre, après quoi la vitesse du moteur restera constante. La limite est valable pour les deux sens de rotation.

5.12 636 Lim.bas Rampe ref
FF INT32 0 0 CALCI ERWZ FVS
Définit la valeur minimum de la sortie du blocage de la consigne de rampe, indépendamment du signal présent. La sortie du blocage de rampe reste à la valeur paramétrée par ce paramètre tant que le signal analogique ne dépasse pas ce seuil : la valeur de la sortie de rampe commencera à suivre la consigne jusqu'à la valeur paramétrée dans le paramètre 634 Lim.haut Rampe ref. La limite est valable pour les deux sens de rotation.

5.13 630 Saut de fréquence
rpm INT16 0 0 CALCI ERW FVS
Configuration du seuil de vitesse interdite au fonctionnement du drive.

5.14 632 Bande saut de fréq
rpm INT16 0 0 CALCI ERW FVS
Configuration de l'amplitude de la bande d'interdiction.

Exemple :

A) Augmentation de la consigne de valeurs inférieures à Par. 630

Par. 630 = 300 tours/min (seuil de vitesse interdite)
Par. 632 = 10 tours/min (donc bande d'interdiction: 290tours/min..310tours/min.)
Consigne de vitesse configurée = 295 tours/min.Hz
Vitesse de sortie = 290 rpm
Consigne de vitesse configurée = 305 tours/min.
Vitesse de sortie = 290 rpm

B) Diminution de la consigne de valeurs supérieures à Par. 630

Par.630 = 300 tours/min. (seuil de vitesse interdite)
Par.632 = 10 tours/min. (donc bande de tolérance: 290 tours/min…310 tours/min.)
Consigne de vitesse configurée = 305 tours/min.
Fréquence de sortie = 310 rpm
Consigne de vitesse configurée = 295 tours/min.
Fréquence de sortie = 310 rpm

L’utilisateur peut donc configurer n’importe quelle valeur de consigne, mais si la vitesse configurée se trouve dans les gammes interdites, le drive maintiendra automatiquement la vitesse en dehors des limites fixées par la bande de tolérance.

Durant les phases de rampe, la vitesse interdite est librement traversée et l’on n’a pas de points de discontinuité dans la création de la fréquence de sortie.

La consigne de vitesse fournit la vitesse souhaitée à l’actionnement qui suit directement le développement de la référence. cela se vérifie uniquement lorsque le couple disponible est suffisant. Dans ce cas, l’actionnement fonctionne en limite de courant jusqu’à ce qu’il atteigne la vitesse configurée. La valeur de consigne de la vitesse détermine la vitesse du moteur, alors que le signe en détermine le sens de rotation.

<table>
<thead>
<tr>
<th>Menu</th>
<th>PAR</th>
<th>Description</th>
<th>UM</th>
<th>Type</th>
<th>FB BIT</th>
<th>Def</th>
<th>Min</th>
<th>Maxi</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.15</td>
<td>640</td>
<td>Dig vitesse ref 1</td>
<td>FF</td>
<td>INT16</td>
<td>16/32</td>
<td>0</td>
<td>CALCI</td>
<td>CALCI</td>
<td>ERW</td>
<td>FVS</td>
</tr>
<tr>
<td>5.16</td>
<td>642</td>
<td>Dig vitesse ref 2</td>
<td>FF</td>
<td>INT16</td>
<td>16/32</td>
<td>0</td>
<td>CALCI</td>
<td>CALCI</td>
<td>ERW</td>
<td>FVS</td>
</tr>
</tbody>
</table>

Configuration des consignes numériques de vitesse. La consigne globale de vitesse est le résultat de la somme des valeurs avec les signes correspondants, de **Dig vitesse ref 1** et **Dig vitesse ref 2**. Les consignes numériques de vitesse sont reliées à la sortie du circuit de rampe.

La consigne globale de vitesse est le résultat de la somme des valeurs avec signe de **Vitesse ref 1** et **Vitesse ref 2**.

Exemple 1:
\[\text{Vitesse ref 1} = +500 \text{ tours/min.} \quad \text{Vitesse ref 2} = +300 \text{ tours/min.} \]
\[\text{Vitesse ref} = 500 \text{ tours/min.} + 300 \text{ tours/min.} = 800 \text{ tours/min.} \]
Exemple 2:

Vitesse ref 1 = + 400 tours/min.
Vitesse ref 2 = - 600 tours/min.
Vitesse ref = 400 tours/min. – 600 tours/min. = - 200 tours/min.

<table>
<thead>
<tr>
<th>Menu</th>
<th>PAR</th>
<th>Description</th>
<th>UM</th>
<th>Type</th>
<th>FB</th>
<th>BIT</th>
<th>Def</th>
<th>Min</th>
<th>Maxi</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.17</td>
<td>650</td>
<td>Vitesse ref 1 src</td>
<td>LINK</td>
<td>16/32</td>
<td>640</td>
<td>0</td>
<td>16384</td>
<td>ERW</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.18</td>
<td>652</td>
<td>Vitesse ref 2 src</td>
<td>LINK</td>
<td>16/32</td>
<td>642</td>
<td>0</td>
<td>16384</td>
<td>ERW</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Sélection de l’origine (source) des signaux de consigne de vitesse du drive. Les grandeurs pouvant être utilisées comme consigne de vitesse peuvent être configurées parmi celles qui sont disponibles dans la liste de sélection “L_MLTREF”.

Pour une attribution de la consigne à l’aide des bornes, on peut utiliser les signaux avec ±10V,0 ...10V, 0... 20 mA et 4 ... 20 mA.

<table>
<thead>
<tr>
<th>Menu</th>
<th>PAR</th>
<th>Description</th>
<th>UM</th>
<th>Type</th>
<th>FB</th>
<th>BIT</th>
<th>Def</th>
<th>Min</th>
<th>Maxi</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.19</td>
<td>654</td>
<td>Vitesse ref invers src</td>
<td>LINK</td>
<td>16</td>
<td>6000</td>
<td>0</td>
<td>16384</td>
<td>ERWZ</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Sélection de l’origine (source) du signal qui invertit la consigne de vitesse à la sortie du régulateur. La borne utilisable pour cette fonction peut être configurée parmi celles qui sont disponibles dans la liste de sélection “L_DIGSEL2”.

<table>
<thead>
<tr>
<th>Menu</th>
<th>PAR</th>
<th>Description</th>
<th>UM</th>
<th>Type</th>
<th>FB</th>
<th>BIT</th>
<th>Def</th>
<th>Min</th>
<th>Maxi</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.20</td>
<td>660</td>
<td>Vitesse ref 1 visu</td>
<td>FF</td>
<td>INT16</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>ER</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.21</td>
<td>662</td>
<td>Vitesse ref 2 visu</td>
<td>FF</td>
<td>INT16</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>ER</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Visualisation de la valeur de la consigne de vitesse correspondante.

<table>
<thead>
<tr>
<th>Menu</th>
<th>PAR</th>
<th>Description</th>
<th>UM</th>
<th>Type</th>
<th>FB</th>
<th>BIT</th>
<th>Def</th>
<th>Min</th>
<th>Maxi</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.22</td>
<td>670</td>
<td>Vitesse ref max</td>
<td>FF</td>
<td>INT32</td>
<td>CALCI</td>
<td>0</td>
<td>CALCI</td>
<td>ERWZ</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Configuration de la limite supérieure de la consigne de vitesse. Si la consigne de vitesse dépasse les limites, la vitesse du moteur maintiendra malgré tout la valeur limite configurée. Les limites de vitesse ne peuvent pas dépasser 200% de la valeur configurée dans le paramètre **Vitesse pour 10V** (menu CONSIGNES par. 680).

<table>
<thead>
<tr>
<th>Menu</th>
<th>PAR</th>
<th>Description</th>
<th>UM</th>
<th>Type</th>
<th>FB</th>
<th>BIT</th>
<th>Def</th>
<th>Min</th>
<th>Maxi</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.23</td>
<td>672</td>
<td>Vitesse ref min</td>
<td>FF</td>
<td>INT32</td>
<td>CALCI</td>
<td>CALCI</td>
<td>0</td>
<td>ERWZ</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Configuration de la limite inférieure de consigne de vitesse. Si la consigne de vitesse dépasse les limites, la vitesse du moteur maintiendra malgré tout la valeur limite configurée. Les limites de vitesse ne peuvent pas dépasser 200% de la valeur configurée dans le paramètre **Vitesse pour 10V** (menu CONSIGNES par. 680).

<table>
<thead>
<tr>
<th>Menu</th>
<th>PAR</th>
<th>Description</th>
<th>UM</th>
<th>Type</th>
<th>FB</th>
<th>BIT</th>
<th>Def</th>
<th>Min</th>
<th>Maxi</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.24</td>
<td>666</td>
<td>Filtre ref vitesse</td>
<td>ms</td>
<td>UINT16</td>
<td>0</td>
<td>0</td>
<td>1000</td>
<td>ERW</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Configuration d’un filtre sur la référence de vitesse. Le filtre est désactivé par défaut (= 0).

<table>
<thead>
<tr>
<th>Menu</th>
<th>PAR</th>
<th>Description</th>
<th>UM</th>
<th>Type</th>
<th>FB</th>
<th>BIT</th>
<th>Def</th>
<th>Min</th>
<th>Maxi</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.25</td>
<td>680</td>
<td>Vitesse pour 10V</td>
<td>rpm</td>
<td>INT16</td>
<td>CALCI</td>
<td>50</td>
<td>32000</td>
<td>RWZ</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Configuration de la valeur de consigne pour toutes les données en pourcentage de vitesse (Consignes, adaptations de vitesse...) et elle correspond à 100% de cette vitesse. Ce paramètre ne peut être modifié que lorsque le variateur est bloqué (validation actionnement = désactivé) Il est conseillé de configurer la valeur de ce paramètre à la vitesse nominale du moteur ; en cas de variation, il est conseillé de répéter la procédure d’autoétalonnage.

Vitesse pour 10V ne définit pas la vitesse maximale possible. Dans tous les cas, la valeur maximale du pourcentage de vitesse est ± 200 % de la valeur **Vitesse pour 10V**.
La rampe (intégrateur de la consigne) détermine les temps d’accélération et de décelération de l’actionnement. Les temps peuvent être configurés de manière indépendante.

Quant à la commande d’arrêt rapide, activable à partir du bornier, on utilise les temps de rampe spécifiés dans les paramètres Accélération temps 3 et Décélération temps 3.

La forme de la rampe peut être, au choix, linéaire ou bien en forme de S.

Les consignes peuvent être configurées de différentes façons:
- avec les consignes Dig ramp ref 1 et/ou Dig ramp ref 2
- avec la fonction Multi vitesse
- avec la fonction Motopotentiomètre
- avec la fonction Jog

Le générateur de rampe peut être utilisé selon la configuration “stand alone”. Quand il est désactivé (Rampe type = Off), les commandes de “validation actionnement, marche/arrêt et arrêt rapide” non aucune influence sur le générateur de rampe. Dans cette condition, le générateur de rampe peut être utilisé séparément.

Les temps de rampe d’accélération et de décelération sont utilisés pour éviter toute modification soudaine dans...
la fréquence de sortie du drive, modifications qui pourraient provoquer des chocs mécaniques, des valeurs de courant excessives sur le moteur et des valeurs de tension excessives de DC-bus. Les temps d’accélération (6.1, 6.3, 6.5, 6.7) sont exprimés comme temps nécessaire pour amener la fréquence de zéro à la valeur maximale configurée dans le paramètre Vitesse pour 10V (par. 680). Par contre, les temps de décélération (6.2, 6.4, 6.6, 6.8) sont exprimés comme temps nécessaire pour amener la fréquence de la valeur maximale configurée dans le paramètre Vitesse pour 10V (par. 680) à zéro. Chacune des 4 sélections de rampes disponibles peut être sélectionnée en utilisant un ou deux entrées numériques programmées comme Multi ramp sel src.

* Flux Vect B.F. = 0,01 ; Flux Vect B.O. = 1,00.

<table>
<thead>
<tr>
<th>Menu</th>
<th>PAR</th>
<th>Description</th>
<th>UM</th>
<th>Type</th>
<th>FB BIT</th>
<th>Def</th>
<th>Min</th>
<th>Maxi</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.9</td>
<td>720</td>
<td>Rampe type</td>
<td>ENUM</td>
<td>Linéaire</td>
<td>0</td>
<td>3</td>
<td>ERWZ FVS</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Ce paramètre configure la forme de la rampe (linéaire/en S.) Ce paramètre ne peut être modifié que lorsque le drive est désactivé.

0 Linéaire
1 Rampe en S
2 Bypass
3 Off

En configurant les rampes linéaires (Linéaire) la vitesse du moteur varie de manière directement proportionnelle à la fréquence.

En configurant les rampes en S (Rampe en S), on peut éviter de brusques variations mécaniques dans le système au début et à la fin de la phase d’accélération et de décélération

Le temps de rampe, entendu comme temps nécessaire pour accélérer de zéro à la valeur maximale de fréquence configurée, est le résultat de la somme du temps de rampe linéaire et de celui des Jerks associés (voir par. 6.13 – 6.20).

Le Bypass exclut le circuit de la rampe et la consigne est directement transmise à l’entrée du régulateur de vitesse.

Avec Off la consigne de rampe est amenée à zéro.

<table>
<thead>
<tr>
<th>Menu</th>
<th>PAR</th>
<th>Description</th>
<th>UM</th>
<th>Type</th>
<th>FB BIT</th>
<th>Def</th>
<th>Min</th>
<th>Maxi</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.10</td>
<td>722</td>
<td>Multi ramp sel 0 src</td>
<td>LINK</td>
<td>6000</td>
<td>0</td>
<td>16384</td>
<td>ERWZ FVS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.11</td>
<td>724</td>
<td>Multi ramp sel 1 src</td>
<td>LINK</td>
<td>6000</td>
<td>0</td>
<td>16384</td>
<td>ERWZ FVS</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

En utilisant 1 ou 2 entrées numériques, on peut sélectionner l’un des 4 sets de rampe disponibles.

La sélection de l’origine (source) de la commande pour activer la fonction de sélection rampe peut être choisie dans la liste de sélection "L_DIGSEL2".

Le tableau suivant décrit la procédure de sélection de la rampe:

<table>
<thead>
<tr>
<th>Temps de rampe activé</th>
<th>Multi ramp sel 0 src</th>
<th>Multi ramp sel 1 src</th>
</tr>
</thead>
<tbody>
<tr>
<td>Accélération temps0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Décélération temps0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Accélération temps1</td>
<td>Décélération temps1</td>
<td>1</td>
</tr>
<tr>
<td>---------------------</td>
<td>---------------------</td>
<td>---</td>
</tr>
<tr>
<td>Accélération temps2</td>
<td>Décélération temps2</td>
<td>0</td>
</tr>
<tr>
<td>Accélération temps3</td>
<td>Décélération temps3</td>
<td>1</td>
</tr>
</tbody>
</table>

Menu PAR Description UM Type FB BIT Def Min Maxi Acc Mod

| 6.12 | 726 | Multi ramp sél visu | UINT16 | 0 | 0 | 3 | ER | FVS |

Visualisation du jeu de rampes d’accélération/décélération en sélectionnant avec les entrées numériques.

<table>
<thead>
<tr>
<th>Menu PAR Description UM Type FB BIT Def Min Maxi Acc Mod</th>
<th>6.13</th>
<th>730</th>
<th>Accél S temps 0</th>
<th>s FLOAT</th>
<th>1.0</th>
<th>0.02</th>
<th>10.0</th>
<th>ERW</th>
<th>FVS</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.14</td>
<td>732</td>
<td>Décél S temps 0</td>
<td>s FLOAT</td>
<td>1.0</td>
<td>0.02</td>
<td>10.0</td>
<td>ERW</td>
<td>FVS</td>
<td></td>
</tr>
<tr>
<td>6.15</td>
<td>734</td>
<td>Accél S temps 1</td>
<td>s FLOAT</td>
<td>1.0</td>
<td>0.02</td>
<td>10.0</td>
<td>ERW</td>
<td>FVS</td>
<td></td>
</tr>
<tr>
<td>6.16</td>
<td>736</td>
<td>Décél S temps 1</td>
<td>s FLOAT</td>
<td>1.0</td>
<td>0.02</td>
<td>10.0</td>
<td>ERW</td>
<td>FVS</td>
<td></td>
</tr>
<tr>
<td>6.17</td>
<td>738</td>
<td>Accél S temps 2</td>
<td>s FLOAT</td>
<td>1.0</td>
<td>0.02</td>
<td>10.0</td>
<td>ERW</td>
<td>FVS</td>
<td></td>
</tr>
<tr>
<td>6.18</td>
<td>740</td>
<td>Décél S temps 2</td>
<td>s FLOAT</td>
<td>1.0</td>
<td>0.02</td>
<td>10.0</td>
<td>ERW</td>
<td>FVS</td>
<td></td>
</tr>
<tr>
<td>6.19</td>
<td>742</td>
<td>Accél S temps 3</td>
<td>s FLOAT</td>
<td>1.0</td>
<td>0.02</td>
<td>10.0</td>
<td>ERW</td>
<td>FVS</td>
<td></td>
</tr>
<tr>
<td>6.20</td>
<td>744</td>
<td>Décél S temps 3</td>
<td>s FLOAT</td>
<td>1.0</td>
<td>0.02</td>
<td>10.0</td>
<td>ERW</td>
<td>FVS</td>
<td></td>
</tr>
</tbody>
</table>

Le Jerk est une variation d’accélération dans le temps. Ils sont utilisés au cas où il serait nécessaire d’éteindre le début et la fin de la rampe. La valeur des Jerk est ajouté, indépendamment de la variation de vitesse, au temps de la rampe linéaire.

![Diagramme de rampe](image)

Menu PAR Description UM Type FB BIT Def Min Maxi Acc Mod

| Menu PAR Description UM Type FB BIT Def Min Maxi Acc Mod | 6.21 | 750 | Entrée Ramp = 0 | LINK 16 | 6000 | 0 | 16384 | ERW | FVS |

 Sélection de l’origine (source) du signal qui bloque l’entrée de la rampe et place la consigne à zéro. Si l’entrée de la rampe est débloquée, le paramètre Ramp ref correspond à la consigne configurée. Si l’entrée de la rampe est bloquée, le drive ralentit selon le temps de décelération programmé jusqu’à la vitesse zéro. La borne à associer à cette fonction peut être sélectionnée dans la liste de sélection “L_DIGSEL2”.

Menu PAR Description UM Type FB BIT Def Min Maxi Acc Mod

| Menu PAR Description UM Type FB BIT Def Min Maxi Acc Mod | 6.22 | 752 | Sortie Ramp = 0 | LINK 16 | 6000 | 0 | 16384 | ERW | FVS |

Sélection de l’origine (source) du signal qui place sur zéro la rampe (Ramp ref 1/Ramp ref 2 = 0). Lorsque la sortie de la rampe est placée sur zéro Sortie Ramp = 0, le drive freine avec le couple maximal disponible ; dans ce cas, la rampe est désactivée. La borne à associer à cette fonction peut être sélectionnée dans la liste de sélection “L_DIGSEL2”.

Menu PAR Description UM Type FB BIT Def Min Maxi Acc Mod

| Menu PAR Description UM Type FB BIT Def Min Maxi Acc Mod | 6.23 | 754 | Blocage de rampe | LINK 16 | 3480 | 0 | 16384 | ERW | FVS |

Sélection de l’origine (source) du signal qui maintient temporairement la valeur à la sortie de la rampe, indé-
pendamment des éventuelles variations de consigne à l’entrée. La borne à associer à cette fonction peut être sélectionnée dans la liste de sélection “L_DIGSEL2”.

![Diagramme de ramp freeze](image.png)
La fonction "Multi-vitesse" permet de rappeler, moyennant un signal numérique ou à travers des entrées numériques dans le bornier, jusqu’à seize consignes de vitesse mémorisées à l’intérieur.

<table>
<thead>
<tr>
<th>Menu</th>
<th>PAR</th>
<th>Description</th>
<th>UM</th>
<th>Type</th>
<th>FB BIT</th>
<th>Def</th>
<th>Min</th>
<th>Maxi</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.1</td>
<td>800</td>
<td>Multi vitesse 0</td>
<td>FF</td>
<td>INT16</td>
<td>16/32</td>
<td>0</td>
<td>CALCI</td>
<td>CALCI</td>
<td>RW</td>
<td>FVS</td>
</tr>
<tr>
<td>7.2</td>
<td>802</td>
<td>Multi vitesse 1</td>
<td>FF</td>
<td>INT16</td>
<td>16/32</td>
<td>0</td>
<td>CALCI</td>
<td>CALCI</td>
<td>RW</td>
<td>FVS</td>
</tr>
<tr>
<td>7.3</td>
<td>804</td>
<td>Multi vitesse 2</td>
<td>FF</td>
<td>INT16</td>
<td>0</td>
<td>0</td>
<td>CALCI</td>
<td>CALCI</td>
<td>RW</td>
<td>FVS</td>
</tr>
<tr>
<td>7.4</td>
<td>806</td>
<td>Multi vitesse 3</td>
<td>FF</td>
<td>INT16</td>
<td>0</td>
<td>0</td>
<td>CALCI</td>
<td>CALCI</td>
<td>RW</td>
<td>FVS</td>
</tr>
<tr>
<td>7.5</td>
<td>808</td>
<td>Multi vitesse 4</td>
<td>FF</td>
<td>INT16</td>
<td>0</td>
<td>0</td>
<td>CALCI</td>
<td>CALCI</td>
<td>RW</td>
<td>FVS</td>
</tr>
</tbody>
</table>
On peut sélectionner jusqu’à 16 fréquences de fonctionnement dont la valeur est configurée par ces paramètres.

La sélection de ces fréquences est effectuée moyennant la codification binaire des entrées numériques programmées avec les paramètres *Multi vit sel 0 src*, *Multi vit sel 1 src*, *Multi vit sel 2 src* et *Multi vit sel 3 src*.

La configuration des consignes peut être effectuée au moyen du clavier, de la ligne série, des entrées numériques et du bus de terrain.

Les consignes peuvent être dotées de signe, de manière à ce qu’avec leur définition même le sens de rotation souhaité peut être configuré.

<table>
<thead>
<tr>
<th>Menu</th>
<th>PAR</th>
<th>Description</th>
<th>UM</th>
<th>Type</th>
<th>FB</th>
<th>BIT</th>
<th>Def</th>
<th>Min</th>
<th>Maxi</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.17</td>
<td>832</td>
<td>Multi vitesse 0 src</td>
<td>LINK</td>
<td>16/32</td>
<td>800</td>
<td>0</td>
<td>16384</td>
<td>RW</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.18</td>
<td>834</td>
<td>Multi vitesse 1 src</td>
<td>LINK</td>
<td>16/32</td>
<td>802</td>
<td>0</td>
<td>16384</td>
<td>RW</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Sélection de l’origine (source) des signaux de consigne de vitesse du drive. Les grandeurs pouvant être utilisées comme consigne de vitesse peuvent être configurées parmi celles qui sont disponibles dans la liste de sélection "L_MLTREF".

<table>
<thead>
<tr>
<th>Menu</th>
<th>PAR</th>
<th>Description</th>
<th>UM</th>
<th>Type</th>
<th>FB</th>
<th>BIT</th>
<th>Def</th>
<th>Min</th>
<th>Maxi</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.19</td>
<td>840</td>
<td>Multi vit sel 0 src</td>
<td>LINK</td>
<td>16</td>
<td>6000</td>
<td>0</td>
<td>16384</td>
<td>RW</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.20</td>
<td>842</td>
<td>Multi vit sel 1 src</td>
<td>LINK</td>
<td>16</td>
<td>6000</td>
<td>0</td>
<td>16384</td>
<td>RW</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.21</td>
<td>844</td>
<td>Multi vit sel 2 src</td>
<td>LINK</td>
<td>16</td>
<td>6000</td>
<td>0</td>
<td>16384</td>
<td>RW</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.22</td>
<td>846</td>
<td>Multi vit sel 3 src</td>
<td>LINK</td>
<td>16</td>
<td>6000</td>
<td>0</td>
<td>16384</td>
<td>ERW</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Sélection de l’origine (source) des signaux utilisés pour sélectionner l’une des vitesses préalablement configurées. Ces paramètres ne peuvent être utilisés qu’associés entre eux. Les bornes utilisables pour cette fonction peuvent être configurées parmi celles qui sont disponibles dans la liste de sélection "L_DIGSEL2".

Le tableau ci-dessous décrit la sélection de la fonction Multi vitesse:

<table>
<thead>
<tr>
<th>Cons. vitesse activée</th>
<th>Multi vit sel 0 src</th>
<th>Multi vit sel 1 src</th>
<th>Multi vit sel 2 src</th>
<th>Multi vit sel 3 src</th>
</tr>
</thead>
<tbody>
<tr>
<td>Multi vitesse 0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Multi vitesse 1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Multi vitesse 2</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Multi vitesse 3</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Multi vitesse 4</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Multi vitesse 5</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Multi vitesse 6</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Multi vitesse 7</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Multi vitesse 8</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Multi vitesse 9</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Multi vitesse 10</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>
La figure suivante décrit la sélection d’un contrôle de 8 Multivitesses.

Visualisation de la multivitesse sélectionnée au moyen des commandes numériques ou des entrées numériques sélectionnées dans le bornier.

Visualisation de la consigne de vitesse sélectionnée à la sortie du bloc Multi vitesse.
Avec la fonction Motopotentiomètre, on peut modifier la consigne de vitesse du drive en appuyant sur les boutons poussoirs auxquels sont associées les commandes AUGMENTER et DIMINUER.

Les commandes AUGMENTER et DIMINUER peuvent être activées à partir du clavier, des entrées numériques, de la ligne série ou du bus de terrain.

Pour activer les commandes AUGMENTER et DIMINUER à partir du clavier, on doit entrer dans la modalité de modification du paramètre **Mpot vit départ** et appuyer sur les touches AUGMENTER et DIMINUER.

Les commandes AUGMENTER et DIMINUER augmentent ou diminuent la vitesse du moteur tant que ces commandes seront présentes. La présence simultanée des deux commandes ne produit aucune variation.

La variation de vitesse s’effectue avec les temps de rampe configurés et dans les limites inférieures et supérieures configurées.

On peut configurer la valeur que la sortie de la fonction Motopotentiomètre doit avoir au power-on du drive.

Avec la commande PRESET, on peut forcer une prééglage que doivent avoir l’entrée et la sortie de la fonction Motopotentiomètre.

Avec la commande INVERSION, on peut forcer une inversion de la valeur de référence de la fonction Motopotentiomètre.

En conditions de défaut, la consigne de vitesse générée par la fonction Motopotentiomètre est reliée à l’entrée à la fonction Rampe: si l’on souhaite un contrôle direct de la vitesse du moteur, il est conseillé de réinitialiser les temps configurés sur les paramètres Accélération temps et Décélération temps dans le menu RAMPES.

Remarque ! La fonction Motopotentiomètre génère une consigne de vitesse, par conséquent, pour faire tourner le moteur, il faut toujours lancer la commande RUN.
8.1 870 Mpot vit départ

Visualisation de la valeur de consigne de vitesse de la fonction Motopotentiomètre. Le réglage par défaut est en "tr/mn", mais il peut être modifié via la fonction "Facteur dimension".

On doit se placer sur ce paramètre pour activer les commandes Augmenter et Diminuer à partir du clavier.

8.2 872 Mpot accélération

Configuration des temps de rampe (en secondes) d’accélération/décélération utilisés avec la fonction Motopotentiomètre.

8.3 874 Mpot décélération

8.4 876 Mpot limit max

Configuration de la limite supérieure de consigne de vitesse à la sortie du motopotentiomètre.

8.5 878 Mpot limit min

Configuration de la limite inférieure de consigne de vitesse à la sortie du motopotentiomètre.

8.6 880 Mpot init cfg

Avec ce paramètre, on configure la valeur de la sortie du motopotentiomètre lors du démarrage du drive.

0 Dernière désalim
1 Zéro
2 Lim Inférieure
3 Lim Supérieure

En configurant Dernière désalim la sortie du motopotentiomètre partira depuis la dernière fréquence configurée avant l’arrêt du drive.

En configurant Zéro la sortie du motopotentiomètre partira de la valeur zéro.

En configurant Lim Inférieure la sortie du motopotentiomètre partira de la valeur de limite inférieure configurée dans le paramètre Mpot limit min.

En configurant Lim Supérieure la sortie du motopotentiomètre partira de la valeur de limite supérieure configurée dans le paramètre Mpot limit max.

8.7 882 Mpot presel cfg

Avec ce paramètre, on peut configurer le préréglage de la fonction Motopotentiomètre, c’est-à-dire configurer la valeur selon laquelle l’entrée et la sortie du motopotentiomètre sont configurées lorsque la commande préréglage s’active.

La commande préréglage a la priorité sur la commande Augmenter et la commande Diminuer.

Le Mpot mode (PAR 892) = [1] Rampe&Suiveur a la priorité sur la commande Preset, c’est-à-dire que les actions programmées sur Mpot presel cfg (PAR 882) ne sont pas exécutées

Les commandes Augmenter et Diminuer seront à nouveau activées lorsque la commande préréglage se désactivera.

0 Aucun
1 Entrée=0
2 Entrée=LimBasse
3 Entrée&Consig=0
4 Ent&cCon=LimIn
5 Sortie = 0
6 Sortie = LimBass
7 Sortie & Consig = 0
8 Sort & Con = LimIn
9 Entrée = LimSupp
10 Ent & Con = LimSup
11 Gel Entrée

En sélectionnant **Aucun** aucune configuration ne sera effectuée.

En sélectionnant **Entrée = 0** on configure Entrée = 0 c’est-à-dire que l’on effectue un jeu provisoire de la consigne et la valeur de consigne précédente est maintenue. La sortie de la fonction Motopotentiomètre variera avec les temps de rampe configurés. La valeur de consigne précédente est rétablie lorsque l’on élimine la commande préréglage.

En sélectionnant **Entrée = LimBasse** on configure Entrée = limite inférieure c’est-à-dire que l’on effectue un jeu provisoire de la consigne et la valeur de consigne précédente est maintenue. La sortie de la fonction Motopotentiomètre variera avec les temps de rampe configurés. La valeur de consigne précédente est rétablie lorsque l’on élimine la commande préréglage.

En sélectionnant **Entrée & Consig = 0** on configure Entrée = 0 et Consigne = 0 c’est-à-dire que l’on effectue un jeu définitif de la consigne. La sortie de la fonction Motopotentiomètre variera avec les temps de rampe configurés.

En sélectionnant **Entrée & Con = LimIn** on configure Entrée = limite inférieure et Consigne = limite inférieure, c’est-à-dire que l’on effectue un jeu définitif de la consigne. La sortie de la fonction Motopotentiomètre variera avec les temps de rampe configurés.

En sélectionnant **Sortie = 0** on configure Sortie = 0 c’est-à-dire que l’on effectue un jeu provisoire de la sortie de la fonction Motopotentiomètre. La valeur de consigne précédente sera maintenue. Si la commande préréglage est activée, la sortie de la fonction Motopotentiomètre restera = 0, si la commande préréglage est désactivée, la sortie de la fonction Motopotentiomètre variera avec les temps de rampe configurés.

En sélectionnant **Sortie = LimBass** on configure Sortie = limite inférieure c’est-à-dire que l’on effectue un jeu provisoire de la sortie de la fonction Motopotentiomètre. La valeur de consigne précédente est maintenue. Si la commande préréglage est activée, la sortie de la fonction Motopotentiomètre restera = limite inférieure, si la commande préréglage est désactivée, la sortie de la fonction Motopotentiomètre variera avec les temps de rampe configurés.

En sélectionnant **Sortie & Consig = 0** on configure Sortie = 0 c’est-à-dire que l’on effectue un jeu définitif de la sortie de la fonction Motopotentiomètre.

En sélectionnant **Sort & Con = LimIn** on configure Sortie = limite inférieure c’est-à-dire que l’on effectue un jeu définitif de la sortie de la fonction Motopotentiomètre.

En sélectionnant **Entrée = LimSupp** on configure Entrée = limite supérieure c’est-à-dire que l’on effectue un jeu provisoire de la consigne et la valeur de consigne précédente est maintenue. La sortie de la fonction Motopotentiomètre variera avec les temps de rampe configurés. La valeur de consigne précédente est rétablie lorsque l’on élimine la commande préréglage.

En sélectionnant **Ent & Con = LimSup** on configure Entrée = limite supérieure et Consigne = limite supérieure c’est-à-dire que l’on effectue un jeu définitif de la consigne. La sortie de la fonction Motopotentiomètre variera avec les temps de rampe configurés.

En sélectionnant **Gel Entrée** on désactive provisoirement les commandes Augmenter et Diminuer.

<table>
<thead>
<tr>
<th>Menu</th>
<th>PAR</th>
<th>Description</th>
<th>UM</th>
<th>Type</th>
<th>FB</th>
<th>BIT</th>
<th>Def</th>
<th>Min</th>
<th>Maxi</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.8</td>
<td>884</td>
<td>Mpot + vite src</td>
<td>LINK</td>
<td>16</td>
<td>6000</td>
<td>0</td>
<td>16384</td>
<td>RW</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Sélection de l’origine (source) du signal qui augmente la consigne de vitesse du motopotentiomètre avec la rampe configurée. La borne à associer à cette fonction peut être sélectionnée dans la liste de sélection “L_DIGSEL2”.

<table>
<thead>
<tr>
<th>Menu</th>
<th>PAR</th>
<th>Description</th>
<th>UM</th>
<th>Type</th>
<th>FB</th>
<th>BIT</th>
<th>Def</th>
<th>Min</th>
<th>Maxi</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.9</td>
<td>886</td>
<td>Mpot - vit src</td>
<td>LINK</td>
<td>16</td>
<td>6000</td>
<td>0</td>
<td>16384</td>
<td>RW</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Sélection de l’origine (source) du signal qui diminue la consigne de vitesse du motopotentiomètre avec la rampe configurée. La borne à associer à cette fonction peut être sélectionnée dans la liste de sélection “L_DIGSEL2”.
Sélection de l’origine (source) du signal qui invertit la valeur de consigne de vitesse du motopotentiomètre. La borne à associer à cette fonction peut être sélectionnée dans la liste de sélection “L_DIGSEL2”.

Sélection de l’origine (source) du signal qui effectue le préréglage de la fonction Motopotentiomètre. Le signal à associer à cette fonction peut être sélectionné dans la liste de sélection “L_DIGSEL2”.

Programmation de la configuration de deux options possibles de la fonction Motopotentiomètre. Pour chacune des deux options, il existe deux modes opérationnels.

Option 1: Comportement de la fonction Motopotentiomètre en présence de la commande Arrêté ou Arrêt rapide avec le paramètre PAR 556 Mode de pilot sel = Rampe.

Les deux modes opérationnels sont les suivants: Last Val ou bien Suiveur. Si le paramètre Mode de pilot sel est différent de Rampe, cette option n’est pas complètement applicable, le comportement est toujours Last Val.

En mode Last Val et en présence de la commande Arrêté ou Arrêt rapide la consigne de vitesse de la fonction Motopotentiomètre n’est pas modifiée.

La vitesse du moteur arrive à 0 selon le schéma de contrôle sélectionné (Mode de pilot sel = Rampe ou bien Mode de pilot sel = Vitesse). Lorsque la commande Run est appliquée, la vitesse du moteur arrive à la consigne de vitesse configurée par la fonction Motopotentiomètre conformément au schéma de contrôle sélectionné.

En mode Suivre, en présence de la commande Arrêté ou Arrêt rapide, on simule la commande Diminuer c’est-à-dire que la sortie de la fonction Motopotentiomètre tendra à 0 avec le temps de rampe configuré.

Si l’on applique la commande Run lorsque la vitesse 0 est atteinte, cette dernière est maintenue tant que la commande Augmenter n’est pas appliquée. Si la commande Run est appliquée avant d’avoir atteint la vitesse 0 du moteur, à ce moment-là, la vitesse est prise comme nouvelle référence.
Option 2: Comportement de la rampe

Les deux modes opérationnels sont les suivants: **Rampe** ou bien **Fin**

En mode **Rampe**, lors de chaque activation des commandes Augmenter ou Diminuer, on augmente ou on diminue de manière linéaire la fonction Motopotentiomètre avec la rampe configurée. Lorsque l'on désactive la commande Augmenter ou Diminuer, la dernière valeur atteinte est maintenue.

En mode **Fin**, chaque fois que l'on active les commandes Augmenter ou Diminuer, l'on augmente ou l'on diminue la sortie de la fonction Motopotentiomètre de 1 tours/min.

Si la commande subsiste pendant moins d’une seconde, on n’effectuera pas d’autres variations sur sortie.

Si la commande subsiste pendant plus d’une seconde, on augmentera ou on diminuera de manière linéaire la sortie avec la rampe configurée. La variation avec la rampe configurée est atteinte de manière graduelle (1 seconde). Lorsque l’on désactive la commande Augmenter ou Diminuer, la dernière valeur atteinte est maintenue.

<table>
<thead>
<tr>
<th>Modalité motopotenz</th>
<th>Comportement de la rampe</th>
<th>Comportement de la fonction Motopotentiomètre en présence de la commande Arrêté ou Arrêt rapide avec le paramètre Mpot Mode = Rampe</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Rampe</td>
<td>Last Val</td>
</tr>
<tr>
<td>1</td>
<td>Rampe</td>
<td>Suiveur</td>
</tr>
<tr>
<td>2</td>
<td>Fin</td>
<td>Last Val</td>
</tr>
<tr>
<td>3</td>
<td>Fin</td>
<td>Suiveur</td>
</tr>
<tr>
<td>Menu</td>
<td>PAR</td>
<td>Description</td>
</tr>
<tr>
<td>------</td>
<td>-----</td>
<td>-------------</td>
</tr>
<tr>
<td>8.13</td>
<td>894</td>
<td>Mpot sortie visu</td>
</tr>
</tbody>
</table>

Visualisation de la valeur de la sortie de la fonction Motopotentiomètre.

Deux exemples d’application de la fonction Motopotentiomètre sont indiqués ci-après.

Réglage manuel de la vitesse avec commande provenant du pupitre extérieur.

![Diagramme manuel de la vitesse](image)

A l’aide des boutons poussoirs Augmenter et Diminuer, on règle la vitesse d’un moteur.
Pour obtenir un réglage précis de la valeur de consigne de vitesse, il est conseillé de régler **Mpot mode = Fin & Suiveur** ou bien **Fin&Last Val**. A chaque pression d’1 seconde, on obtient une augmentation de vitesse d’1 tours/min. Si l’on veut obtenir un effet immédiat sur la vitesse du moteur, il est conseillé de configurer sur des temps brefs les paramètres Accélération temps et Décélération temps.

Réglage automatique de la vitesse pour un contrôle baladeur rudimentaire.

![Diagramme automatique de la vitesse](image)

Les fins de course positionnées aux extrémités de l’excursion du baladeur sont reliés aux commande Augmenter et Diminuer de la fonction Motopotentiomètre. Si le baladeur parvient à appuyer sur la fin de course inférieure, cela signifie que le moteur 2 tourne lentement et qu’il faut donc lancer la commande Augmenter. Si le baladeur parvient à appuyer sur la fin de course supérieure, cela signifie que le moteur 2 tourne rapidement et qu’il faut donc lancer la commande Diminuer.

Sur les deux drive, relier la consigne de ligne sur **Source réf rampe 1**, sur drive 2 relier sortie de la fonction Motopotentiomètre sur **Vitesse réf 1 src**.

Pour obtenir une variation immédiate de la vitesse du moteur, il est conseillé de régler **Mpot mode = Ramp & Suiveur** ou bien **Ramp & Val Mémo**.
9 – FONCTION JOG

C'est la consigne pour le fonctionnement en Jog. La consigne de marche Jog est validée lorsque le signal utilisé pour la commande Jog + ou bien Jog- est activé et la commande de Marche est absente la fréquence de sortie du drive est nulle.

Configuration du temps de rampe d’accélération/décélération (en secondes) utilisé durant le fonctionnement Jog.

La commande de Marche a la priorité sur la commande de Jog +.

La commande de Marche a la priorité sur la commande de Jog -.

Visualisation de la valeur de consigne de vitesse utilisée par la commande de Jog.
10 – FONCTION AFFICHAGE

<table>
<thead>
<tr>
<th>Menu</th>
<th>PAR</th>
<th>Description</th>
<th>UM</th>
<th>Type</th>
<th>FB</th>
<th>BIT</th>
<th>Def</th>
<th>Min</th>
<th>Maxi</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.1</td>
<td>930</td>
<td>Consigne >0 seuil</td>
<td>rpm</td>
<td>INT16</td>
<td></td>
<td></td>
<td>30</td>
<td>0</td>
<td></td>
<td>CALCI</td>
<td>RW</td>
</tr>
</tbody>
</table>

Configuration du seuil pour reconnaître la consigne de vitesse = 0. La valeur est valable sur les deux sens de rotation.

<table>
<thead>
<tr>
<th>Menu</th>
<th>PAR</th>
<th>Description</th>
<th>UM</th>
<th>Type</th>
<th>FB</th>
<th>BIT</th>
<th>Def</th>
<th>Min</th>
<th>Maxi</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.2</td>
<td>932</td>
<td>Consigne >0 retard</td>
<td>ms</td>
<td>UINT16</td>
<td></td>
<td></td>
<td>400</td>
<td>0</td>
<td>10000</td>
<td>RW</td>
<td>FVS</td>
</tr>
</tbody>
</table>

Configuration du temps de retard en millisecondes après lequel est activée la signalisation de réalisation de la consigne = 0.

<table>
<thead>
<tr>
<th>Menu</th>
<th>PAR</th>
<th>Description</th>
<th>UM</th>
<th>Type</th>
<th>FB</th>
<th>BIT</th>
<th>Def</th>
<th>Min</th>
<th>Maxi</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.3</td>
<td>940</td>
<td>Vitesse >0 seuil</td>
<td>rpm</td>
<td>INT16</td>
<td></td>
<td></td>
<td>30</td>
<td>0</td>
<td></td>
<td>CALCI</td>
<td>RW</td>
</tr>
</tbody>
</table>

Configuration du seuil pour reconnaître la valeur de vitesse = 0. La valeur est valable sur les deux sens de rotation.

<table>
<thead>
<tr>
<th>Menu</th>
<th>PAR</th>
<th>Description</th>
<th>UM</th>
<th>Type</th>
<th>FB</th>
<th>BIT</th>
<th>Def</th>
<th>Min</th>
<th>Maxi</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.4</td>
<td>942</td>
<td>Vitesse >0 retard</td>
<td>ms</td>
<td>UINT16</td>
<td></td>
<td></td>
<td>400</td>
<td>0</td>
<td>10000</td>
<td>RW</td>
<td>FVS</td>
</tr>
</tbody>
</table>

Configuration du temps de retard en millisecondes après lequel est activée la signalisation de réalisation de la vitesse = 0. Lorsque le moteur atteint une vitesse inférieure au seuil de vitesse zéro, il est arrêté et le voyant lumineux n=0 s'allume sur l'afficheur.
Configuration du seuil de vitesse 1 (supérieur). Lors du dépassement du seuil, le signal *Seuil vitesse* est désactivé avec un retard que l’on peut configurer dans *Vitesse seuil retard*.

Configuration du seuil de vitesse 2 (inférieur). Lors du dépassement du seuil, le signal *Seuil vitesse* est désactivé avec un retard que l’on peut configurer dans *Vitesse seuil retard*.

Configuration du temps de retard avec lequel la transition 0 \(\Rightarrow \) 1 est activée. La transition 0 \(\Rightarrow \) 1 s’effectue lorsque la vitesse est comprise dans les seuils configurés. La transition du signal *Seuil vitesse de 1 \(\Rightarrow \) 0* s’effectue toujours de manière immédiate.

Si la vitesse du moteur est comprise entre *Vitesse seuil 1* et *Vitesse seuil 2* alors la signalisation *Seuil vitesse* est activée. Si l’on configure *Vitesse seuil 1* < *Vitesse seuil 2* alors la signalisation *Seuil vitesse* n’est pas significative.

Sélection de l’origine (source) du signal utilisé comme consigne de vitesse et sur laquelle est effectué le contrôle de la vitesse atteinte (en cas de contrôle avec rampe, on doit utiliser la *Gestion des rampes*. En cas de contrôle sans rampe, on doit utiliser *Vitesse réf totale*). Le signal utilisable comme consigne de vitesse peut être configuré parmi celles qui sont disponibles dans la liste de sélection "L_CMP".

Configuration de la largeur de la bande de tolérance à l’intérieur de laquelle, même si la vitesse ne correspond pas à la consigne, les deux valeurs sont considérées coincidentes et par conséquent le signal *Configuration vitesse* est activé.

Configuration d’un temps de retard en ms à la signalisation *Vitesse réf totale* programmée sur une sortie numérique), au cas où la vitesse serait comprise dans la bande de tolérance définie par le paramètre *Vit atteinte erreur*, suite à laquelle est activée la transition 0 \(\Rightarrow \) 1.

La transition du signal *Vitesse réf totale de 1 \(\Rightarrow \) 0* s’effectue toujours de manière immédiate.

Paramétrage du seuil utilisé comme consigne de vitesse : ce paramètre peut être utilisé si l’on a besoin de paramétrer un seuil fixe indépendamment de la consigne de vitesse.
Menu	PAR	Description	UM	Type	FB BIT	Def	Min	Maxi	Acc	Mod
10.12 970 Seuil vitesse 3 | rpm | INT32 | 0 | 0 | CALCI | ERW | FVS

Paramétrage du seuil de vitesse 3. Lorsque l’on enregistre le dépassement de ce seuil + la bande de tolérance paramétré dans le paramètre 972 Seuil hystér. vit 3, le paramètre 976 est activé **Seuil vitesse 3 mon**. Le signal se désactive lorsque la vitesse du moteur descend au-dessous du seuil - la bande de tolérance. Si la valeur du seuil est inférieure à la valeur paramétrée dans 972 Seuil hystér. vit 3, le résultat produit est toujours 0. La valeur paramétrée dans ce paramètre est activée dans les deux sens de rotation.

Menu	PAR	Description	UM	Type	FB BIT	Def	Min	Maxi	Acc	Mod
10.13 972 Seuil hystér. vit 3 | rpm | UINT16 | 0 | 0 | CALCI | RW | FVS

Paramétrage de la bande de tolérance aux alentours du **Seuil vitesse 3**. La bande de tolérance est égale pour les deux sens de rotation du moteur.

Menu	PAR	Description	UM	Type	FB BIT	Def	Min	Maxi	Acc	Mod
10.14 974 Seuil vitesse 3 src | LINK | 16/32 | 262 | 0 | 16384 | ERW | FVS

Permet de sélectionner la source du bloc fonction “Seuil vitesse 3” pour comparer le **Seuil vitesse 3** (IPA 970) avec la vitesse moteur (réelle ou estimée) ou la valeur de référence.

Menu	PAR	Description	UM	Type	FB BIT	Def	Min	Maxi	Acc	Mod
10.15 980 Seuil courant | perc | UINT16 | 100 | 0 | 200 | RW | FVS

Paramétrage du seuil de courant. La valeur 100% correspond à la valeur du courant continu drive en service astreignant, visualisée dans le paramètre 488 Courant nominal drv, lorsque le paramètre 566 Mode surcharge drive est paramétré sur Forte Charge, et quand aucun déclassement du courant continu du drive dû à la modification de la Tension de secteur, de la Fréquence de commutation et de la Température ambiante n’a été activé. La valeur de **Courant continu du drive** à utiliser en service astreignant correspond à la valeur lue sur le PAR 488 Courant nominal drv en configuration usine. Lorsque l’on détecte le dépassement de ce seuil + la bande de tolérance paramétré dans le paramètre 982 Seuil courant hyster, le paramètre 986 est activé **Seuil courant mon**. Le signal se désactive lorsque la vitesse du moteur descend au-dessous du seuil - la bande de tolérance. Si la valeur du seuil est inférieure à la valeur paramétrée dans 982 Seuil courant hyster, le résultat produit est toujours 0. La valeur paramétrée dans ce paramètre est activée dans les deux sens de rotation.
<table>
<thead>
<tr>
<th>Menu</th>
<th>PAR</th>
<th>Description</th>
<th>UM</th>
<th>Type</th>
<th>FB BIT</th>
<th>Def</th>
<th>Min</th>
<th>Maxi</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.16</td>
<td>982</td>
<td>Seuil courant hyster</td>
<td>perc</td>
<td>UINT16</td>
<td>0</td>
<td>0</td>
<td>100</td>
<td>RW</td>
<td>FVS</td>
<td></td>
</tr>
</tbody>
</table>

Paramétrage de la bande de tolérance aux alentours du Seuil courant. La valeur 100% correspond à la valeur du courant continu drive en service astreignant, visualisée dans le paramètre 488 Courant nominal drv, lorsque le paramètre 566 Mode surcharge drive est paramétré sur Forte Charge. La bande de tolérance est égale pour les deux sens de rotation du moteur, si aucun déclassement de courant continu du drive dû à la modification de la Tension de secteur, de la Fréquence de commutation et de la Température ambiante n’a été activé.

La valeur Courant continu du drive à utiliser en service astreignant correspond à la valeur lue sur le PAR 488 Courant nominal drv en configuration usine.
On peut opérer en mode **Local** ou bien en mode **Distance**.

En commutant entre les modalités **Distance** et **Local**, on commute l’origine des commandes Validation et Marche, et d’autre part, dans le bloc **Ramp réf** on commute entre **Ramp réf 1** et **Ramp réf 3**.

En mode **Distance**, avec le paramètre “Sél commande distance”, on configure la provenance des commandes Validation et Marche, qui peut être le **Bornier** (Entrée numérique standard, Entrée numérique de la carte d’expansion) ou bien **Numérique** (Modbus, Fieldbus, DS402, Profil profidrive).

En mode **Local**, avec le paramètre “Sél commande locale” on configure la provenance des commandes Validation et Marche, qui peut être le **Bornier** (Entrée numérique standard, Entrée numérique de la carte d’expansion) ou bien **Clavier** (touche Marche, touche Arrêt).

En mode **Distance** -> **Numérique** avec les paramètres **Validat Digital src** et **Start Digital src** on doit configurer la source.
Les sources sont spécifiquement les paramètres **Pad**. Par conséquent, Modbus ou Fieldbus devront écrire la valeur souhaitée sur les paramètres Pad. En solution alternative, on peut écrire directement sur les paramètres **Validat Digital src** et **Start Digital src** la valeur 6000 pour avoir la source à Null (0) ou la valeur 6002 pour avoir la source à One (1). Comme autre solution alternative, on peut configurer les sources de **Validat Digital src** et **Start Digital src** sur les paramètres **Visu decomp BitX**, donc Modbus ou Fieldbus devront écrire la valeur souhaitée sur le paramètre **Mot Dig decomp**.

La commutation entre **Local <=> Distance** s’effectue avec la valeur de la variable configurée sur **Local/Distance src**, c’est-à-dire que ce peut être une entrée numérique standard, une entrée numérique de la carte d’expansion, Modbus, Fieldbus, Dig local/Distance.

En conditions de défaut, la variable reliée est Dig local/Distance, qui est écrite par la touche LOC du clavier : par conséquent, pour effectuer la commutation il faut appuyer sur la touche LOC.

Pour des raisons de sécurité, la commutation **Local <=> Distance** qui s’effectue en pressant la touche LOC du clavier n’est effectuée que si le **Terminal Enable = 0**.

Exemple 1:

En fonctionnement automatique de la machine, le drive opère en mode Distance -> Numérique -> Fieldbus.

En fonctionnement manuel de la machine, le drive opère en mode Local -> Bornier -> Entrée numérique standard.

En commutant le fonctionnement de la machine de mode automatique à mode manuel, le drive doit commuter entre la modalité Distance et la modalité Local. Pour effectuer la commutation, la commande peut être donnée par l’entrée numérique standard ou Fieldbus.

Exemple 2:

Lorsque la machine est commandée par le pupitre A, le drive opère en mode Local -> Bornier -> Entrée numérique standard.

Lorsque la machine est commandée par le pupitre B le drive opère en mode Distance -> Numérique -> Entrée numérique de la carte d’expansion.

En commutant le pupitre de commande, le drive doit commuter entre modalité Distance et modalité Local. La commande pour effectuer la commutation peut être fournie par l’Entrée numérique standard ou l’Entrée numérique de la carte d’expansion.

Cette configuration est admise car dans les listes de sélection des commandes numériques, les variables Bornier sont disponibles.

<table>
<thead>
<tr>
<th>Menu</th>
<th>PAR</th>
<th>Description</th>
<th>UM</th>
<th>Type</th>
<th>FB BIT</th>
<th>Def</th>
<th>Min</th>
<th>Maxi</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.1</td>
<td>1000</td>
<td>Sélection commande distance</td>
<td>ENUM</td>
<td>Bornier</td>
<td>0</td>
<td>1</td>
<td>RWZ</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Ce paramètre définit la provenance des signaux de commande lorsque le drive est utilisé en mode à **Distance**.

La commande de Validation ne peut être configurée que par voie matérielle, en connectant une tension positive (+24VDC) à la borne 7.

0 Bornier
1 Digitale

En configurant le paramètre sur Bornier la source de la commande **Validat cmd visu** est la borne Validation (7) et l’origine de la commande **Start cmd visu** est configurée avec le paramètre **Start Digital src**.

En configurant le paramètre sur Digitale l’origine de la commande **Validat cmd visu** se configure avec le paramètre **Validat Digital src** et l’origine de la commande **Start cmd visu** se configure avec le paramètre **Start Digital src**.

En configurant **Numérique** pour générer la commande **Validat cmd visu**, en plus de la variable reliée à **Validat Digital src**, il faut également fournir la validation du matériel sur la borne Validation.

<table>
<thead>
<tr>
<th>Menu</th>
<th>PAR</th>
<th>Description</th>
<th>UM</th>
<th>Type</th>
<th>FB BIT</th>
<th>Def</th>
<th>Min</th>
<th>Maxi</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.2</td>
<td>1002</td>
<td>Sélection commande locale</td>
<td>ENUM</td>
<td>Clavier</td>
<td>0</td>
<td>2</td>
<td>ERWZ</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Ce paramètre définit la provenance des signaux de commande lorsque le drive est utilisé en mode Local.

0 Bornier
2 Clavier

En configurant le paramètre sur Bornier la source de la commande Validat cmd visu est la borne Validation (7) et l’origine de la commande Start cmd visu est configurée avec le paramètre Bornier Start src.

En configurant le paramètre sur Clavier l’origine des commandes Start cmd visu est la touche Marche. En configurant Clavier pour générer la commande Start cmd visu il faut, outre la touche Marche, fournir l’activation matériel sur la borne Validation.

<table>
<thead>
<tr>
<th>Menu</th>
<th>PAR</th>
<th>Description</th>
<th>UM</th>
<th>Type</th>
<th>FB Bit</th>
<th>Def</th>
<th>Min</th>
<th>Maxi</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.3</td>
<td>1004</td>
<td>Mod de valid/dévalid</td>
<td>ENUM</td>
<td>Arr/ArrRap&N=0</td>
<td>0</td>
<td>3</td>
<td>ERW</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Avec ce paramètre, on configure la création de Validat cmd visu, c’est-à-dire que l’on configure le type de contrôle utilisé pour valider et désactiver le drive.

0 Off
1 Arr/ArrRap&N=0
2 Arrêt&N=0
3 ArrRapide&N=0

En configurant 0 Off:
en mode Bornier la validation et la désactivation du drive s’effectuent moyennant la borne Validation-
En mode Digital la validation et la désactivation du drive s’effectuent en présence du signal sur la borne Validation et la commande Validat Digital.
En mode Clavier le drive s’active en présence de l’activation matériel sur la borne Validation ou bien en appuyant sur la touche Marche.
En mode Clavier la désactivation s’effectue si l’activation matériel venait à manquer sur la borne Validation ou bien si l’on appuie deux fois sur la touche Arrêté.

En configurant 1 Arr/ArrRap&N=0:
en mode Bornier le drive est validé en présence de l’activation matériel sur la borne Validation, sur la borne programmée comme Bornier Start et la borne Arrêt rapide. ne doit pas être activée.
Désactivation du drive s’effectue instantanément si le signal sur la borne Validation venait à manquer ou bien lorsque l’on atteint la vitesse =0, si la commande Marche est désactivée ou si la borne programmée comme Arrêt rapide est activée.
En mode Digital le drive est validé en présence de l’activation matériel sur la borne Validation, de la Validat Digital, DigitalStart et la borne Arrêt rapide doit être activé.
En mode Digital la désactivation du drive s’effectue automatiquement si le signal sur la borne Validation vient à manquer ou bien lorsque la vitesse=0 est atteinte si la commande Start Digital est désactivée ou la borne programmée comme Arrêt rapide est activée.
En mode Clavier le drive est validé en présence de l’activation matériel sur la borne Validation et en appuyant sur la touche Marche avec la commande sur la borne Arrêt rapide désactivée.
En mode Clavier la désactivation du drive s’effectue instantanément si le signal sur la borne Validation venait à manquer ou si l’on appuie deux sur la touche Arrêté.

En configurant 2 Arrêt&N=0
en mode Bornier le drive est validé en présence de l’activation matériel sur la borne Validation et du signal sur la borne programmée comme Bornier Start.
En mode Bornier la désactivation du drive s’effectue instantanément si le signal sur la borne Validation venait à manquer ou bien lorsque l’on atteint vitesse =0 si la commande Bornier Start est désactivé.
En mode Digital le drive est validé en présence de l’activation matériel sur la borne Validation et des signaux Validat Digital et DigitalStart.
En mode Digital la désactivation du drive s’effectue instantanément si le signal sur la borne Validation venait à manquer ou la commande Validat Digital, ou bien lorsque l’on atteint vitesse =0 si la commande Start Digital est placée sur 0.
En mode Clavier le drive est validé en présence de l’activation matériel sur la borne Validation et en appuyant
sur la touche Marche.
En mode Clavier la désactivation du drive s’effectue instantanément si le signal sur la borne Validation venait à manquer ou si l’on appuie deux fois sur la touche Arrêté, ou bien lorsque la vitesse=0 est atteinte on appuie sur la touche Arrêté.

En configurant 3 ArrRapide&N=0
en mode Bornier le drive est validé en présence de l’activation matériel sur la borne Validation et si la borne Arrêt rapide n’est pas activée.

En mode Bornier la désactivation du drive s’effectue instantanément si le signal sur la borne Validation venait à manquer ou bien si lorsque la vitesse =0 est atteinte la borne programmée comme Arrêt rapide est activée.

En mode Digital, le drive est validé en présence de l’activation matériel sur la borne Validation et du signal Validat Digital, avec la commande sur la borne Arrêt rapide désactivée.

En mode Digital la désactivation du drive s’effectue instantanément si le signal sur la borne Validation venait à manquer ou la commande Validat Digital, ou bien lorsque l’on atteint vitesse =0 si la commande Start Digital est placée sur 0.

En mode Clavier le drive est validé en présence de l’activation matériel sur la borne Validation et en appuyant sur la touche Marche, avec la commande Arrêt rapide désactivée.

En mode Clavier la désactivation du drive s’effectue instantanément si le signal sur la borne Validation venait à manquer ou si l’on appuie deux fois sur la touche Arrêté ou bien si lorsque la vitesse=0 est atteinte, la borne programmée comme Arrêt rapide est activée.

Menu PAR Description UM Type FB BIT Def Min Maxi Acc Mod
11.4 1006 Ret dévaid à vit=0 ms UINT16 1000 0 10000 ERW FVS

Configuration d’un temps de retard en millisecondes entre l’obtention de la vitesse zéro et la désactivation du drive dans le cas de Mod abilit/disabilii configuré à une valeur différente de Off.

Menu PAR Description UM Type FB BIT Def Min Maxi Acc Mod
11.5 1008 Bouton Stop mode ENUM Inactif 0 1 ERW FVS

Configuration du fonctionnement de la touche Arrêt du pavé. En mode Local avec commandes par clavier, cette sélection n’a aucun effet.

Actif en mode commande à distance (PAR 1012 =1), avec les commandes aussi bien par “Bornier” que par voie “Numérique”, ainsi qu’en mode commande locale (PAR 1012 = 0) avec les commandes par “Bornier”.

0 Inactif
1 Arr Urg&Alarme

En configurant la commande sur Inactif la pression sur la touche Arrêté n’a aucun effet.

En configurant la commande sur Arr Urg&Alarme, l’action sur la touche Arrêt provoquera l’arrêt rapide du moteur et le déclenchement de l’alarme Alarm Arr Urg. Lorsque le moteur atteint la vitesse = 0, le drive se désactive automatiquement et reste en attente de la commande Fault reset. La commande Fault reset doit être appliquée deux fois pour rétablir le drive.

Menu PAR Description UM Type FB BIT Def Min Maxi Acc Mod
11.6 1010 Cmd start sécurisé BIT 1 0 1 ERW FVS

Avec ce paramètre, on configure si au power-on du drive le contrôle de démarrage sécurisé est désactivé ou bien validé.

0 Off
1 On

En configurant Off, le contrôle de départ sécurisé est désactivé, par conséquent si le drive est alimenté avec la validation matériel présente sur la borne Validation, le moteur pourrait se mettre à tourner.

En configurant On, le contrôle de démarrage sécurisé est validé, par conséquent si le drive est alimenté avec la validation matériel présente sur la borne Validation, le moteur ne se met pas à tourner. Pour que le drive accepte les commandes successives, il faut ouvrir la validation matériel sur la borne validation et ensuite la refermer.

Si l’entraînement a redémarré (commande Habilitation présente), le système affichera le message [23] Sécurité active.
Menu PAR Description UM Type FB BIT Def Min Maxi Acc Mod

11.7 1012 Dig local/Distance

<table>
<thead>
<tr>
<th>UM</th>
<th>Type</th>
<th>FB</th>
<th>BIT</th>
<th>Def</th>
<th>Min</th>
<th>Maxi</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENUM</td>
<td>16</td>
<td>Distance</td>
<td>0</td>
<td>1</td>
<td>ERW</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Configuration du mode de fonctionnement **Local** ou **Distance**.

- **0** Local
- **1** Distance

L’écriture de ce paramètre n’est valable que si elle est connectée à **Local/Distance src** et si elle s’effectue sans validation matériel sur la borne **Validation**. En pressant la touche **LOC** on modifie la valeur de ce paramètre 0<=1.

Si l’on souhaite désactiver la touche **LOC**, on doit configurer **Local/Distance src** à une valeur différente de **Dig local/Distance**.

11.8 1014 Local/Distance src

<table>
<thead>
<tr>
<th>UM</th>
<th>Type</th>
<th>FB</th>
<th>BIT</th>
<th>Def</th>
<th>Min</th>
<th>Maxi</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>LINK</td>
<td>16</td>
<td>1012</td>
<td>0</td>
<td>16384</td>
<td>ERW</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Sélection de l’origine (source) du signal qui commute entre **Distance** et **Local**.

Le signal à associer à cette fonction est sélectionné dans la liste de sélection "**L_DIGSEL3**".

- **0** Local
- **1** Distance

En mode **Distance** avec le paramètre "**Sel commande distance**", on configure la provenance des commandes Validation et Marche qui peut être **Bornier** (Entrée numérique standard, Entrée numérique de la carte d’expansion) ou bien **Digital** (Modbus, Fieldbus, Profile DS402, Profile profidrive).

En mode **Local** avec le paramètre "**Sel commande locale**" on configure la provenance des commandes Validation et Marche qui peut être **Bornier** (Entrée numérique standard, Entrée numérique de la carte d’expansion) ou bien **Clavier** (touche Marche, touche Arrêté).

11.9 1016 Bornier Start src

<table>
<thead>
<tr>
<th>UM</th>
<th>Type</th>
<th>FB</th>
<th>BIT</th>
<th>Def</th>
<th>Min</th>
<th>Maxi</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>LINK</td>
<td>16</td>
<td>1048</td>
<td>0</td>
<td>16384</td>
<td>ERW</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Sélection de l’origine (source) du signal **Bornier Start**. Cette commutation ne peut être effectuée que si la validation matériel sur la borne Validation est absente.

Le signal à associer à cette fonction est sélectionné dans la liste de sélection "**L_DIGSEL3**".

En condition de défaut, l’origine du signal **Bornier Start** est la sortie **Start** du bloc ForwardReverseControl (FRC).

11.10 1018 Validat° Digital src

<table>
<thead>
<tr>
<th>UM</th>
<th>Type</th>
<th>FB</th>
<th>BIT</th>
<th>Def</th>
<th>Min</th>
<th>Maxi</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>LINK</td>
<td>16</td>
<td>6000</td>
<td>0</td>
<td>16384</td>
<td>ERW</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Sélection de l’origine (source) du signal **Validat Digital**. La commande à associer à cette fonction peut être sélectionnée dans la liste de sélection "**L_DIGSEL2**".

11.11 1020 Start Digital src

<table>
<thead>
<tr>
<th>UM</th>
<th>Type</th>
<th>FB</th>
<th>BIT</th>
<th>Def</th>
<th>Min</th>
<th>Maxi</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>LINK</td>
<td>16</td>
<td>6000</td>
<td>0</td>
<td>16384</td>
<td>ERW</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Sélection de l’origine (source) du signal **Start Digital**. Le signal à associer à cette fonction peut être sélectionné dans la liste de sélection "**L_DIGSEL2**".

11.12 1022 Arrêt rapide src

<table>
<thead>
<tr>
<th>UM</th>
<th>Type</th>
<th>FB</th>
<th>BIT</th>
<th>Def</th>
<th>Min</th>
<th>Maxi</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>LINK</td>
<td>16</td>
<td>6000</td>
<td>0</td>
<td>16384</td>
<td>ERW</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Sélection de l’origine (source) du signal **Arrêt rapide**. Le signal à associer à cette fonction peut être sélectionné dans la liste de sélection "**L_DIGSEL2**". Durant l’exécution de la commande Arrêt rapide les rampes utilisées sont **Accélération temps3** et **Décélération temps3**. À travers le paramètre **Mode arrêt rapide** (PAR 1036), il est possible de définir les modalités spécifiques de fonctionnement pour le redémarrage automatique du moteur.

11.13 1024 Validat° cmd visu

<table>
<thead>
<tr>
<th>UM</th>
<th>Type</th>
<th>FB</th>
<th>BIT</th>
<th>Def</th>
<th>Min</th>
<th>Maxi</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIT</td>
<td>16</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>R</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Visualisation de l’état de la commande **Validation**.
Menu PAR Description UM Type FB BIT Def Min Maxi Acc Mod

| 11.14 | 1026 Start cmd visu | BIT | 16 | 0 | 0 | 1 | R | FVS |
| 11.15 | 1028 Arrêt rapid cmd visu | BIT | 16 | 0 | 0 | 1 | R | FVS |

Visualisation de l’état de la commande Marche.

Menu PAR Description UM Type FB BIT Def Min Maxi Acc Mod

| 11.16 | 1054 Visu.Dem.Correct | BIT | 16BIT | 0 | 0 | 1 | ER | FVS |

Affichage de l’état de la fonction "contrôle de départ en sécurité" :

0 Disable
1 Enable

Cette fonction est habilité à l’aide du PAR 1010 **Cmd start sécurisé**.

Menu PAR Description UM Type FB BIT Def Min Maxi Acc Mod

| 11.17 | 1040 FR mode | ENUM | 1 | 0 | 2 | ERWZ | FVS |

Configuration du mode de fonctionnement du bloc **Forward Reverse Control (FRC)**.

0 Normal
1 Deux fils Contrôle à deux fils
2 Trois Fils Contrôle à trois fils

L’utilisation de défaut du bloc FRC est indiqué ci-après.
La commande Marche est raccordée Bornier Start et la commande FR reverse est raccordée à Ramp ref invert.
Les diagrammes de fonctionnement des 3 modalités sont indiqués ci-après.

En configurant le contrôle 0 - **Normal** (contrôle normal) le moteur ne se mettra à tourner qu’en présence de la commande **FR forward** en direction forward. Si la commande **FR reverse** est présente, le moteur tournera
La sortie **FR start visu** répète l’état de la commande **FR forward**, alors que la sortie **FR reverse visu** répète l’état de la commande **FR reverse**.

En configurant le contrôle **1 - Deux fils** (contrôle à deux fils), le moteur ne se mettra à tourner qu’en présence de la commande **FR forward** ou de la commande **FR reverse**. La présence simultanée de la commande **FR forward** et de la commande **FR reverse** comporte l’arrêt du moteur.

La sortie **FR start visu** sera activée si les commandes **FR forward** et **FR reverse** ne sont pas présents simultanément.

La sortie **FR reverse visu** répète l’état de la commande **FR reverse**.

Pour effectuer le contrôle **2 - Trois Fils** la présence de la commande ***FR stop** est indispensable sur une entrée numérique programmée par le paramètre **FR *stop src** (absente en condition de défaut). En configurant le contrôle sur **Trois Fils** (contrôle à 3 fils) le moteur démarrera lorsque la borne **FR forward** recevra une impulsion d’une durée non inférieure à 50 msec. Lorsque le moteur est en marche, la présence de la commande sur la borne de **FR forward** n’est plus nécessaire. Pour effectuer une inversion du sens de rotation, valider la commande **FR reverse** : le moteur se placera sur la vitesse zéro avec la rampe configurée et repartira dans le sens de rotation opposé. Tant...
que le signal de FR reverse est activé, le moteur tournera dans la direction Arrière et si le signal de FR reverse se désactive, le moteur tournera en direction Forward. Pour arrêter le moteur, ouvrir le contact FR* stop.

Menu PAR Description UM Type FB BIT Def Min Maxi Acc Mod
11.18 1042 FR forward src LINK 16 1112 0 16384 ERW FVS
Sélection de l’origine (source) pour le signal de FR forward. Suite à cette commande, le moteur commence à tourner (avec la commande de Validation activée). La borne à associer à cette fonction peut être sélectionnée dans la liste de sélection “L_DIGSEL2”.

Menu PAR Description UM Type FB BIT Def Min Maxi Acc Mod
11.19 1044 FR reverse src LINK 16 1114 0 16384 ERW FVS
Sélection de l’origine (source) pour le signal de FR reverse. Suite à cette commande, le moteur invertit le sens de rotation (avec la commande de Validation activée). La borne à associer à cette fonction peut être sélectionnée dans la liste de sélection “L_DIGSEL2”.

Menu PAR Description UM Type FB BIT Def Min Maxi Acc Mod
11.20 1046 FR *stop src LINK 16 6000 0 16384 ERW FVS
Sélection de l’origine (source) pour le signal de FR stop. La borne à associer à cette fonction peut être sélectionnée dans la liste de sélection “L_DIGSEL2”.

Menu PAR Description UM Type FB BIT Def Min Maxi Acc Mod
11.21 1048 FR start visu BIT 16 0 0 1 ER FVS
Visualisation de l’état de la sortie Marche du bloc Forward Reverse Control (FRC).
0 Arrêté
1 Marche

Menu PAR Description UM Type FB BIT Def Min Maxi Acc Mod
11.22 1050 FR reverse visu BIT 16 0 0 1 ER FVS
Visualisation de l’état de la sortie Reverse du bloc Forward Reverse Control (FRC).
0 Non en Arrière
1 En arrière

Menu PAR Description UM Type FB BIT Def Min Maxi Acc Mod
11.23 1052 FR cmd visu UINT16 0 0 0 0 ER FVS
Visualisation de l’état des commandes du bloc Forward Reverse Control (FRC)

<table>
<thead>
<tr>
<th>FR *stop src</th>
<th>FR reverse src</th>
<th>FR forward src</th>
<th>FR cmd visu</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>6</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>7</td>
</tr>
</tbody>
</table>

Menu PAR Description UM Type FB BIT Def Min Maxi Acc Mod
11.24 1032 Verrouil.Var src LINK 16 6002 0 16384 ERW FVS
Avec ce paramètre, il est possible de sélectionner l’origine (source) du signal Verrouil.Var. Le signal à associer à cette fonction peut être sélectionné dans la liste des entrées “L_DIGSEL2”.

ADV200 • Description des fonctions et liste des paramètres
0 Verrouil.Var actif (Drive désactivé)
1 Verrouil.Var non actif (le Drive peut être activé)

Si la commande Verrouil.Var est active, il n’est pas possible d’activer le drive (commande drive Enable).
Si la commande Verrouil.Var n’est pas active, le drive peut être activé en appliquant la commande de drive enable.
Dans les conditions par défaut, le signal “Verrouil.Var src” est relié à “One”. Dans cette configuration, la fonction Verrouil.Var n’est pas active et il est possible d’activer le drive avec la seule commande “Enable”.

Le signal Verrouil.Var, ajouté à la carte Safety “EXP-SFTy-ADV” (Série ADV200.....-SI) est utilisé pour désactiver le drive quand interviennent des conditions particulières et pour éviter les situations dangereuses.
L’état de la carte Safety est lu par le drive à travers l’entrée définie comme Verrouil.Var src.
La carte EXP-SFTy-ADV peut être connectée au drive conformément au schéma suivant.

Si la commande “Verrouil.Var” est active (état bas = 0), le drive est immédiatement désactivé. Pour pouvoir activer à nouveau le drive, il est nécessaire de placer la commande “Verrouil.Var” sur l’état haut (1) (Verrouil. Var non actif) et les commandes “Enable” et “Start” dans l’état 0 (Disabled et Stop) puis dans l’état haut (1).
La commande “Verrouil.Var” doit être activée avant la commande “Enable”.
La carte EXP-SFTy-ADV fournit la sortie numérique Safety Enable Feedback comme indiqué dans le tableau suivant.

<table>
<thead>
<tr>
<th>Safety Enable</th>
<th>Safety Enable Feedback</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Open</td>
<td>0V</td>
<td>Fonction Safety active. Le drive ne distribue pas de courant.</td>
</tr>
<tr>
<td>+24V</td>
<td>+24V</td>
<td>Fonction Safety non active. Le drive peut distribuer du courant.</td>
</tr>
</tbody>
</table>

Il est possible d’utiliser un relai (K1) pour répéter le signal de feedback de la carte de sécurité. Un contact normalement ouvert (NO) du relai peut être branché à une entrée du drive réglée comme “Verrouil.Var src”.

ADV200 • Description des fonctions et liste des paramètres 55
Si la carte Safety est active (le drive ne distribue pas de courant), la sortie numérique Safety Enable Feedback se place dans l’état de niveau bas (0), le relai n’est pas excité et le contact NO est ouvert.
Le signal “Verrouil.Var” reçoit une commande de niveau bas (0) (Verrouil.Var actif) ; le drive est désactivé.
À travers le paramètre “Verrouil.Var src”, il est possible de connaître l’état instantané de la fonction Safety Enable Feedback.
À travers le paramètre “Visu Verrouil.Var”, il est possible de connaître l’état de la fonction Safety Enable Feedback en tenant compte de la logique d’interblocage avec commande Enable du drive.
0 Verrouil.Var actif (la carte Safety est active)
1 Verrouil.Var non actif (la carte Safety n’est pas active).

Le drive reste désactivé tant que la commande “Verrouil.Var” (Verrouil.Var non actif) n’est pas placée dans l’état de niveau haut (1) et les commandes “Enable” et “Start” dans l’état bas (0) (Disabled et Stop) puis dans l’état haut (1).
Si la carte Safety n’est pas active (le drive peut distribuer du courant), la sortie numérique Safety Enable Feedback se place dans l’état de niveau haut (1), le relai est excité et le contact NO est fermé.
Le signal “Verrouil.Var” reçoit un signal de de niveau bas (1) (Verrouil.Var non actif) ; le drive peut être activé en appliquant la commande drive enable.

À travers le paramètre “Visu Verrouil.Var”, il est possible de connaître l’état de la fonction Safety Enable Feedback en tenant compte de la logique d’interblocage avec commande Enable du drive.

Ce paramètre permet de sélectionner la modalité de fonctionnement de la commande FastStop.
0 Not Latched
1 Latched
En réglant sur 0 (Not Latched), la commande FastStop n’est pas mémorisée, à savoir que si la commande FastStop est éliminée, le drive redémarrre automatiquement.
En réglant sur 1 (Latched), la commande FastStop est mémorisée. Si la commande FastStop est éliminée, le drive ne redémarre pas automatiquement. Le redémarrage est possible uniquement après avoir éliminée la commande FastStop et après une nouvelle commande de Enable et Start.
Remarque : La numérotation et la description des paramètres successifs peuvent être modifiées si une application MDPic est activée.
Description des fonctions et liste des paramètres

<table>
<thead>
<tr>
<th>Menu</th>
<th>PAR</th>
<th>Description</th>
<th>UM</th>
<th>Type</th>
<th>FB BIT</th>
<th>Def</th>
<th>Min</th>
<th>Maxi</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.1</td>
<td>1132</td>
<td>Invers Entré dig 1</td>
<td>BIT</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>RW</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12.2</td>
<td>1134</td>
<td>Invers Entré dig 2</td>
<td>BIT</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>RW</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12.3</td>
<td>1136</td>
<td>Invers Entré dig 3</td>
<td>BIT</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>RW</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12.4</td>
<td>1138</td>
<td>Invers Entré dig 4</td>
<td>BIT</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>RW</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12.5</td>
<td>1140</td>
<td>Invers Entré dig 5</td>
<td>BIT</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>RW</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Inversion de l’état logique de la fonction associée à l’entrée numérique (ex. de activé avec signal à +24V à activé avec signal faible).

Description des fonctions et liste des paramètres

<table>
<thead>
<tr>
<th>Menu</th>
<th>PAR</th>
<th>Description</th>
<th>UM</th>
<th>Type</th>
<th>FB BIT</th>
<th>Def</th>
<th>Min</th>
<th>Maxi</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.6</td>
<td>1150</td>
<td>Dest entrée dig E</td>
<td>ILINK</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>ER</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12.7</td>
<td>1152</td>
<td>Dest Entrée dig 1</td>
<td>ILINK</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>ER</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12.8</td>
<td>1154</td>
<td>Dest Entrée dig 2</td>
<td>ILINK</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>ER</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12.9</td>
<td>1156</td>
<td>Dest Entrée dig 3</td>
<td>ILINK</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>ER</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12.10</td>
<td>1158</td>
<td>Dest Entrée dig 4</td>
<td>ILINK</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>ER</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12.11</td>
<td>1160</td>
<td>Dest Entrée dig 5</td>
<td>ILINK</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>ER</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Visualisation de la fonction à laquelle se rapporte l’entrée numérique associée.

Description des fonctions et liste des paramètres

<table>
<thead>
<tr>
<th>Menu</th>
<th>PAR</th>
<th>Description</th>
<th>UM</th>
<th>Type</th>
<th>FB BIT</th>
<th>Def</th>
<th>Min</th>
<th>Maxi</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.12</td>
<td>1240</td>
<td>Inv entrée dig 1X</td>
<td>BIT</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>RW</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12.13</td>
<td>1242</td>
<td>Inv entrée dig 2X</td>
<td>BIT</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>RW</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12.14</td>
<td>1244</td>
<td>Inv entrée dig 3X</td>
<td>BIT</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>RW</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12.15</td>
<td>1246</td>
<td>Inv entrée dig 4X</td>
<td>BIT</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>RW</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12.16</td>
<td>1248</td>
<td>Inv entrée dig 5X</td>
<td>BIT</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>RW</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12.17</td>
<td>1250</td>
<td>Inv entrée dig 6X</td>
<td>BIT</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>RW</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12.18</td>
<td>1252</td>
<td>Inv entrée dig 7X</td>
<td>BIT</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>RW</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12.19</td>
<td>1254</td>
<td>Inv entrée dig 8X</td>
<td>BIT</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>RW</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12.20</td>
<td>1256</td>
<td>Inv entrée dig 9X</td>
<td>BIT</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>RW</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12.21</td>
<td>1258</td>
<td>Inv entrée dig 10X</td>
<td>BIT</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>RW</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12.22</td>
<td>1260</td>
<td>Inv entrée dig 11X</td>
<td>BIT</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>RW</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12.23</td>
<td>1262</td>
<td>Inv entrée dig 12X</td>
<td>BIT</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>RW</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12.24</td>
<td>1264</td>
<td>Inv entrée dig 13X</td>
<td>BIT</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>RW</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12.25</td>
<td>1266</td>
<td>Inv entrée dig 14X</td>
<td>BIT</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>RW</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12.26</td>
<td>1268</td>
<td>Inv entrée dig 15X</td>
<td>BIT</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>RW</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12.27</td>
<td>1270</td>
<td>Inv entrée dig 16X</td>
<td>BIT</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>RW</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Ces paramètres inversent l’état de l’entrée numérique correspondante de la carte d’expansion.
	Description	ID	Link	G	H	I	J	K	L	M	N	O	P	Q	R	S	T	U	V	W	X	Y	Z
12.37	5572 Dest Entrée dig 10X	ILINK	0	0	0	ER	FVS																
12.38	5574 Dest Entrée dig 11X	ILINK	0	0	0	ER	FVS																
12.39	5576 Dest Entrée dig 12X	ILINK	0	0	0	ER	FVS																
12.40	5578 Dest Entrée dig 13X	ILINK	0	0	0	ER	FVS																
12.41	5580 Dest Entrée dig 14X	ILINK	0	0	0	ER	FVS																
12.42	5582 Dest Entrée dig 15X	ILINK	0	0	0	ER	FVS																
12.43	5584 Dest Entrée dig 16X	ILINK	0	0	0	ER	FVS																

Ces paramètres montrent quel paramètre «source» utilise l'entrée numérique correspondante de l'expansion.
13 – SORTIES DIGITALES

Remarque: La numérotation et la description des paramètres successifs peuvent être modifiées si une application MDPlc est activée.
<table>
<thead>
<tr>
<th>Menu</th>
<th>PAR</th>
<th>Description</th>
<th>UM</th>
<th>Type</th>
<th>FB</th>
<th>BIT</th>
<th>Def</th>
<th>Min</th>
<th>Maxi</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>13.1</td>
<td>1310</td>
<td>Sortie dig 1 src</td>
<td>LINK</td>
<td>16</td>
<td>1062</td>
<td>0</td>
<td>16384</td>
<td>RW</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13.2</td>
<td>1312</td>
<td>Sortie dig 2 src</td>
<td>LINK</td>
<td>16</td>
<td>1064</td>
<td>0</td>
<td>16384</td>
<td>RW</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13.3</td>
<td>1314</td>
<td>Sortie dig 3 src</td>
<td>LINK</td>
<td>16</td>
<td>946</td>
<td>0</td>
<td>16384</td>
<td>RW</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13.4</td>
<td>1316</td>
<td>Sortie dig 4 src</td>
<td>LINK</td>
<td>16</td>
<td>936</td>
<td>0</td>
<td>16384</td>
<td>RW</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Sélection de l’origine (source) du signal à attribuer à la sortie numérique correspondante. La liste des fonctions pouvant être associées aux sorties numériques figurent dans la liste de sélection “L_DIGSEL1”.

<table>
<thead>
<tr>
<th>Menu</th>
<th>PAR</th>
<th>Description</th>
<th>UM</th>
<th>Type</th>
<th>FB</th>
<th>BIT</th>
<th>Def</th>
<th>Min</th>
<th>Maxi</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>13.5</td>
<td>1330</td>
<td>Inv Sortie dig 1</td>
<td>BIT</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>RW</td>
<td>FVS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13.6</td>
<td>1332</td>
<td>Inv Sortie dig 2</td>
<td>BIT</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>RW</td>
<td>FVS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13.7</td>
<td>1334</td>
<td>Inv Sortie dig 3</td>
<td>BIT</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>RW</td>
<td>FVS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13.8</td>
<td>1336</td>
<td>Inv Sortie dig 4</td>
<td>BIT</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>RW</td>
<td>FVS</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Inversion de l’état logique de la fonction associée à la sortie numérique.

<table>
<thead>
<tr>
<th>Menu</th>
<th>PAR</th>
<th>Description</th>
<th>UM</th>
<th>Type</th>
<th>FB</th>
<th>BIT</th>
<th>Def</th>
<th>Min</th>
<th>Maxi</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>13.9</td>
<td>1410</td>
<td>Sortie dig 1X src</td>
<td>LINK</td>
<td>16</td>
<td>6000</td>
<td>0</td>
<td>16384</td>
<td>RW</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13.10</td>
<td>1412</td>
<td>Sortie dig 2X src</td>
<td>LINK</td>
<td>16</td>
<td>6000</td>
<td>0</td>
<td>16384</td>
<td>RW</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13.11</td>
<td>1414</td>
<td>Sortie dig 3X src</td>
<td>LINK</td>
<td>16</td>
<td>6000</td>
<td>0</td>
<td>16384</td>
<td>RW</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13.12</td>
<td>1416</td>
<td>Sortie dig 4X src</td>
<td>LINK</td>
<td>16</td>
<td>6000</td>
<td>0</td>
<td>16384</td>
<td>RW</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13.13</td>
<td>1418</td>
<td>Sortie dig 5X src</td>
<td>LINK</td>
<td>16</td>
<td>6000</td>
<td>0</td>
<td>16384</td>
<td>RW</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13.14</td>
<td>1420</td>
<td>Sortie dig 6X src</td>
<td>LINK</td>
<td>16</td>
<td>6000</td>
<td>0</td>
<td>16384</td>
<td>RW</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13.15</td>
<td>1422</td>
<td>Sortie dig 7X src</td>
<td>LINK</td>
<td>16</td>
<td>6000</td>
<td>0</td>
<td>16384</td>
<td>RW</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13.16</td>
<td>1424</td>
<td>Sortie dig 8X src</td>
<td>LINK</td>
<td>16</td>
<td>6000</td>
<td>0</td>
<td>16384</td>
<td>RW</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13.17</td>
<td>1426</td>
<td>Sortie dig 9X src</td>
<td>LINK</td>
<td>16</td>
<td>6000</td>
<td>0</td>
<td>16384</td>
<td>RW</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Sélection de l’origine (source) du signal à attribuer à la sortie numérique correspondante de la carte d’expansion. La liste des fonctions pouvant être associées aux sorties numériques figurent dans la liste de sélection “L_DIGSEL1”.

<table>
<thead>
<tr>
<th>Menu</th>
<th>PAR</th>
<th>Description</th>
<th>UM</th>
<th>Type</th>
<th>FB</th>
<th>BIT</th>
<th>Def</th>
<th>Min</th>
<th>Maxi</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>13.18</td>
<td>1430</td>
<td>Inv Sortie dig 1X</td>
<td>BIT</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>RW</td>
<td>FVS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13.19</td>
<td>1432</td>
<td>Inv Sortie dig 2X</td>
<td>BIT</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>RW</td>
<td>FVS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13.20</td>
<td>1434</td>
<td>Inv Sortie dig 3X</td>
<td>BIT</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>RW</td>
<td>FVS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13.21</td>
<td>1436</td>
<td>Inv Sortie dig 4X</td>
<td>BIT</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>RW</td>
<td>FVS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13.22</td>
<td>1438</td>
<td>Inv Sortie dig 5X</td>
<td>BIT</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>RW</td>
<td>FVS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13.23</td>
<td>1440</td>
<td>Inv Sortie dig 6X</td>
<td>BIT</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>RW</td>
<td>FVS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13.24</td>
<td>1442</td>
<td>Inv Sortie dig 7X</td>
<td>BIT</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>RW</td>
<td>FVS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13.25</td>
<td>1444</td>
<td>Inv Sortie dig 8X</td>
<td>BIT</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>RW</td>
<td>FVS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13.26</td>
<td>1446</td>
<td>Inv Sortie dig 9X</td>
<td>BIT</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>RW</td>
<td>FVS</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Inversion de l’état logique de la fonction associée à la sortie numérique de la carte d’expansion.
14 – ENTREES ANA

Visualisation de la valeur de tension à la sortie du bloc fonction de l’entrée analogique correspondante.

<table>
<thead>
<tr>
<th>Menu</th>
<th>PAR Description</th>
<th>UM</th>
<th>Type</th>
<th>FB</th>
<th>BIT</th>
<th>Def</th>
<th>Min</th>
<th>Maxi</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>14.1</td>
<td>1500 Visu entré Ana 1</td>
<td>cnt</td>
<td>INT16</td>
<td>16/32</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>R</td>
<td>FVS</td>
<td></td>
</tr>
<tr>
<td>14.17</td>
<td>1550 Visu entré Ana 2</td>
<td>cnt</td>
<td>INT16</td>
<td>16/32</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>R</td>
<td>FVS</td>
<td></td>
</tr>
</tbody>
</table>

Choix du type d’entrée (Entrée en tension ou bien en courant). En fonction du signal d’entrée, il faut déplacer les switch sur la carte de régulation. La configuration en usine des entrées sont initialisées par des signaux différentiels en tension (± 10V).

- **0** -10V…+10V
- **1** 0,20mA … 10V
- **2** 4…20mA
- **3** 0,1V..10.1V
- **4** KTY84

En sélectionnant l’option 0 à l’entrée analogique concernée, on peut brancher une tension maximale de ±12,5V (typique ±10V/5mA). Si le signal est utilisé comme référence, on peut obtenir l’inversion du sens de rotation de l’actionnement en inversant la polarité de la tension.

Cette sélection permet aussi d’utiliser l’entrée analogique pour acquérir la température d’un moteur avec sonde KTY84/PTC. (Il sera nécessaire d’utiliser une sortie analogique en tant que signal d’alimentation)

Pour plus d’informations, se reporter au manuel Quick startup.

En sélectionnant l’option 1 à l’entrée analogique concernée, on peut brancher une tension maximale de ±12,5V (typique ±10V/5mA), ou bien un signal en courant 0 … 20 mA. Le signal doit être positif.

En sélectionnant l’option 2 à l’entrée analogique concernée, on peut brancher un signal en courant de 4 à 20 mA. Le signal doit être positif.

En sélectionnant l’option 3 sur l’entrée analogique concernée, il est possible de brancher une tension 0.1V..10.1V. Il sera en outre possible de détecter l’absence du signal (pour cause de déconnexion ou court-circuit), à travers l’alarme [62] Ala.PerEnt.Ana.

REMARQUE Voir le chapitre 7.2 du Manuel Quick startup pour la configuration d’une sonde de température en mode lecture.
Configuration d’un coefficient multiplicateur à appliquer à l’entrée analogique correspondante.

Exemple :

La consigne de vitesse d’un actionnement est attribué avec une tension externe maximale de 5V. Avec cette valeur, l’actionnement doit atteindre la vitesse maximale admise (configurée avec Vitesse pour 10V).

Comme paramètre **Entré ana X Gain**, on entre le facteur d’échelle 2 (10V : 5V).

Commande d’étalonnage automatique pour l’offset de l’entrée analogique correspondante. Étalonnage automatique précis de l’entrée. Pour effectuer l’étalonnage automatique, configurer le signal d’entrée à sa valeur minimale et effectuer la commande. Les conditions contenant un offset peuvent être compensées. Lorsque l’on active cette commande, **E ana x offset cond** est automatiquement choisi afin que le signal d’entrée disponible corresponde à la valeur zéro de la variable. L’étalonnage de l’offset peut aussi être exécuté avec le drive activé.

Pour que l’étalonnage automatique s’effectue, il faut vérifier la condition suivante: Tension d’entrée inférieure à 1V ou courant d’entrée inférieur à 2 mA

Remarque : En cas de besoin, la valeur obtenue automatiquement peut être modifiée manuellement moyennant **Entrée ana x offset**.

Si la valeur de tension configurée sur l’entrée analogique est supérieure à 1V, l’alarme **Val ins** trop élevé se déclenche.

Commande d’Autoétalonnage pour l’offset de l’entrée analogique correspondante. Étalonnage automatique précis de l’entrée. Lorsque l’on active cette commande, **E ana x gain cond** est automatiquement choisi de manière que le signal d’entrée disponible corresponde à la valeur maximale de la variable. L’étalonnage de l’offset peut aussi être exécuté avec le drive activé.

Pour que l’étalonnage automatique s’effectue, il faut vérifier les deux conditions suivantes:
- Tension d’entrée supérieure à 1V ou courant d’entrée supérieur à 2 mA
- Polarity positive. La valeur obtenue est automatiquement acceptée pour l’autre sens de rotation.

Remarque : En cas de besoin, la valeur obtenue automatiquement peut être modifiée manuellement moyennant **Entrée ana x gain**.

Si la valeur de tension configurée sur l’entrée analogique est inférieure à 1V, l’alarme **Val ins** trop faible se déclenche.
Filtre sur le mesurage de l’entrée analogique correspondante. En utilisant ce paramètre, on peut contrôler la réponse de l’entrée analogique et par conséquent atténuer les interférences ou les perturbations éventuelles.

Configuration de la limite supérieure de consigne de vitesse en fonction de la tension (ou du courant) de la consigne analogique correspondante.

Configuration de la limite inférieure de consigne de vitesse en fonction de la tension (ou du courant) de la consigne analogique correspondante.

Configuration d’une valeur pour compenser la condition dans laquelle le signal analogique contient un offset, ou bien lorsque la variable attribuée à l’entrée a déjà une valeur bien qu’elle ne soit pas raccordée à aucun signal.

Ce paramètre contient la valeur du coefficient multiplicateur à appliquer à la référence analogique calculée avec la fonction $E_{ana \times gain\ cond}$.

Exemple :

Une référence analogique externe n’atteint que 9,8V maximum au lieu de 10V. Comme paramètre $E_{ana \times gain\ cond}$ on saisit 1,020 (10V : 9,8V).

On peut obtenir le même résultat avec la fonction $E_{ana \times gain\ cond}$. Pour ce faire, il faut sélectionner ce paramètre dans le menu du clavier. La borne doit avoir la valeur analogique maximale disponible (dans ce cas, 9,8V) avec une polarité positive. En appuyant sur la touche Enter du clavier la phase “Autoétalonnage” de consigne analogique s’effectue.
Menu PAR Description UM Type FB BIT Def Min Maxi Acc Mod
14.11 1520 Entrée ana 1 seuil INT16 0 -16384 + 16383 ERW FVS
14.27 1570 Entrée ana 2 seuil INT16 0 -16384 + 16383 ERW FVS

Configuration du seuil de l’entrée analogique pour signaler que la vitesse n’est pas dépassée, ce qui permet l’activation des sorties numériques E ana 1 < seuil (par. 1530) et E ana 2 < seuil (par.1580).

Configuration d’une valeur alternative fixe pour l’entrée analogique correspondante, pouvant être sélectionnée par une commande activée depuis une entrée numérique programmée avec le paramètre E ana x val Alt src.
Sélection de l’origine (source) du signal à attribuer à l’entrée numérique correspondante pour choisir le sens de rotation du moteur. La liste des fonctions associables aux entrées numériques figurent dans la liste de sélection “L_DIGSEL2”.

Sélection de l’origine (source) du signal à attribuer à l’entrée numérique correspondante pour choisir la référence analogique comme solution alternative. La liste des fonctions associables aux entrées numériques figurent dans la liste de sélection “L_DIGSEL2”.

Visualisation de la fonction pour laquelle il a été programmé et sur lequel l’entrée analogique correspondante agit.

Visualisation de la valeur de tension à la sortie du bloc fonction de l’entrée analogique correspondante.

Choix du type d’entrée de la carte d’expansion (Entrée en tension ou bien en courant). En fonction du signal d’entrée, il faut déplacer les switch sur la carte d’expansion. Standard les entrées sont codifiées pour des signaux en tension.

0 -10V…+10V
En sélectionnant l’option 0 à l’entrée analogique concernée, on peut brancher une tension maximale de ±12,5V (typique ±10V/5mA). Si le signal est utilisé comme référence, on peut obtenir l’inversion du sens de rotation de l’actionnement en inversant la polarité de la tension.

En sélectionnant l’option 1 à l’entrée analogique concernée, on peut brancher une tension maximale de 12,5V (typique 10V/5mA).

En sélectionnant l’option 2 à l’entrée analogique concernée, on peut brancher un signal en courant de 4 à 20 mA. Le signal doit être positif.

En sélectionnant l’option 3 à l’entrée analogique concernée, il est possible de raccorder un signal de courant de 0…20 mA. Le signal doit être positif.

En sélectionnant l’option 4 à l’entrée analogique concernée, il est possible de raccorder un signal en provenance d’une sonde PT1000.

En sélectionnant l’option 5 à l’entrée analogique concernée, il est possible de raccorder un signal en provenance d’une sonde NI1000.

En sélectionnant l’option 6 à l’entrée analogique concernée, il est possible de raccorder un signal en provenance d’une sonde PT100.

<table>
<thead>
<tr>
<th>Menu</th>
<th>PAR</th>
<th>Description</th>
<th>UM</th>
<th>Type</th>
<th>FB Bit</th>
<th>Def</th>
<th>Min</th>
<th>Maxi</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>14.35</td>
<td>1604</td>
<td>Entré ana 1X Gain</td>
<td>FLOAT</td>
<td>1.0</td>
<td>-20.0</td>
<td>20.0</td>
<td>RW</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14.47</td>
<td>1654</td>
<td>Entré ana 2X Gain</td>
<td>FLOAT</td>
<td>1.0</td>
<td>-20.0</td>
<td>20.0</td>
<td>RW</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Configuration d’un coefficient multiplicateur à appliquer à l’entrée analogique correspondante de la carte d’expansion.

Exemple :
La consigne de vitesse d’un actionnement est attribué avec une tension externe maximale de 5V. Avec cette valeur, l’actionnement doit atteindre la vitesse maximale admise (configurée avec Vitesse pour 10V).

Comme paramètre Entré ana X Gain, on entre le facteur d’échelle 2 (10V : 5V)
Commande d’étalonnage automatique pour l’offset de l’entrée analogique correspondante de la carte d’expansion. Étalonnage automatique précis de l’entrée. Pour effectuer l’étalonnage automatique, configurer le signal d’entrée à sa valeur minimale et effectuer la commande. Les conditions contenant un offset peuvent être compensées. Lorsque l’on active cette commande, E ana 1X offset cond est automatiquement choisi afin que le signal d’entrée disponible corresponde à la valeur zéro de la variable

Pour que l’étalonnage automatique s’effectue, il faut vérifier la condition suivante:
- Tension d’entrée inférieure à 1V ou courant d’entrée inférieur à 2 mA

Remarque: En cas de besoin, la valeur obtenue automatiquement peut être modifiée manuellement moyennant Entrée ana x offset.

Si la valeur de tension configurée sur l’entrée analogique est supérieure à 1V, l’alarme Val ins trop élevé se déclenche.

Commande d’étalonnage automatique pour le gain de l’entrée analogique correspondante. Étalonnage automatique précis de l’entrée. Lorsque l’on active cette commande, E ana 1 gain cond est automatiquement choisi afin que le signal d’entrée disponible corresponde à la valeur maximale de la variable

Pour que l’étalonnage s’effectue automatiquement, les deux conditions suivantes doivent se vérifier:
- Tension d’entrée supérieure à 1V ou courant d’entrée supérieur à 2 mA
- Polarité positive. La valeur obtenue est automatiquement acceptée pour l’autre sens de rotation.

Remarque: En cas de besoin, la valeur obtenue automatiquement peut être modifiée manuellement moyennant Entrée ana x gain.

Paramètres utilisés pour filtrer les signaux d’entrée vers la carte d’expansion E/S, notamment lorsque celle-ci est utilisée pour mesurer la température du moteur via KTY84.

Configuration de la limite supérieure de la consigne de vitesse en fonction de la tension (ou du courant) de la référence analogique correspondante de la carte d’expansion.

Configuration de la limite inférieure de la consigne de vitesse en fonction de la tension (ou du courant) de la référence analogique correspondante de la carte d’expansion.
14.53 **1666 Entrée ana 2X offset**

Configuration d’une valeur d’offset à ajouter algébriquement à l’entrée analogique correspondante de la carte d’expansion.

0 10V

Dans ce paramètre, on a saisi la valeur du coefficient multiplicateur à appliquer à la référence analogique de la carte d’expansion calculée avec la fonction **E ana XX gain cond**.

Exemple :

Une référence analogique externe n’atteint que 9,8V maximum au lieu de 10V. Comme paramètre **Entrée ana x gain** on saisit 1,020 (10V : 9,8V).

On peut obtenir le même résultat avec la fonction **E ana x gain cond**. Pour ce faire, il faut sélectionner ce paramètre dans le menu du clavier. La borne doit avoir la valeur analogique maximale disponible (dans ce cas, 9,8V) avec une polarité positive. En appuyant sur la touche Enter du clavier la phase “Autoétalonnage” de consigne analogique s’effectue.

14.42 **1618 Entrée ana 1X gain**

Dans ce paramètre, on a saisi la valeur du coefficient multiplicateur à appliquer à la référence analogique de la carte d’expansion calculée avec la fonction **E ana XX gain cond**.

Exemple :

Une référence analogique externe n’atteint que 9,8V maximum au lieu de 10V. Comme paramètre **Entrée ana x gain** on saisit 1,020 (10V : 9,8V).

On peut obtenir le même résultat avec la fonction **E ana x gain cond**. Pour ce faire, il faut sélectionner ce paramètre dans le menu du clavier. La borne doit avoir la valeur analogique maximale disponible (dans ce cas, 9,8V) avec une polarité positive. En appuyant sur la touche Enter du clavier la phase “Autoétalonnage” de consigne analogique s’effectue.

Exemple :

Une référence analogique externe n’atteint que 9,8V maximum au lieu de 10V. Comme paramètre **Entrée ana x gain** on saisit 1,020 (10V : 9,8V).

On peut obtenir le même résultat avec la fonction **E ana x gain cond**. Pour ce faire, il faut sélectionner ce paramètre dans le menu du clavier. La borne doit avoir la valeur analogique maximale disponible (dans ce cas, 9,8V) avec une polarité positive. En appuyant sur la touche Enter du clavier la phase “Autoétalonnage” de consigne analogique s’effectue.

14.43 **1626 E ana 1X signe src**

Sélection de l’origine (source) du signal à attribuer à l’entrée numérique correspondante de la carte d’expansion pour choisir le sens de rotation du moteur. La liste des fonctions associables aux entrées numériques figurent dans la liste de sélection “L_DIGSEL2”.

14.44 **1632 Dest Entrée ana 1X**

Visualisation de la fonction pour laquelle il a été programmé et sur lequel l’entrée analogique correspondante de la carte d’expansion agit.

14.57 **5410 Visu Ent ana 0 Ext**

Ces paramètres indiquent la valeur de l’entrée analogique des modules E/S distants (il est nécessaire d’utiliser
la carte d’expansion EXP-FL-XCAN-ADV).

Les modules pour entrées analogiques peuvent avoir une résolution de 12 à 16 bits et l’échelonnage de la donnée peut varier d’un constructeur à l’autre.

Exemple:

Module 12 bits

<table>
<thead>
<tr>
<th>Signal branché Configuration module</th>
<th>Variante 1</th>
<th>Variante 2</th>
<th>Variante 3</th>
<th>Variante 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>-10V.+.+10V</td>
<td>-2048.+.+2047</td>
<td>-32768.+.+32767</td>
<td>-16384.+.+16383</td>
<td></td>
</tr>
<tr>
<td>0V.+.+10V</td>
<td>0.+.+32767</td>
<td>0.+.+32767</td>
<td>0.+.+32767</td>
<td>0.+.+65535</td>
</tr>
<tr>
<td>4..20mA</td>
<td>0.+.+32767</td>
<td>+6553.+.+32767</td>
<td>+3276.+.+16383</td>
<td></td>
</tr>
</tbody>
</table>

Module 16 bits

<table>
<thead>
<tr>
<th>Signal branché Configuration module</th>
<th>Variante 1</th>
<th>Variante 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>-10V.+.+10V</td>
<td>-32768.+.+32767</td>
<td></td>
</tr>
<tr>
<td>0V.+.+10V</td>
<td>0.+.+65535</td>
<td>0.+.+32767</td>
</tr>
<tr>
<td>4..20mA</td>
<td></td>
<td>0.+.+65535</td>
</tr>
</tbody>
</table>

Il n’est pas possible de définir une Unité unique pouvant convenir à chaque modèle de module entrée analogique. Contrôle l’échelonnage fourni par le modèle utilisé et utilisez les variables de systèmes conformément à cet échelonnage.

L’entrée analogique 0 et l’entrée analogique 1 peuvent également être gérées par l’intermédiaire des paramètres du drive. Pour assurer le bon fonctionnement, il est nécessaire que l’échelonnage fourni par le module externe soit compatible avec celui requis par le drive.

Le drive nécessite des modules IO fournissant la donnée conformément à l’échelonnage suivant:

<table>
<thead>
<tr>
<th>Entré ana X type</th>
<th>Plage</th>
</tr>
</thead>
<tbody>
<tr>
<td>-10V.+.+10V</td>
<td>-32768.+.+32767</td>
</tr>
<tr>
<td>0V.+.+10V</td>
<td>0.+.+65535</td>
</tr>
<tr>
<td>4..20mA</td>
<td>+13107.+.+65535</td>
</tr>
</tbody>
</table>

En exécutant la commande **E ana X gain cond** (PAR 1508, PAR1558) avec entrée analogique à la valeur maximum, le gain nécessaire pour adapter la valeur max. d’échelle est calculé.

Pour des modules dont l’échelonnage est différent de celui requis par le drive, la commande **E ana X gain cond** tune tente d’adapter l’échelonnage. C’est pourquoi la valeur maximale des paramètres **E ana X gain cond** est augmentée.

Les tableaux qui suivent montrent la sortie du blocage Entrée Analogique en fonction du signal branché et en fonction de la configuration du paramètre **Entré ana X type** (PAR 1502, PAR1552).

Signal branché: -10V..+10V

<table>
<thead>
<tr>
<th>An input type</th>
<th>-10V</th>
<th>0V</th>
<th>+10V</th>
</tr>
</thead>
<tbody>
<tr>
<td>-10V.+.+10V</td>
<td>Min.</td>
<td>Obtenu avec droite</td>
<td>Max.</td>
</tr>
<tr>
<td>0V.+.+10V</td>
<td>Sous 0V sature à Min.</td>
<td>Min.</td>
<td>Max.</td>
</tr>
<tr>
<td>4..20mA</td>
<td>Sous 2V sature à Min.</td>
<td>Min.</td>
<td>Max.</td>
</tr>
</tbody>
</table>

Signal branché: 0V..+10V

<table>
<thead>
<tr>
<th>An input type</th>
<th>0V</th>
<th>+10V</th>
</tr>
</thead>
<tbody>
<tr>
<td>-10V.+.+10V</td>
<td>Obtenu avec droite</td>
<td>Max.</td>
</tr>
<tr>
<td>0V.+.+10V</td>
<td>Min.</td>
<td>Max.</td>
</tr>
<tr>
<td>4..20mA</td>
<td>Sous 2V sature à Min.</td>
<td>Max.</td>
</tr>
</tbody>
</table>

Signal branché: 4..20mA

<table>
<thead>
<tr>
<th>An input type</th>
<th>4mA</th>
<th>20mA</th>
</tr>
</thead>
<tbody>
<tr>
<td>-10V.+.+10V</td>
<td>Max.</td>
<td></td>
</tr>
<tr>
<td>0V.+.+10V</td>
<td>Sous 4mA sature à Min.</td>
<td>Max.</td>
</tr>
<tr>
<td>4..20mA</td>
<td>Min.</td>
<td>Max.</td>
</tr>
</tbody>
</table>

La configuration Entrées analogiques en tension ou courant doit être effectuée sur le module externe avec
switch ou outil dédié. Pour l’entrée analogique 0 et l’entrée analogique 1, il est nécessaire de configurer le paramètre An input type en fonction du type de dispositif externe.

<table>
<thead>
<tr>
<th>Menu</th>
<th>PAR</th>
<th>Description</th>
<th>UM</th>
<th>Type</th>
<th>FB BIT</th>
<th>Def</th>
<th>Min</th>
<th>Maxi</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>14.65</td>
<td>1586</td>
<td>Type sonde Entrée X</td>
<td>ENUM</td>
<td>Aucun</td>
<td>0</td>
<td>3</td>
<td>ERW</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

0 Aucun
1 Klixon
2 KTY84
3 PTC

Définition du type de sonde branchée sur l’entrée dédiée des cartes d’expansion de température EXP-IO-SENS-1000-ADV ou EXP-IO-SENS-100-ADV.

En cas d’utilisation de ces cartes, l’alarme [62] Ala.PerEnt.Ana. signale la déconnexion ou le court-circuit de la sonde KTY84 ou PTC.
Sur la carte de régulation de l'ADV se trouvent deux sorties analogiques programmables.
La sortie analogique 1 génère un signal en tension bipolaire +/-10Vdc, alors que la sortie analogique 2 peut être programmée pour obtenir à la sortie un signal en courant 0-20mA ou 4-20mA ou bien un signal en tension bipolaire +/-10Vdc, en fonction du paramètre attribué.

Tableau : valeur du signal des sorties analogiques en fonction de la grandeur utilisée

<table>
<thead>
<tr>
<th>PAR</th>
<th>Description</th>
<th>Bas d'échelle sortie</th>
</tr>
</thead>
<tbody>
<tr>
<td>626</td>
<td>Ramp ref total visu</td>
<td>10V = 200% Courant nominal drive CT (visible dans le manuel Quick startup, peut être trouvée sur la notice et est défini @400Vca, fréquence de switching par défaut et 40°C)</td>
</tr>
<tr>
<td>628</td>
<td>Gestion des rampes</td>
<td>10V = Bas d'échelle vitesse (Par 680)</td>
</tr>
<tr>
<td>760</td>
<td>Sortie Ramp Visu</td>
<td></td>
</tr>
<tr>
<td>664</td>
<td>Vitesse ref totale</td>
<td></td>
</tr>
<tr>
<td>260</td>
<td>Vitesse moteur</td>
<td></td>
</tr>
<tr>
<td>262</td>
<td>Vitesse mot ss filtre</td>
<td></td>
</tr>
<tr>
<td>2150</td>
<td>Vitesse codeur 1</td>
<td></td>
</tr>
<tr>
<td>852</td>
<td>Multi vit actuelle</td>
<td></td>
</tr>
<tr>
<td>870</td>
<td>Mpot vit départ</td>
<td></td>
</tr>
<tr>
<td>894</td>
<td>Mpot sortie visu</td>
<td></td>
</tr>
<tr>
<td>920</td>
<td>Jog sortie visu</td>
<td></td>
</tr>
<tr>
<td>250</td>
<td>Intensité de sortie</td>
<td></td>
</tr>
<tr>
<td>280</td>
<td>Consigne Couple</td>
<td>10V = 200% Couple nominal moteur</td>
</tr>
<tr>
<td>282</td>
<td>consigne I magnet</td>
<td></td>
</tr>
<tr>
<td>284</td>
<td>Courant de couple</td>
<td></td>
</tr>
<tr>
<td>286</td>
<td>Courant magnétisant</td>
<td></td>
</tr>
<tr>
<td>2360</td>
<td>Lim couple pos actu</td>
<td></td>
</tr>
<tr>
<td>2362</td>
<td>Lim couple neg actu</td>
<td></td>
</tr>
<tr>
<td>2386</td>
<td>Consigne de couple</td>
<td></td>
</tr>
<tr>
<td>2388</td>
<td>Cons couple ssFiltre</td>
<td></td>
</tr>
<tr>
<td>3070</td>
<td>Equil T result visu</td>
<td></td>
</tr>
<tr>
<td>3104</td>
<td>Visu Comp inertie</td>
<td></td>
</tr>
<tr>
<td>252</td>
<td>Tension de sortie</td>
<td>10V = 200% Tension de ligne (Par 560)</td>
</tr>
<tr>
<td>254</td>
<td>Fréquence de sortie</td>
<td>10V = 1000Hz</td>
</tr>
<tr>
<td>270</td>
<td>Tension circuit DC</td>
<td>10V = 7000V</td>
</tr>
<tr>
<td>3006</td>
<td>Srtie Rap vitesse</td>
<td>10V = 100%</td>
</tr>
<tr>
<td>1500</td>
<td>Visu entré Ana 1</td>
<td></td>
</tr>
<tr>
<td>1550</td>
<td>Visu entré Ana 2</td>
<td></td>
</tr>
<tr>
<td>1600</td>
<td>Visu entré Ana 1X</td>
<td></td>
</tr>
<tr>
<td>1650</td>
<td>Visu entré Ana 2X</td>
<td></td>
</tr>
<tr>
<td>368</td>
<td>Drive surcharge cum</td>
<td></td>
</tr>
<tr>
<td>3212</td>
<td>Cumul surchg moteur</td>
<td>5V = 100% Accumulateur</td>
</tr>
<tr>
<td>3260</td>
<td>Cumul surch R frein</td>
<td></td>
</tr>
<tr>
<td>2232</td>
<td>Reg N actual P</td>
<td></td>
</tr>
<tr>
<td>2234</td>
<td>Reg N actual I</td>
<td>10V = 400%</td>
</tr>
<tr>
<td>3446</td>
<td>Perte Alim Ratio</td>
<td>10V = 50%</td>
</tr>
<tr>
<td>4024 ... 4174</td>
<td>Bus M->Esc X visu</td>
<td>10V = 16384 * 2 ^ 16</td>
</tr>
<tr>
<td>3700 ... 3730</td>
<td>mot interne X</td>
<td></td>
</tr>
</tbody>
</table>
Sélection de l’origine (source) des signaux qui peuvent être installés comme variables sur les sorties analogiques. Les fonctions pouvant être attribuées aux sorties analogiques figurent dans la liste de sélection “L_ANOUT”.

Paramètre pour la configuration d’un facteur multiplicateur du signal analogique 0. Il peut être utilisé pour accroître ou baisser la valeur d’entrée du bloc de sortie analogique correspondante.

\[
\text{Vout} = 10 \times \left(\frac{\text{Stp Var} \times \text{par. 1808 (1810)}}{\text{FS Var}} \right)
\]

où:

- **Vout** : tension de sortie aux bornes de la carte.
- **Stp Var** : valeur actuelle de la variable (unité de la variable)
- **FS Var** : maximum d’échelle de la variable (unité de la variable)

Exemple de calcul du facteur d’échelle **Sortie ana x gain**.

Pour afficher la vitesse de l’actionnement, il faut utiliser un instrument analogique ayant un champ de mesure de 0 ... 2V. Cela signifie que, pour afficher la vitesse du drive, à la vitesse maximale doit correspondre une tension de 2V sur la sortie analogique du drive. Avec un facteur d’échelle de 1 on aurait 10V en correspondance de la vitesse maximum.

Avec un facteur d’échelle de 0,2 = 2V/10V on aurait 2V en correspondance de la vitesse maximum.
Menu PAR Description UM Type FB BIT Def Min Maxi Acc Mod

<p>| | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>15.7</td>
<td>1824</td>
<td>Signe sortie Ana 1</td>
<td>ENUM</td>
<td>Dévalidé</td>
<td>0</td>
<td>1</td>
<td>ERW</td>
<td>FVS</td>
</tr>
<tr>
<td>15.8</td>
<td>1826</td>
<td>Signe sortie Ana 2</td>
<td>ENUM</td>
<td>Dévalidé</td>
<td>0</td>
<td>1</td>
<td>ERW</td>
<td>FVS</td>
</tr>
</tbody>
</table>

Activation de la sortie analogique correspondante en valeur absolue. En configurant ce paramètre sur 1 la tension sur la sortie analogique aura la valeur de 0 - 10V indépendamment du signe du signal de commande.

 0 Dévalidé
 1 Validé

Menu PAR Description UM Type FB BIT Def Min Maxi Acc Mod

<p>| | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>15.9</td>
<td>1832</td>
<td>Sortie ana 1 min</td>
<td>cnt</td>
<td>INT16</td>
<td>-16384</td>
<td>-32768</td>
<td>+32767</td>
<td>ERW</td>
</tr>
<tr>
<td>15.10</td>
<td>1834</td>
<td>Sortie ana 1 max</td>
<td>cnt</td>
<td>INT16</td>
<td>16384</td>
<td>-32768</td>
<td>+32767</td>
<td>ERW</td>
</tr>
</tbody>
</table>

Configuration des valeurs minimales et maximales de la sortie analogique pour la tension présente sur la sortie analogique 1.

Menu PAR Description UM Type FB BIT Def Min Maxi Acc Mod

<p>| | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>15.11</td>
<td>1840</td>
<td>Sortie ana 2 min</td>
<td>cnt</td>
<td>INT16</td>
<td>-16384</td>
<td>-32768</td>
<td>+32767</td>
<td>ERW</td>
</tr>
<tr>
<td>15.12</td>
<td>1842</td>
<td>Sortie ana 2 max</td>
<td>cnt</td>
<td>INT16</td>
<td>16384</td>
<td>-32768</td>
<td>+32767</td>
<td>ERW</td>
</tr>
</tbody>
</table>

Configuration des valeurs minimales et maximales de la sortie analogique pour le courant ou la tension présent sur la sortie analogique 2.

Menu PAR Description UM Type FB BIT Def Min Maxi Acc Mod

<p>| | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>15.13</td>
<td>1848</td>
<td>Sortie ana 2 type</td>
<td>ENUM</td>
<td>-10V..+10V</td>
<td>0</td>
<td>2</td>
<td>ERW</td>
<td>FVS</td>
</tr>
</tbody>
</table>

Sélection du type de sortie (Sortie en tension ou bien en courant). En fonction du signal de sortie, on doit déplacer le S3 switch sur la carte de régulation. Standard la sortie est codifiée pour un signal en tension.

 0 0...20mA
 1 4...20mA
 2 -10V..+10V

Sur sélection de l’option 0, la sortie analogique fournit 0...20mA

Sur sélection de l’option 1, la sortie analogique fournit 4...20mA

Sur sélection de l’option 2, la sortie analogique fournit -10..+10V

Menu PAR Description UM Type FB BIT Def Min Maxi Acc Mod

<p>| | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>15.14</td>
<td>1850</td>
<td>Sortie ana 1X src</td>
<td>LINK</td>
<td>16/32</td>
<td>6000</td>
<td>0</td>
<td>16384</td>
<td>RW</td>
</tr>
<tr>
<td>15.15</td>
<td>1852</td>
<td>Sortie ana 2X src</td>
<td>LINK</td>
<td>16/32</td>
<td>6000</td>
<td>0</td>
<td>16384</td>
<td>RW</td>
</tr>
</tbody>
</table>

Sélection de l’origine (source) des signaux qui peuvent être installés comme variables sur les sorties analogiques de la carte d’expansion. Les fonctions pouvant être attribuées aux sorties analogiques figurent dans la liste de sélection "L_ANOUT".
Paramètre pour la configuration d’un facteur multiplicateur du signal de la sortie analogique correspondante de la carte d’expansion. Il peut être utilisé pour accroître ou baisser la valeur d’entrée du bloc de sortie analogique correspondante.

\[
V_{out} = 10 \times \left(\frac{Stp \ Var \times \ par. \ 1858 \ (1860)}{FS \ Var} \right)
\]

où:
- **Vout**: tension de sortie aux bornes de la carte.
- **Stp Var**: valeur actuelle de la variable (unité de la variable)
- **FS Var**: maximum d’échelle de la variable (unité de la variable)

Exemple pour le calcul du facteur d’échelle Sortie ana x gain

Pour afficher la vitesse de l’actionnement, il faut utiliser un instrument analogique ayant un champ de mesure de 0 … 2V. Cela signifie que, pour afficher la vitesse du drive, à la vitesse maximale doit correspondre une tension de 2V sur la sortie analogique du drive. Avec un facteur d’échelle égal à 1 on aurait 10V (Facteur d’échelle = 2V / 10V = 0.200).

Visualisation de la valeur de la tension effective présente sur la sortie analogique 1 de la carte d’expansion.

Visualisation de la valeur de la tension ou du courant effectif présent sur la sortie analogique 2 de la carte d’expansion.

Activation de la sortie analogique correspondante en valeur absolue. En configurant ce paramètre sur 1 la ten-
sion sur la sortie analogique aura la valeur de 0 - 10V indépendamment du signe du signal de commande.

0 Dévalidé
1 Validé

<table>
<thead>
<tr>
<th>Menu</th>
<th>PAR</th>
<th>Description</th>
<th>UM</th>
<th>Type</th>
<th>FB BIT</th>
<th>Def</th>
<th>Min</th>
<th>Maxi</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>15.22</td>
<td>1882</td>
<td>Sortie ana 1X min</td>
<td>cnt</td>
<td>INT16</td>
<td>-16384</td>
<td>-32768</td>
<td>+32767</td>
<td>ERW</td>
<td>FVS</td>
<td></td>
</tr>
<tr>
<td>15.23</td>
<td>1884</td>
<td>Sortie ana 1X max</td>
<td>cnt</td>
<td>INT16</td>
<td>16384</td>
<td>-32768</td>
<td>+32767</td>
<td>ERW</td>
<td>FVS</td>
<td></td>
</tr>
</tbody>
</table>

Configuration de valeurs minimales et maximales de la sortie analogique pour la tension présente sur la sortie analogique 1 de la carte d’expansion.

<table>
<thead>
<tr>
<th>Menu</th>
<th>PAR</th>
<th>Description</th>
<th>UM</th>
<th>Type</th>
<th>FB BIT</th>
<th>Def</th>
<th>Min</th>
<th>Maxi</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>15.24</td>
<td>1886</td>
<td>Sortie ana 1 Xtype</td>
<td>ENUM</td>
<td>INT16</td>
<td>-</td>
<td>0</td>
<td>3</td>
<td>ERW</td>
<td>FVS</td>
<td></td>
</tr>
</tbody>
</table>

Sélection du signal programmé sur la sortie analogique 1 de la carte d’expansion. En fonction du signal de sortie, il faudra déplacer le contacteur dédié sur la carte d’expansion. En mode standard, la sortie est codifiée pour le signal de tension.

0 0...20mA
1 4...20mA
2 -10V..+10V
3 0..10V

Sur sélection de l’option 0, la sortie analogique fournit 0...20mA
Sur sélection de l’option 1, la sortie analogique fournit 4...20mA
Sur sélection de l’option 2, la sortie analogique fournit -10...+10V
Sur sélection de l’option 3, la sortie analogique fournit 0...+10V.

<table>
<thead>
<tr>
<th>Menu</th>
<th>PAR</th>
<th>Description</th>
<th>UM</th>
<th>Type</th>
<th>FB BIT</th>
<th>Def</th>
<th>Min</th>
<th>Maxi</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>15.25</td>
<td>1890</td>
<td>Sortie ana 2X min</td>
<td>cnt</td>
<td>INT16</td>
<td>-16384</td>
<td>-32768</td>
<td>+32767</td>
<td>ERW</td>
<td>FVS</td>
<td></td>
</tr>
<tr>
<td>15.26</td>
<td>1892</td>
<td>Sortie ana 2X max</td>
<td>cnt</td>
<td>INT16</td>
<td>16384</td>
<td>-32768</td>
<td>+32767</td>
<td>ERW</td>
<td>FVS</td>
<td></td>
</tr>
</tbody>
</table>

Configuration de valeurs minimales et maximales de la sortie analogique en courant ou en tension présent sur la sortie analogique 2 de la carte d’expansion.

<table>
<thead>
<tr>
<th>Menu</th>
<th>PAR</th>
<th>Description</th>
<th>UM</th>
<th>Type</th>
<th>FB BIT</th>
<th>Def</th>
<th>Min</th>
<th>Maxi</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>15.27</td>
<td>1898</td>
<td>Sortie ana 2 Xtype</td>
<td>ENUM</td>
<td>INT16</td>
<td>-10V..+10V</td>
<td>0</td>
<td>3</td>
<td>ERW</td>
<td>FVS</td>
<td></td>
</tr>
</tbody>
</table>

Sélection du signal programmé sur la sortie analogique 2 de la carte d’expansion. En fonction du signal de sortie, il faudra déplacer le contacteur dédié sur la carte d’expansion. Standard la sortie est codifiée pour un signal en tension.

0 0...20mA
1 4...20mA
2 -10V..+10V
3 0..10V

Sur sélection de l’option 0, la sortie analogique fournit 0...20mA
Sur sélection de l’option 1, la sortie analogique fournit 4...20mA
Sur sélection de l’option 2, la sortie analogique fournit -10...+10V
Sur sélection de l’option 3, la sortie analogique fournit 0...+10V.

<table>
<thead>
<tr>
<th>Menu</th>
<th>PAR</th>
<th>Description</th>
<th>UM</th>
<th>Type</th>
<th>FB BIT</th>
<th>Def</th>
<th>Min</th>
<th>Maxi</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>15.28</td>
<td>5460</td>
<td>Sort ana 0 Ext</td>
<td>INT16</td>
<td>16</td>
<td>0</td>
<td>-32768</td>
<td>32767</td>
<td>ERW</td>
<td>FVS</td>
<td></td>
</tr>
<tr>
<td>15.29</td>
<td>5462</td>
<td>Sort ana 1 Ext</td>
<td>INT16</td>
<td>16</td>
<td>0</td>
<td>-32768</td>
<td>32767</td>
<td>ERW</td>
<td>FVS</td>
<td></td>
</tr>
<tr>
<td>15.30</td>
<td>5464</td>
<td>Sort ana 2 Ext</td>
<td>INT16</td>
<td>16</td>
<td>0</td>
<td>-32768</td>
<td>32767</td>
<td>ERW</td>
<td>FVS</td>
<td></td>
</tr>
<tr>
<td>15.31</td>
<td>5466</td>
<td>Sort ana 3 Ext</td>
<td>INT16</td>
<td>16</td>
<td>0</td>
<td>-32768</td>
<td>32767</td>
<td>ERW</td>
<td>FVS</td>
<td></td>
</tr>
<tr>
<td>15.32</td>
<td>5468</td>
<td>Sort ana 4 Ext</td>
<td>INT16</td>
<td>16</td>
<td>0</td>
<td>-32768</td>
<td>32767</td>
<td>ERW</td>
<td>FVS</td>
<td></td>
</tr>
<tr>
<td>15.33</td>
<td>5470</td>
<td>Sort ana 5 Ext</td>
<td>INT16</td>
<td>16</td>
<td>0</td>
<td>-32768</td>
<td>32767</td>
<td>ERW</td>
<td>FVS</td>
<td></td>
</tr>
<tr>
<td>15.34</td>
<td>5472</td>
<td>Sort ana 6 Ext</td>
<td>INT16</td>
<td>16</td>
<td>0</td>
<td>-32768</td>
<td>32767</td>
<td>ERW</td>
<td>FVS</td>
<td></td>
</tr>
</tbody>
</table>
Ces paramètres sont utilisés avec des modules E/S externes déportables. Il est nécessaire d’utiliser la carte d’expansion EXP-FL-XCAN-ADV.

Les modules pour sorties analogiques peuvent avoir une résolution de 12 à 16 bits et l’échelonnage de la donnée peut varier d’un constructeur à l’autre.

Exemple:

Module 12 bits

<table>
<thead>
<tr>
<th>Signal branché Configuration module</th>
<th>Variante 1</th>
<th>Variante 2</th>
<th>Variante 3</th>
<th>Variante 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>-10V..+10V</td>
<td>-2048..+2047</td>
<td>-32768..+32767</td>
<td>-16384..+16383</td>
<td></td>
</tr>
<tr>
<td>0V..+10V</td>
<td>0..+4095</td>
<td>0..+2047</td>
<td>0..+16383</td>
<td>0..+32767</td>
</tr>
<tr>
<td>4..20mA</td>
<td>0..+32767</td>
<td>+6553..+32767</td>
<td>+3276..+16383</td>
<td></td>
</tr>
</tbody>
</table>

Module 16 bits

<table>
<thead>
<tr>
<th>Signal branché Configuration module</th>
<th>Variante 1</th>
<th>Variante 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>-10V..+10V</td>
<td>-32768..+32767</td>
<td></td>
</tr>
<tr>
<td>0V..+10V</td>
<td>0..+65535</td>
<td></td>
</tr>
<tr>
<td>4..20mA</td>
<td>+13107..+65535</td>
<td></td>
</tr>
</tbody>
</table>

Il n’est pas possible de définir une Unité unique pouvant convenir à chaque modèle de module de sortie analogique.

Contrôler l’échelonnage fourni par le modèle utilisé et utiliser les variables de systèmes conformément à cet échelonnage.

La sortie analogique 0 et la sortie analogique 1 peuvent également être gérées par l’intermédiaire des paramètres du drive.

Pour assurer le bon fonctionnement, il est nécessaire que l’échelonnage fourni par le module externe soit compatible avec celui fourni par le drive. Le drive produit une donnée pour les modules IO conformément à l’échelonnage suivant:

<table>
<thead>
<tr>
<th>Type entrée analogique</th>
<th>Plage</th>
</tr>
</thead>
<tbody>
<tr>
<td>-10V..+10V</td>
<td>-32768..+32767</td>
</tr>
<tr>
<td>0V..+10V</td>
<td>0..+65535</td>
</tr>
<tr>
<td>4..20mA</td>
<td>+13107..+65535</td>
</tr>
</tbody>
</table>

Les sorties analogiques 0..1 sont gérées à travers les paramètres du drive et la valeur produite par le drive remplace la valeur inscrite par Mdplc ou sériel ou bus de champ.

Diagramme:

```
1866 An out 1X mon | sysEAO0|Value
R  5460 Dig Analog out 0 ext | sysExtIOAnaOut0

1868 An out 2X mon | sysEAO1|Value
R  5462 Dig Analog out 1 ext | sysExtIOAnaOut1

R  5464 Dig Analog out 2 ext | sysExtIOAnaOut2
R  5466 Dig Analog out 3 ext | sysExtIOAnaOut3
R  5468 Dig Analog out 4 ext | sysExtIOAnaOut4
R  5470 Dig Analog out 5 ext | sysExtIOAnaOut5
R  5472 Dig Analog out 6 ext | sysExtIOAnaOut6
R  5474 Dig Analog out 7 ext | sysExtIOAnaOut7
```
Ce menu prévoit la saisie des données de plaque du moteur et les valeur de “base” pour la tension/fréquence caractéristique. L’exactitude des données saisies comporte un fonctionnement optimal du drive et par conséquent de toute l’application. Ces données sont nécessaires pour obtenir:

- a) le calcul des facteurs de normalisation nécessaires à la régulation
- b) le calcul des valeurs prévues pour les paramètres moteur nécessaires à la régulation

Tension nominale, Vitesse nominale, courant nominal doivent être fournis. Après avoir configuré ces paramètres, il faut effectuer la commande Prise en compt param pour pouvoir calculer les données (a) et (b) citées plus haut. L’actionnement ne peut pas être effectué tant que la commande Prise en compt param n’a pas été configurée. Si des valeurs ne sont pas compatibles, ou bien si la grandeur du moteur est beaucoup plus petite que celle du variateur, un message d’erreur sera affiché indiquant un excédent de capacité numérique (“overflow”) et dans le sous-menu “Mot plate data” la série de paramètres précédente sera rétablie.

Exemple de plaque moteur

<table>
<thead>
<tr>
<th>Menu</th>
<th>PAR</th>
<th>Description</th>
<th>UM</th>
<th>Type</th>
<th>FB</th>
<th>BIT</th>
<th>Def</th>
<th>Min</th>
<th>Maxi</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>16.1</td>
<td>2000</td>
<td>Tension nominale</td>
<td>V</td>
<td>FLOAT</td>
<td>SIZE</td>
<td>50.0</td>
<td>690.0</td>
<td>RWZS</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Configurer la tension nominale du moteur indiquées sur la plaque. C’est la tension que le drive doit fournir à la fréquence nominale du moteur.

<table>
<thead>
<tr>
<th>Menu</th>
<th>PAR</th>
<th>Description</th>
<th>UM</th>
<th>Type</th>
<th>FB</th>
<th>BIT</th>
<th>Def</th>
<th>Min</th>
<th>Maxi</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>16.2</td>
<td>2002</td>
<td>Intensité nominale</td>
<td>A</td>
<td>FLOAT</td>
<td>SIZE</td>
<td>1.0</td>
<td>2200.0</td>
<td>RWZS</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Courant nominal du moteur à sa valeur nominale de puissance (kW / Hp) et tension (indiqués sur la plaque de données du moteur). En cas de contrôle de plusieurs moteurs travaillant en parallèle et commandés par un seul drive (cela n’est possible qu’en mode V/f) saisir une valeur correspondant à la somme des courants nominaux de tous les moteurs ; dans ce cas, il ne faut effectuer aucune opération d’ “Autoétalonnage”.

<table>
<thead>
<tr>
<th>Menu</th>
<th>PAR</th>
<th>Description</th>
<th>UM</th>
<th>Type</th>
<th>FB</th>
<th>BIT</th>
<th>Def</th>
<th>Min</th>
<th>Maxi</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>16.3</td>
<td>2004</td>
<td>Vitesse nominale</td>
<td>rpm</td>
<td>FLOAT</td>
<td>SIZE</td>
<td>10.0</td>
<td>32000.0</td>
<td>RWZS</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Vitesse nominale du moteur à pleine charge en tours/min.

<table>
<thead>
<tr>
<th>Menu</th>
<th>PAR</th>
<th>Description</th>
<th>UM</th>
<th>Type</th>
<th>FB</th>
<th>BIT</th>
<th>Def</th>
<th>Min</th>
<th>Maxi</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>16.4</td>
<td>2008</td>
<td>Nb paires de Pôles</td>
<td>UINT16</td>
<td>SIZE</td>
<td>1</td>
<td>(*)</td>
<td>RWZS</td>
<td>FVS</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Configuration du nombre de couples polaires du moteur.

(*) Boucle ouverte (Sensorless) = 30pp ; Boucle fermée (CL) = 50pp.
Menu PAR Description UM Type FB BIT Def Min Maxi Acc Mod

16.5 2010 **Couple constant**
Nm/A FLOAT SIZE 0.1 100.0 RWZS FVS

Configuration du rapport entre le couple développé et l’intensité nominale du moteur.

16.6 2012 **EMF constant**
Wb FLOAT SIZE 0.0 100.0 RWZS FVS

Configuration de la constante de force contre-électromotrice qui représente le rapport entre la tension du moteur et sa vitesse nominale.

The **EMF constant** (Ke) can be obtained as follows:

- of the motor catalogue,
- or, enter the value “0” and perform the motor’s Autotune procedure (PAR 552 **Mode de Regulation** = (3) **Autoétalonnage**, Ke will be calculated automatically),
- or, it can be obtained from the formula

\[
Ke \text{ [Vrms*s]} = \frac{V_{rms} \times 60}{S_{rpm} \times 2\pi}
\]

\[V_{rms} = \text{daisy-chained voltage at 1000 rpm (see motor catalogue)}\]
\[S_{rpm} = \text{Speed (rpm)}\]

16.7 2020 **Prise en compt param**
BIT 0 0 1 RWZ FVS

Mémorise dans le drive les données du moteur configurées. Cette commande doit être fournie en dernier après avoir saisi les valeurs appropriées de tous les paramètres énumérés ci-dessus. Cela comporte le calcul des facteurs de normalisation (a) et des valeurs prévues par les paramètres moteur (b). Le drive ne peut pas être activé tant que la commande **Prise en compt param** n’a pas été configurée.

Remarque! Cette mémorisation n’est pas permanente. Utiliser la commande “Sauvegarde paramètre” dans le menu **CONFIGURATION** pour sauvegarder de manière permanente dans la mémoire.

16.8 2022 **Etalonage rotation**
BIT 0 0 1 RWZ FVS

Effectue l’étalonnage automatique en rotation : le moteur doit être désaccouplé de la charge ou bien la transmission ne doit pas représenter plus de 5% de la charge. C’est la procédure qui permet de relever le plus scrupuleusement les paramètres du moteur. Pour pouvoir effectuer la commande, il faut tout d’abord ouvrir l’activation matériel entre les bornes 7 et S3. Impostare poi il parametro **Mode de Regulation** su **Autoétalonnage**.
A présent, s’il n’est pas déjà en mode Local, appuyer sur la touche Local (le voyant lumineux **LOC** s’allumera) puis refermer la validation matériel (bornes 7 et S3). On peut maintenant activer l’auto-étalonnage. Au terme de la procédure d’auto-étalonnage, ouvrir à nouveau le contact entre les bornes 7 et S3 et rétablir les paramètres modifiés.

16.9 2024 **Etalonage à l’arrêt**
BIT 0 0 1 RWZ FVS

16.10 2026 **Etalonage mode**
ENUM Réduit 0 1 ERWZ FVS

Sélection du mode d’auto-apprentissage des paramètres du moteur.

- 0 Réduit
- 1 Prolongé

En configurant 0, on mesure tous les paramètres du moteur sauf ceux concernant la courbe non linéaire de saturation. Il faut utiliser ce mode pour obtenir une procédure d’auto-étalonnage plus rapide

En configurant 1, on mesure tous les paramètres du moteur. Il faut utiliser ce mode pour obtenir de meilleures performances : cette procédure peut durer quelques minutes.
Prise en compte état

<table>
<thead>
<tr>
<th>Menu</th>
<th>PAR</th>
<th>Description</th>
<th>UM</th>
<th>Type</th>
<th>FB</th>
<th>BIT</th>
<th>Def</th>
<th>Min</th>
<th>Maxi</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>16.11</td>
<td>2028</td>
<td>Prise en compte état</td>
<td>ENUM</td>
<td>Demandé</td>
<td>0</td>
<td>0</td>
<td>R</td>
<td>FVS</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Indication de l’état de la mémorisation des paramètres.

0 Demandé
1 Fait

Le paramètre affiche Demandé lorsque la mémorisation des paramètres moteurs saisis est demandée. Après avoir effectué la mémorisation, le paramètre indiquera Fait.

État Etalonnage

<table>
<thead>
<tr>
<th>Menu</th>
<th>PAR</th>
<th>Description</th>
<th>UM</th>
<th>Type</th>
<th>FB</th>
<th>BIT</th>
<th>Def</th>
<th>Min</th>
<th>Maxi</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>16.12</td>
<td>2030</td>
<td>État Etalonnage</td>
<td>ENUM</td>
<td>Demandé</td>
<td>0</td>
<td>0</td>
<td>R</td>
<td>FVS</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Indication de l’état de l’exécution de l’étalonnage automatique des paramètres moteur.

0 Demandé
1 Fait

Rs mesuré

<table>
<thead>
<tr>
<th>Menu</th>
<th>PAR</th>
<th>Description</th>
<th>UM</th>
<th>Type</th>
<th>FB</th>
<th>BIT</th>
<th>Def</th>
<th>Min</th>
<th>Maxi</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>16.13</td>
<td>2050</td>
<td>Rs mesuré</td>
<td>ohm</td>
<td>FLOAT</td>
<td>CALCF</td>
<td>0.0005</td>
<td>200.0</td>
<td>ERWS</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Valeur mesurée de la résistance statorique.

DTL mesuré

<table>
<thead>
<tr>
<th>Menu</th>
<th>PAR</th>
<th>Description</th>
<th>UM</th>
<th>Type</th>
<th>FB</th>
<th>BIT</th>
<th>Def</th>
<th>Min</th>
<th>Maxi</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>16.14</td>
<td>2052</td>
<td>DTL mesuré</td>
<td>V</td>
<td>FLOAT</td>
<td>0</td>
<td>0.0</td>
<td>100.0</td>
<td>ERWS</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Valeur mesurée de la compensation des temps morts.

DTS mesuré

<table>
<thead>
<tr>
<th>Menu</th>
<th>PAR</th>
<th>Description</th>
<th>UM</th>
<th>Type</th>
<th>FB</th>
<th>BIT</th>
<th>Def</th>
<th>Min</th>
<th>Maxi</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>16.15</td>
<td>2054</td>
<td>DTS mesuré</td>
<td>V/A</td>
<td>FLOAT</td>
<td>0</td>
<td>0.0</td>
<td>100.0</td>
<td>ERWS</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Valeur mesurée du gradient de compensation.

Lsig mesuré

<table>
<thead>
<tr>
<th>Menu</th>
<th>PAR</th>
<th>Description</th>
<th>UM</th>
<th>Type</th>
<th>FB</th>
<th>BIT</th>
<th>Def</th>
<th>Min</th>
<th>Maxi</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>16.16</td>
<td>2056</td>
<td>Lsig mesuré</td>
<td>mH</td>
<td>FLOAT</td>
<td>CALCF</td>
<td>0.001</td>
<td>200.0</td>
<td>ERWS</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Valeur mesurée de l’inductance de dispersion.

Measured Lsig min

<table>
<thead>
<tr>
<th>Menu</th>
<th>PAR</th>
<th>Description</th>
<th>UM</th>
<th>Type</th>
<th>FB</th>
<th>BIT</th>
<th>Def</th>
<th>Min</th>
<th>Maxi</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>16.17</td>
<td>2074</td>
<td>Measured Lsig min</td>
<td>mH</td>
<td>FLOAT</td>
<td>CALCF</td>
<td>0.001</td>
<td>200.0</td>
<td>ERWS</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Valeur de l’inductance minimum de dispersion, mesurée pendant l’autotuning.

Prise en compte étalon

<table>
<thead>
<tr>
<th>Menu</th>
<th>PAR</th>
<th>Description</th>
<th>UM</th>
<th>Type</th>
<th>FB</th>
<th>BIT</th>
<th>Def</th>
<th>Min</th>
<th>Maxi</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>16.18</td>
<td>2078</td>
<td>Prise en compte étalon</td>
<td>BIT</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>ERWZ</td>
<td>FVS</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Mémorise dans le drive les données du moteur calculée par l’étalonnage automatique.

Remarque Cette mémorisation n’est pas permanente. Utiliser la commande "**Sauvegarde paramètre**" dans le menu **CONFIGURATION** pour sauvegarder de manière permanente dans la mémoire.
Le mode de contrôle à boucle fermée exige une lecture de la vitesse fournie par le codeur numérique accouplé sur l’arbre du moteur. Pour la saisie de différents types de signaux codeur, on a réalisé cartes en option, qui permettent la rétroaction du drive, avec des signaux incrémentiels et des signaux absolus. En mode vectoriel à orientation de champ, la rétroaction de l’encodeur à boucle fermée est indispensable pour assurer un bon fonctionnement du drive.

Pour plus d’informations, voir manuel ADV200 QS Appendice, section A2.2 Codeur.
17.1 - CODEUR/CODEUR CONFIG

Menu	PAR	Description	UM	Type	FB	BIT	Def	Min	Maxi	Acc	Mod
17.1.1 | 5310 | Sel codeur src | LIN | K | 16 | 6000 | 0 | 16384 | ERW | FVS

Sélection de l’origine (source) de l’entrée à utiliser pour la sélection du codeur de rétroaction de vitesse. Liste des entrées numériques utilisables pour la sélection peuvent être sélectionnées dans la liste de sélection “L_DIGSEL2”.

Quand le signal a la valeur 0, le codeur 1 est associé.
Quand le signal a la valeur 1, le codeur 2 est associé.

Menu	PAR	Description	UM	Type	FB	BIT	Def	Min	Maxi	Acc	Mod
17.1.2 | 5314 | Sel codeur mon | UINT | K | 16 | 0 | 0 | 1 | ER | FVS

Visualisation du codeur sélectionné comme dispositif de rétroaction.
0 Codeur 1
1 Codeur 2

Menu	PAR	Description	UM	Type	FB	BIT	Def	Min	Maxi	Acc	Mod
17.1.3 | 2172 | Code défaut codeur | UINT | K | 16 | 0 | 0 | 0 | ER | FVS

Visualisation de l’alarme Alar RetVitesse produite par une anomalie du codeur. Chaque type de codeur produit l’alarme de façon différente (erreur de signaux incrémentiels, erreur de signaux absolus, erreur sur port série) : il est donc possible de visualiser les informations relatives à l’alarme intervenue avec ce paramètre. Si plusieurs causes sont actives simultanément, elles seront rapportées sur ce paramètre.

<table>
<thead>
<tr>
<th>Bit</th>
<th>Valeur</th>
<th>Nom</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0x01</td>
<td>CHA</td>
</tr>
<tr>
<td>1</td>
<td>0x02</td>
<td>CHB</td>
</tr>
<tr>
<td>2</td>
<td>0x04</td>
<td>CHZ</td>
</tr>
<tr>
<td>3</td>
<td>0x08</td>
<td>MOD_INCR</td>
</tr>
<tr>
<td>4</td>
<td>0x10</td>
<td>MOD_ABS</td>
</tr>
<tr>
<td>5</td>
<td>0x20</td>
<td>CRC_CKS_P</td>
</tr>
<tr>
<td>6</td>
<td>0x40</td>
<td>ACK_TMO</td>
</tr>
<tr>
<td>7</td>
<td>0x80</td>
<td>DT1_ERR</td>
</tr>
<tr>
<td>8</td>
<td>0x100</td>
<td>Erreur de paramètres</td>
</tr>
<tr>
<td>10..15</td>
<td>Vide</td>
<td></td>
</tr>
<tr>
<td>16..31</td>
<td>Selon le type de retour</td>
<td></td>
</tr>
</tbody>
</table>

Pour toute autre information, voir la description de l’alarme Alar RetVitesse et voir le chapitre «9.2.1 Alarme Alar RetVitesse en fonction du type de retour» (ADV200, Guide rapide pour l’installation)

REMARQUE
Pour la bonne interprétation des causes ayant enclenché l’alarme, il faut transformer le code hexadécimal écrit dans le paramètre 17.29 Code défaut codeur, PAR 2172, dans le code binaire correspondant, puis contrôler dans le tableau du codeur utilisé les différents bits actifs et la description correspondante.

Exemple avec codeur Endat :

PAR 2172 = A0H (valeur hexadécimale)
Dans le tableau “Alar RetVitesse [22] avec codeur absolu EnDat” A0 n’est pas présente dans la colonne valeur. A0 doit être vu comme un bitword qui signifie A0 -> 10100000 -> bit 5 et bit 7. Les causes suivantes sont donc intervenues simultanément :

Bit 5 = 20H Cause : des signaux SSI perturbés provoquent une erreur CKS ou de Parity.
Bit 7 = 80H Cause : Le codeur a relevé une anomalie dans son propre fonctionnement et le signale au drive par Error bit. Dans les bits 16..31, on trouvera le type de dysfonctionnement relevé par le codeur.
17.1.4 2190 Autophase rotation

En configurant ce paramètre, il est possible d’exécuter le phasage du codeur avec rotation du moteur : le moteur doit pouvoir tourner librement et sans charge appliquée (le frein doit être ouvert). Il s’agit de la procédure offrant la plus grande exactitude.

Pour pouvoir exécuter la commande, il est nécessaire :
- d’ouvrir la commande d’activation (Activer).
- de régler ce paramètre sur 1 (si commande par port série).
- de confirmer en enfonçant la touche Entrer (pour commande de clavier).
- à la demande de fermeture de l’activation, d’appliquer la commande sur la borne 9 (Activer).
- en fin de procédure, l’ouverture de l’activation (Activer) sera de nouveau demandée pour confirmer la conclusion.

Remarque ! Pour plus d’informations voir le manuel Guide rapide, Appendice partie A2.2.

17.1.5 2192 Autophase à l’arrêt

En configurant ce paramètre, il est possible d’exécuter le phasage du codeur sans rotation du moteur : le frein doit être fermé.

Pour pouvoir exécuter la commande, il est nécessaire :
- d’ouvrir la commande d’activation (Activer).
- de régler ce paramètre sur 1.
- de confirmer en appuyant sur la touche Enter.
- à la demande de fermeture de l’activation, d’appliquer la commande sur la borne 9 (Activer).
- en fin de procédure, l’ouverture de l’activation (Activer) sera de nouveau demandée pour confirmer la conclusion.

Remarque ! Pour plus d’informations voir le manuel Guide rapide, Appendice partie A2.2.

17.1.6 2194 Mod.phasing statique

Il est possible de sélectionner deux modalités différentes de mise en phase statique, en fonction des caractéristiques des moteurs synchrones disponibles dans le commerce. Il est conseillé d’utiliser le mode 1 comme première option. Si le Mode 1 n’est pas correctement exécuté, les caractéristiques de construction du moteur exigeront une modalité différente (Mode 2).

<table>
<thead>
<tr>
<th>Mode</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Mode 1</td>
</tr>
<tr>
<td>1</td>
<td>Mode 2</td>
</tr>
</tbody>
</table>

17.1.7 2196 Mode fonct.phasing

Sélection de l’exécution de la mise en phase du moteur avec un codeur incrémental (pour moteurs synchrones). Elle ne peut être effectuée que lors de la première habilitation de l’entraînement ou à chacune de ses habilitations.

<table>
<thead>
<tr>
<th>Mode</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Par/MiseEnServ</td>
</tr>
<tr>
<td>1</td>
<td>Première valid</td>
</tr>
<tr>
<td>2</td>
<td>Chaque valid</td>
</tr>
<tr>
<td>3</td>
<td>Pr.ValPasAlm</td>
</tr>
</tbody>
</table>

17.1.8 2198 Phasing moteur

Ce paramètre permet de sélectionner le type de mise en phase (moteurs synchrones) à exécuter au démarrage :

<table>
<thead>
<tr>
<th>Mode</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Statique</td>
</tr>
<tr>
<td>1</td>
<td>Rotation</td>
</tr>
</tbody>
</table>
Virtuel

Use this setting when the value in mechanical degrees of the distance of the rotor pole from the «zero» of the encoder is known. This value must be entered manually before starting the phasing (contact Gefran’s Customer Service for further information).

En cas d’erreur pendant la mise en phase au démarrage (Statique ou Rotation), l’alarme [21] Erreur Codeur se déclenche et exclut immédiatement l’entraînement.

17.2 - CODEUR/CODEUR 1

17.2.1 2100 Codeur 1 impuls.

ppr UINT16 CALCI CALCI CALCI RWZ FVS

Configuration du nombre d’impulsions de l’encodeur de rétroaction.

17.2.2 2102 Alim.codeur 1

V FLOAT 5.2 5.2 CALCF ERWZ FVS

Configuration de la tension d’alimentation du codeur fourni par la carte correspondante en option. Les valeurs min. et max. sont modifiées en fonction du type de carte de codeur appliquée.

<table>
<thead>
<tr>
<th>Type de codeur en option</th>
<th>Déf</th>
<th>Min</th>
<th>Maxi</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enc1 EXP-DE-I1R2F2-ADV</td>
<td>5.2V</td>
<td>5.2V</td>
<td>22.0V</td>
</tr>
<tr>
<td>Enc2 EXP-SE-I1R2F2-ADV</td>
<td>5.2V</td>
<td>5.2V</td>
<td>6.0V</td>
</tr>
<tr>
<td>Enc3 EXP-SESC-I1R2F2-ADV</td>
<td>5.2V</td>
<td>5.2V</td>
<td>6.0V</td>
</tr>
<tr>
<td>Enc4 EXP-EN/-SSI-I1R2F2-ADV</td>
<td>5.2V</td>
<td>5.2V</td>
<td>10.0V</td>
</tr>
<tr>
<td>Enc5 EXP-HIP-I1R2F2-ADV</td>
<td>8.0V</td>
<td>7.0V</td>
<td>12.0V</td>
</tr>
<tr>
<td>Enc6 EXP-ES-I1R1F2-ADV</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Enc7 EXP-DE-I2R1F2-ADV</td>
<td>5.2V</td>
<td>5.2V</td>
<td>20.0V</td>
</tr>
<tr>
<td>Enc8 EXP-ASC-I1-ADV</td>
<td>5.2V</td>
<td>5.2V</td>
<td>6.0V</td>
</tr>
</tbody>
</table>

17.2.3 2104 Config.entr.codeur 1

ENUM TTL 0 1 ERWZ FVS

Spécification de la configuration d’entrée du codeur numérique incrémentiel TTL ou HTL.

0 HTL
1 TTL

La valeur de ce paramètre est automatiquement définie dans HTL lorsque la valeur entrée dans le paramètre **Alimentation codeur** est supérieure à 6,0 V.

17.2.4 2106 Répétition codeur 1

ENUM Pas division 0 3 ERWZ FVS

Configuration du diviseur à appliquer à la fréquence de sortie de la répétition de codeur.

0 Pas division
1 Diviser par 2
2 Diviser par 4
3 Diviser par 8

17.2.5 2108 Signal codeur 1 Vpp

V FLOAT 1.0 0.8 1.2 ERWZ FVS

Configuration de la valeur pic-à-pic du signal de codeur 1. Normalement, les codeurs incrémentiels Sinus et le codeur absolu SinCos émettent des signaux dont la valeur de tension de pic à pic est 1 Vpp mais, en raison de la chute de tension le long du câble, un signal de valeur de tension pic à pic atténué peut arriver sur la carte de retour, entraînant le déclenchement de l’alarme **Alar RetVitesse**.

Ce paramètre permet de configurer la valeur de la tension pic à pic des signaux de codeur incrémentiel Sinus et de codeur absolu SinCos présents sur les bornes d’entrée de la carte de retour.
La configuration des canaux du codeur numérique incrémentiel doit être contrôlée aux fins de l'élaboration du signal d'alarme de Alar RetVitesse [22].

0 Ctrl désactivé
1 Désact. A-B
2 Désact. A-B-Z
4 Desact A-B-Z-P

En configurant 1, on contrôle la présence des signaux des canaux A-B.

En configurant 2, on contrôle la présence des signaux des canaux A-B-Z.

En configurant 4, on active le contrôle de la perte de rétroaction pour les codeurs SE (single ended).

Si l'absence de la rétroaction est détectée l'alarme Alar RetVitesse [22] est enclenchée.

Comme il est impossible de détecter la perte de rétroaction à une vitesse proche de zéro, le contrôle est effectué uniquement si la consigne de vitesse est supérieure à la valeur paramétrée dans le paramètre 4564 SpdFbkLoss threshold. Il faut également considérer que lorsqu'on travaille avec la consigne de vitesse légèrement supérieure à la limite paramétrée dans le paramètre 4564 SpdFbkLoss threshold, il est possible que, à cause de la charge ou de la limite du courant, l'erreur de vitesse dépasse celle paramétrée comme seuil, déclenchant de fausses alarmes.

Dans ce cas, il faut augmenter la valeur du paramètre 4550 Seuil Erreur consign ou du paramètre 4554 Filtre Erreur consign.

Exemple avec Codeur simple tour
13 bit de position : régler le par. 2114 = 13
13 bits clock : régler le par. 2112 = 13

Exemple Codeur multi-tour
13 bit de position : régler le par. 2114 = 13.
25 bits clock : régler le par. 2112 = 25.

Réglage du nombre de bits utilisés par le codeur 1 SSI pour définir la position.
Voir exemples PAR 2112.

Sélection de la valeur d'horloge pour codeur 1 du type ENDAT.
0 1 MHz
1 500 kHz

Sélection de la direction du codeur.
0 Non inversé
1 Inversé

En configurant 0 les signaux de rétroaction de l'encodeur ne s'invertissent pas.
En configurant 1 les signaux de rétroaction de l'encodeur s'invertissent.
Menu PAR Description UM Type FB BIT Def Min Maxi Acc Mod

17.2.11 2132 Mode codeur 1 ENUM Aucun CALCI CALCI ERWZ FVS

Configuration de la méthode de mesure de la vitesse du codeur numérique relié à la carte en option. Le drive reconnaît automatiquement la carte codeur insérée et propose uniquement les modes compatibles.

0 Aucun
1 Digital FP
2 Digital F
3 Sinus
4 Sinus SINCOS
5 Sinus ENDAT
6 Sinus SSI
7 Sinus HIPER
8 Résolveur
9 Abs SINCOS
10 ENDAT
11 SSI

La modalité de mesure de vitesse est fonction du type de carte de l'encodeur ; les valeurs de minimum et de maximum par défaut sont configurées en fonction du type de carte de retour utilisée.

<table>
<thead>
<tr>
<th>Type de codeur en option</th>
<th>Déf</th>
<th>Min</th>
<th>Maxi</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enc 1</td>
<td>Digital F</td>
<td>Digital FP</td>
<td>Digital F</td>
</tr>
<tr>
<td>Enc 2</td>
<td>Sinus</td>
<td>Sinus</td>
<td>Sinus</td>
</tr>
<tr>
<td>Enc 3</td>
<td>Sinus SINCOS</td>
<td>Sinus SINCOS</td>
<td>Sinus SINCOS</td>
</tr>
<tr>
<td>Enc 4</td>
<td>Sinus SSI</td>
<td>Sinus ENDAT</td>
<td>SSI</td>
</tr>
<tr>
<td>Enc 5</td>
<td>Sinus HIPER</td>
<td>Sinus HIPER</td>
<td>Sinus HIPER</td>
</tr>
<tr>
<td>Enc 6</td>
<td>Resolver</td>
<td>Resolver</td>
<td>Resolver</td>
</tr>
<tr>
<td>Enc 7</td>
<td>Digital F</td>
<td>Digital FP</td>
<td>Digital F</td>
</tr>
<tr>
<td>Enc 8</td>
<td>SINCOS / No inc dig</td>
<td>SINCOS / No inc dig</td>
<td>SINCOS / No inc dig</td>
</tr>
</tbody>
</table>

En présence de l’option codeur du type Enc 1 :
- configurer 1 (Digital FP) pour sélectionner la méthode de mesure de fréquence et période. Ce type de sélection est à préférer pour les applications qui requièrent un fonctionnement à très basse vitesse de rotation.
- configurer 2 (Digital F) pour sélectionner la méthode de mesure de fréquence. Ce type de mesure permet d’obtenir une précision et une dynamique remarquables aux vitesses moyennes-élévées.

En présence de l’option codeur du type Enc 4 :
- contrairement à la sélection 5 (Sinusoïdale ENDAT), la sélection 10 (ENDAT), indique la présence d’un codeur dépourvu des canaux incrémentaux. La transition entre les deux sélections s’effectue de manière automatique, à travers une procédure d’identification.
- contrairement à la sélection 6 (Sinusoïdale SSI), la sélection 11 (SSI) indique la présence d’un codeur dépourvu des canaux incrémentaux. La transition entre les deux sélections doit s’effectuer manuellement, pendant la phase de mise en service.

Menu PAR Description UM Type FB BIT Def Min Maxi Acc Mod

17.2.12 2134 Filtre vit. codeur 1 ms FLOAT 0.250 0.125 20.000 ERWZ FVS

Configuration de la constante de temps du filtre appliqué à la lecture des impulsions de l’encodeur de rétroaction. Le paramètre agit tant sur la précision de la mesure de la vitesse que sur la dynamique pouvant être obtenue lors du contrôle à boucle fermée. Des temps de mise à jour importants permettent une plus grande stabilité (filtrage plus important) de la mesure de la vitesse, puisqu’un plus grand nombre d’impulsions du codeur sont comptées à une certaine vitesse de rotation. D’autre part, le filtrage sur la mesure de la vitesse entraîne des retards qui ne permettent pas des dynamiques élevées de la boucle de contrôle. De faibles valeur de configuration amplifient la bande passante de régulation mais peuvent accentuer des perturbations éventuelles.

Menu PAR Description UM Type FB BIT Def Min Maxi Acc Mod

17.2.13 2150 Vitesse codeur 1 rpm INT16 16/32 0 0 0 ER FVS

Visualisation de la vitesse du moteur mesurée par l’encodeur 1.

Menu PAR Description UM Type FB BIT Def Min Maxi Acc Mod

17.2.14 2162 Position codeur 1 cnt UINT16 16 0 0 0 ER FVS

Visualisation de la position de l’encodeur. La mise à l’échelle est le nombre d’impulsions encodeur *4.
Configuration de la fréquence de synchronisation des traces incrémentielles avec les traces absolues (encoder 1). En configurant 0, la synchronisation est exécutée une seule fois à l’alimentation.

En configurant 1, la synchronisation est effectuée à chaque commande de démarrage.

En configurant 2, la synchronisation est exécutée tous les 128 ms.

En configurant 3, la synchronisation est toujours effectuée, en utilisant la partie absolue.

Cette fonction peut être utilisée avec des codeurs absolus et les valeurs par défaut, les valeurs de minimum et de maximum sont modifiées en fonction du type de codeur.

<table>
<thead>
<tr>
<th>Type option codeur</th>
<th>Déf</th>
<th>Min</th>
<th>Max</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enc 1</td>
<td>1</td>
<td>0</td>
<td>3</td>
<td>ERWZ</td>
<td>FVS</td>
</tr>
<tr>
<td>Enc 2</td>
<td>1</td>
<td>0</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Enc 3</td>
<td>1</td>
<td>0</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Enc 4</td>
<td>1</td>
<td>0</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Enc 5</td>
<td>1</td>
<td>0</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Enc 6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Enc 7</td>
<td>1</td>
<td>0</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Enc 8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Habilitation de la gestion du codeur périphérique utilisé avec les moteurs synchrones “Torque”

0 = fonction désactivée. Le rapport de réduction est programmé sur 1

Pour habiliter le rapport de réduction moteur/codeur, il est nécessaire d’entrer dans ce paramètre le nombre de paires polaires du moteur, correspondant à un tour du codeur.

Exemple:

En considérant un moteur synchrone avec 10 paires de pôles et un rapport codeur “K” de 6:3, l’on obtiendra :

\[
\text{PP} / K = 10 / (6/3) = 5
\]

Note !

Parmi tous les possibles rapports “K”, seuls sont admis ceux qui permettent d’obtenir des nombres “finis”.

La valeur maximale programmable est égale au nombre de paires polaires configuré sur l’entraînement.

Si, en programmant les paires polaire, l’on saisir un chiffre inférieur à la valeur présente dans PAR 2186, le PAR 2196 est automatiquement configuré à 0 et la fonction est donc désactivée.

Utilisation d’un codeur renvoyé (Geared Encoder)

Les moteurs “Torque” utilisent généralement un dispositif de rétroaction de position, installé à l’aide d’une courroie crantée ou d’un autre multiplicateur (voir figure). Cela entraîne un rapport cinématique non unitaire, qui doit être pris en compte pour assurer une commande correcte du moteur. (Contacter Gefran pour plus d’informations concernant l’application).

Utilisation d’un codeur renvoyé (Geared Encoder)

Les moteurs “Torque” utilisent généralement un dispositif de rétroaction de position, installé à l’aide d’une courroie crantée ou d’un autre multiplicateur (voir figure). Cela entraîne un rapport cinématique non unitaire, qui doit être pris en compte pour assurer une commande correcte du moteur. (Contacter Gefran pour plus d’informations concernant l’application).

Il s’agit d’un paramètre de seule lecture, qui affiche le rapport de réduction Moteur/Codeur calculé par l’entraînement.

Indique l’état du Codeur 1 (1= erreur, 0 = pas d’erreur), indépendamment du fait que celui-ci soit utilisé ou pas en tant de rétroaction (feedback) pour la commande du moteur.
ADV200 • Description des fonctions et liste des paramètres

17.2.19 5352 Code err. Codeur 1

Ce paramètre contient un code hexadécimal qui fournit l’information sur le type d’erreur survenue.
Les valeurs des erreurs sont les mêmes (et avec la même signification) que celles indiquées au paramètre IPA 2172 Code défaut codeur.

17.3 - CODEUR/CODEUR 2

17.3.1 5100 Codeur 2 impuls.

Paramétrage du nombre de points/tours du codeur incrémentiel monté dans le slot 1 ou 3.

17.3.2 5102 Alim. codeur 2

Configuration de la tension d’alimentation du codeur fourni par la carte correspondante en option. Les valeurs mini et maxi se réfèrent aux cartes du codeur numérique incrémentiel avec un ou deux codeur.

17.3.3 5104 Config. entr. codeur 2

Spécification de la configuration d’entrée du codeur numérique incrémentiel TTL ou HTL.

- 0 HTL
- 1 TTL

La valeur de ce paramètre est automatiquement définie dans HTL lorsque la valeur entrée dans le paramètre Alim. codeur 2 est supérieure à 6,0 V.

17.3.4 5106 Répétition codeur 2

Configuration du diviseur à appliquer à la fréquence de sortie de la répétition de codeur.

- 0 Pas division
- 1 Diviser par 2
- 2 Diviser par 4
- 3 Diviser par 8

17.3.5 2108 Signal codeur 2 Vpp

Configuration de la valeur pic-à-pic du signal de codeur 2. Normalement, les codeurs incrémentiels Sinus et le codeur absolu SinCos émettent des signaux dont la valeur de tension de pic à pic est 1 Vpp mais, en raison de la chute de tension le long du câble, un signal de valeur de tension pic à pic atténué peut arriver sur la carte de retour, entraînant le déclenchement de l’alarme Alar RetVitesse.

Ce paramètre permet de configurer la valeur de tension pic à pic des signaux de codeur incrémentiel Sinus et de codeur absolu SinCos présents sur les bornes d’entrée de la carte de retour.

17.3.6 5110 Défaut signal code 2

La configuration des canaux du codeur numérique incrémentiel doit être contrôlée aux fins de l’élaboration du signal d’alarme de Alar RetVitesse [22].

- 0 Ctrl.désactivé
- 1 Désact. A-B
- 2 Désact. A-B-Z
- 4 Desact A-B-Z-P
En configurant 1, on contrôle la présence des signaux des canaux A-B.
En configurant 2, on contrôle la présence des signaux des canaux A-B-Z.
En configurant 4, on active le contrôle de la perte de rétroaction pour les codeurs SE (single ended).
Si l’absence de la rétroaction est détectée l’alarme Alar RetVitesse [22] est enclenchée.
Comme il est impossible de détecter la perte de rétroaction à une vitesse proche de zéro, le contrôle est effectué uniquement si la consigne de vitesse est supérieure à la limite paramétrée dans le paramètre 4564 SpdFbkLoss threshold. Il faut également considérer que lorsqu’on travaille avec la consigne de vitesse légèrement supérieure à la limite paramétrée dans le paramètre 4564 SpdFbkLoss threshold, il est possible que, à cause de la charge ou de la limite du courant, l’erreur de vitesse dépasse celle paramétrée comme seuil, déclenchant de fausses alarmes.
Dans ce cas, il faut augmenter la valeur du paramètre 4550 Seuil Erreur consign ou du paramètre 4554 Filtre Erreur consign.

<table>
<thead>
<tr>
<th>Menu</th>
<th>PAR</th>
<th>Description</th>
<th>UM Type</th>
<th>FB BIT</th>
<th>Def</th>
<th>Min</th>
<th>Maxi</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>17.3.7</td>
<td>2112</td>
<td>Clock codeur 2SSI</td>
<td>UINT16</td>
<td>13 11 25</td>
<td>ERWZ F_S</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| | | Réglage de la longueur du paquet sér. du codeur 2 SSI utilisé. La valeur est indiquée sur le datasheet du codeur et est défini en cycles de clock (en règle générale de 13 à 25 bits).

Exemple avec Codeur simple tour
13 bit de position : régler le par. 5114 =13
13 bits clock : régler le par. 5112 = 13

Exemple Codeur multi-tour
13 bit de position : régler le par. 5114 =13.
25 bits clock : régler le par. 5112 = 25.

<table>
<thead>
<tr>
<th>Menu</th>
<th>PAR</th>
<th>Description</th>
<th>UM Type</th>
<th>FB BIT</th>
<th>Def</th>
<th>Min</th>
<th>Maxi</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>17.3.8</td>
<td>2114</td>
<td>Bits codeur 2 SSI</td>
<td>UINT16</td>
<td>13 11 25</td>
<td>ERWZ F_S</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| | | Réglage du nombre de bits utilisés par le codeur 2 SSI pour définir la position. Voir exemples PAR 5112.

<table>
<thead>
<tr>
<th>Menu</th>
<th>PAR</th>
<th>Description</th>
<th>UM Type</th>
<th>FB BIT</th>
<th>Def</th>
<th>Min</th>
<th>Maxi</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>17.3.9</td>
<td>2182</td>
<td>Codeur 2 ENDAT clock</td>
<td>Hz ENUM</td>
<td>1 MHz 0 1</td>
<td>ERWZ FVS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| | | Sélection de la valeur d’horloge pour codeur 2 du type ENDAT.
| | | 0 1 MHz
| | | 1 500 kHz

<table>
<thead>
<tr>
<th>Menu</th>
<th>PAR</th>
<th>Description</th>
<th>UM Type</th>
<th>FB BIT</th>
<th>Def</th>
<th>Min</th>
<th>Maxi</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>17.3.10</td>
<td>5130</td>
<td>Direction codeur 2</td>
<td>ENUM</td>
<td>Non Inversé 0 1</td>
<td>ERWZ FVS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| | | Sélection de la direction du codeur 2.
| | | 0 Non Inversé
| | | 1 Inversé
| | | En configurant 0 les signaux de rétroaction de l’encodeur ne s’invertissent pas.
| | | En configurant 1 les signaux de rétroaction de l’encodeur s’invertissent.

<table>
<thead>
<tr>
<th>Menu</th>
<th>PAR</th>
<th>Description</th>
<th>UM Type</th>
<th>FB BIT</th>
<th>Def</th>
<th>Min</th>
<th>Maxi</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>17.3.11</td>
<td>5132</td>
<td>Mode codeur 2</td>
<td>ENUM</td>
<td>Aucun CALCI CALCI</td>
<td>ERWZ FVS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| | | Configuration de la méthode de mesure de la vitesse de l’encodeur dig. relié à la carte en option.
| | | 0 Aucun
| | | 1 Digital FP
| | | 2 Digital F
| | | 3 Sinus
| | | 4 Sinus SINCOS
| | | 5 Sinus ENDAT
| | | 6 Sinus SSI
En présence de l’option codeur du type **Enc 1**:
- configurer 1 (Digital FP) pour sélectionner la méthode de mesure de fréquence et période. Ce type de sélection est à préférer pour les applications qui requièrent un fonctionnement à très basse vitesse de rotation.
- configurer 2 (Digital F) pour sélectionner la méthode de mesure de fréquence. Ce type de mesure permet d’obtenir une précision et une dynamique remarquables aux vitesses moyennes-élevées.

En présence de l’option codeur du type **Enc 4**:
- contrairement à la sélection 5 (Sinusoïdale ENDAT), la sélection 10 (ENDAT), indique la présence d’un codeur dépourvu des canaux incrémentaux. La transition entre les deux sélections s’effectue de manière automatique, à travers une procédure d’identification.
- contrairement à la sélection 6 (Sinusoïdale SSI), la sélection 11 (SSI) indique la présence d’un codeur dépourvu des canaux incrémentaux. La transition entre les deux sélections doit s’effectuer manuellement, pendant la phase de mise en service.

Les autres configurations concernent la typologie de codeur utilisé.

Menu PAR Description UM Type FB BIT Def Min Maxi Acc Mod

<table>
<thead>
<tr>
<th>Menu</th>
<th>PAR</th>
<th>Description</th>
<th>UM</th>
<th>Type</th>
<th>FB</th>
<th>BIT</th>
<th>Def</th>
<th>Min</th>
<th>Maxi</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>17.3.12</td>
<td>5134</td>
<td>Filtre vit. codeur 2</td>
<td>ms</td>
<td>FLOAT</td>
<td>0.250</td>
<td>0.125</td>
<td>20.000</td>
<td>ERW</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Configuration de la constante de temps du filtre appliqué à la lecture des impulsions de l’encodeur de rétroaction. Le paramètre agit tant sur la précision de la mesure de la vitesse que sur la dynamique pouvant être obtenue lors du contrôle à boucle fermée. Des temps de mise à jour importants permettent une plus grande stabilité (filtrage plus important) de la mesure de la vitesse, puisqu’un plus grand nombre d’impulsions du codeur sont comptées à une certaine vitesse de rotation. D’autre part, le filtrage sur la mesure de la vitesse entraîne des retards qui ne permettent pas des dynamiques élevées de la boucle de contrôle. De faibles valeurs de configuration amplifient la bande passante de régulation mais peuvent accentuer des perturbations éventuelles.

Menu PAR Description UM Type FB BIT Def Min Maxi Acc Mod

<table>
<thead>
<tr>
<th>Menu</th>
<th>PAR</th>
<th>Description</th>
<th>UM</th>
<th>Type</th>
<th>FB</th>
<th>BIT</th>
<th>Def</th>
<th>Min</th>
<th>Maxi</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>17.3.13</td>
<td>5150</td>
<td>Vitesse codeur 2</td>
<td>rpm</td>
<td>INT16/32</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>ER</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Visualisation de la vitesse mesurée par le codeur 2.

Menu PAR Description UM Type FB BIT Def Min Maxi Acc Mod

<table>
<thead>
<tr>
<th>Menu</th>
<th>PAR</th>
<th>Description</th>
<th>UM</th>
<th>Type</th>
<th>FB</th>
<th>BIT</th>
<th>Def</th>
<th>Min</th>
<th>Maxi</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>17.3.14</td>
<td>5162</td>
<td>Position codeur 2</td>
<td>cnt</td>
<td>UINT16</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>ER</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Visualisation de la position de l’encodeur. La mise à l’échelle est le nombre d’impulsions encodeur *4.

Menu PAR Description UM Type FB BIT Def Min Maxi Acc Mod

<table>
<thead>
<tr>
<th>Menu</th>
<th>PAR</th>
<th>Description</th>
<th>UM</th>
<th>Type</th>
<th>FB</th>
<th>BIT</th>
<th>Def</th>
<th>Min</th>
<th>Maxi</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>17.3.15</td>
<td>2176</td>
<td>Encoder 2 sync mode</td>
<td>UINT16</td>
<td></td>
<td>1</td>
<td>0</td>
<td>3</td>
<td>ERW</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Configuration de la fréquence de synchronisation des traces incrémentielles avec les traces absolues (encoder 2). En configurant 0, la synchronisation est exécutée une seule fois à l’alimentation. En configurant 1, la synchronisation est effectuée à chaque commande de démarrage. En configurant 2, la synchronisation est exécutée tous les 128 ms. En configurant 3, la synchronisation est toujours effectuée, en utilisant la partie absolue.

Cette fonction peut être utilisée avec des codeurs absolus et les valeurs par défaut, les valeurs de minimum et de maximum sont modifiées en fonction du type de codeur.

Tableau des valeurs par défaut

<table>
<thead>
<tr>
<th>Type option codeur</th>
<th>Déf</th>
<th>Min</th>
<th>Maxi</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enc 1</td>
<td>1</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>Enc 2</td>
<td>1</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>Enc 3</td>
<td>1</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>Enc 4</td>
<td>1</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>Enc 5</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Enc 6</td>
<td>Not applicable</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Enc 7</td>
<td>1</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>Enc 8</td>
<td>Not applicable</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Habilitation de la gestion du codeur périphérique utilisé avec les moteurs synchrones “Torque”
0 = fonction désactivée. Le rapport de réduction est programmé sur 1
Pour habiller le rapport de réduction moteur/codeur, il est nécessaire d’entrer dans ce paramètre le nombre de paires polaires du moteur, correspondant à un tour du codeur.

Exemple:
En considérant un moteur synchrone avec 10 paires de pôles et un rapport codeur “K” de 6:3, l’on obtiendra :
$$PP / K = 10 / (6/3) = 5$$

Note !
Remarque Parmi tous les possibles rapports “K”, seuls sont admis ceux qui permettent d’obtenir des nombres “finis”.
La valeur maximale programmable est égale au nombre de paires polaires configuré sur l’entraînement.
Si, en programmant les paires polaire, l’on saisir un chiffre inférieur à la valeur présente dans PAR 2186, le PAR 2196 est automatiqument configuré à 0 et la fonction est donc désactivée.

Utilisation d’un codeur renvoyé (Geared Encoder)
Les moteurs “Torque” utilisent généralement un dispositif de rétroaction de position, installé à l’aide d’une courroie crantée ou d’un autre multiplicateur (voir figure). Cela entraîne un rapport cinématique non unitaire, qui doit être pris en compte pour assurer une commande correcte du moteur. (Contacter Gefran pour plus d’informations concernant l’application).

Il s’agit d’un paramètre de seule lecture, qui affiche le rapport de réduction Moteur/Codeur calculé par l’entraînement.

Indique l’état du Codeur 2 (1= erreur, 0 = pas d’erreur), indépendamment du fait que celui-ci soit utilisé ou pas en tant de rétroaction (feedback) pour la commande du moteur.

Ce paramètre contient un code hexadécimal qui fournit l’information sur le type d’erreur survenue.
Les valeurs des erreurs sont les mêmes (et avec la même signification) que celles indiquées au paramètre IPA 2172 Code défaut codeur.

17.4 - CODEUR/CODEUR 3

Paramétrage du nombre de points/tours du codeur incrémentiel monté dans le slot 1 ou 3.
Menu PAR Description UM Type FB BIT Def Min Maxi Acc Mod

17.4.2 5204 Cfg.entrée codeur 3

<table>
<thead>
<tr>
<th>UM</th>
<th>Type</th>
<th>FB</th>
<th>BIT</th>
<th>Def</th>
<th>Min</th>
<th>Maxi</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENUM</td>
<td>TTL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Spécification de la configuration d’entrée du codeur numérique incrémentiel 3, TTL ou HTL. En cas d’alimentation interne du codeur le niveau de la tension d’alimentation de ce dernier sera égale à celle paramétrée pour le codeur 2.

0 MTL
1 TTL

La valeur de ce paramètre est automatiquement définie dans HTL lorsque la valeur entrée dans le paramètre **Alim.codeur 2** est supérieure à 6,0 V.

Menu PAR Description UM Type FB BIT Def Min Maxi Acc Mod

17.4.3 5210 Défaut signal code 3

<table>
<thead>
<tr>
<th>UM</th>
<th>Type</th>
<th>FB</th>
<th>BIT</th>
<th>Def</th>
<th>Min</th>
<th>Maxi</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENUM</td>
<td>Désact. A-B</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

La configuration des canaux du codeur 3 numérique incrémentiel doit être contrôlée aux fins de l’élaboration du signal d’alarme de **Alar RetVitess** [22].

0 Ctrl.désactivé
1 Désact. A-B
2 Désact. A-B-Z
4 Desact A-B-Z-P

En configurant 1, on contrôle la présence des signaux des canaux A-B
En configurant 2, on contrôle la présence des signaux des canaux A-B-Z

En configurant 4, on active le contrôle de la perte de rétroaction pour les codeurs SE (single ended).

Si l’absence de la rétroaction est détectée l’alarme **Alar RetVitess** [22] est enclenchée

Comme il est impossible de détecter la perte de rétroaction à une vitesse proche de zéro, le contrôle est effectué uniquement si la consigne de vitesse est supérieure à la valeur paramétrée dans le paramètre **4564 SpdFbkLoss threshold**. Il faut également considérer que lorsqu’on travaille avec la consigne de vitesse légèrement supérieure à la limite paramétrée dans le paramètre **4564 SpdFbkLoss threshold**, il est possible que, à cause de la charge ou de la limite du courant, l’erreur de vitesse dépasse celle paramétrée comme seuil, déclenchant de fausses alarmes.

Dans ce cas, il faut augmenter la valeur du paramètre **4550 Seuil Erreur consign** ou du paramètre **4554 Filtre Erreur consig**.

Menu PAR Description UM Type FB BIT Def Min Maxi Acc Mod

17.4.4 5230 Direction codeur 3

<table>
<thead>
<tr>
<th>UM</th>
<th>Type</th>
<th>FB</th>
<th>BIT</th>
<th>Def</th>
<th>Min</th>
<th>Maxi</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENUM</td>
<td>Non Inversé</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Sélection de la direction du codeur

0 Non Inversé
1 Inversé

En configurant 0 les signaux de rétroaction de l’encodeur ne s’invertissent pas.

En configurant 1 les signaux de rétroaction de l’encodeur s’invertissent.

Menu PAR Description UM Type FB BIT Def Min Maxi Acc Mod

17.4.5 5262 Position codeur 3

<table>
<thead>
<tr>
<th>UM</th>
<th>Type</th>
<th>FB</th>
<th>BIT</th>
<th>Def</th>
<th>Min</th>
<th>Maxi</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>cnt</td>
<td>UINT16 16</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Visualisation de la position de l’encodeur. La mise à l’échelle est le nombre d’impulsions encodeur *4.

Menu PAR Description UM Type FB BIT Def Min Maxi Acc Mod

17.4.6 5370 Etat codeur 3

<table>
<thead>
<tr>
<th>UM</th>
<th>Type</th>
<th>FB</th>
<th>BIT</th>
<th>Def</th>
<th>Min</th>
<th>Maxi</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>UINT16</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Indique l’état du Codeur 3 (1= erreur, 0 = pas d’erreur), indépendamment du fait que celui-ci soit utilisé ou pas en tant de rétroaction (feedback) pour la commande du moteur.

Menu PAR Description UM Type FB BIT Def Min Maxi Acc Mod

17.4.7 5372 Code err.Codeur 3

<table>
<thead>
<tr>
<th>UM</th>
<th>Type</th>
<th>FB</th>
<th>BIT</th>
<th>Def</th>
<th>Min</th>
<th>Maxi</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>UINT32</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Ce paramètre contient un code hexadécimal qui fournit l’information sur le type d’erreur survenue.

Les valeurs des erreurs sont les mêmes (et avec la même signification) que celles indiquées au paramètre IPA 2172 Code défaut codeur.
17.5 - CODEUR/RESOLVER

Menu PAR Description UM Type FB BIT Def Min Maxi Acc Mod

17.5.1 2116 Paire pôles Resolver

<table>
<thead>
<tr>
<th>PAR</th>
<th>Description</th>
<th>UM</th>
<th>Type</th>
<th>FB</th>
<th>BIT</th>
<th>Def</th>
<th>Min</th>
<th>Maxi</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>2116</td>
<td>Paire pôles Resolver</td>
<td>UINT16</td>
<td>1</td>
<td>1</td>
<td>8</td>
<td>ERWZ</td>
<td>FVS</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Configuration des paires de pôles du résolveur utilisé (voir les caractéristiques nominales du résolveur).
1. 1 paire de pôles
2. 2 paires de pôles

17.5.2 2118 Fréquence Resolver

<table>
<thead>
<tr>
<th>PAR</th>
<th>Description</th>
<th>UM</th>
<th>Type</th>
<th>FB</th>
<th>BIT</th>
<th>Def</th>
<th>Min</th>
<th>Maxi</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>2118</td>
<td>Fréquence Resolver</td>
<td>Hz</td>
<td>UINT16</td>
<td>8000</td>
<td>2000.0</td>
<td>10000.0</td>
<td>ERWZ</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Configuration de la fréquence du résolveur (voir les caractéristiques nominales du résolveur). Des valeurs multiples de 250Hz sont acceptées.

Remarque

Pour gérer la carte EXP-RES-I1R1-ADV, il est nécessaire de configurer au moins les PAR 2118, 2120 et 2116.
Si une configuration détaillée de la carte est nécessaire ou si la tension de sortie du résolveur dépasse les limites admises, il faudra configurer aussi les PAR 2124 et 2128.
Pour plus d’informations, se reporter au manuel d’instructions EXP-RES-I1R1-ADV, code 1S5F33.

17.5.3 2120 Rapp transf resolver

<table>
<thead>
<tr>
<th>PAR</th>
<th>Description</th>
<th>UM</th>
<th>Type</th>
<th>FB</th>
<th>BIT</th>
<th>Def</th>
<th>Min</th>
<th>Maxi</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>2120</td>
<td>Rapp transf resolver</td>
<td>FLOAT</td>
<td>0.5</td>
<td>0.2</td>
<td>1.0</td>
<td>ERWZ</td>
<td>FVS</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Configuration du rapport de transformation du résolveur utilisé (voir les caractéristiques nominales du résolveur).

17.5.4 2122 Repetition Resolver

<table>
<thead>
<tr>
<th>PAR</th>
<th>Description</th>
<th>UM</th>
<th>Type</th>
<th>FB</th>
<th>BIT</th>
<th>Def</th>
<th>Min</th>
<th>Maxi</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>2122</td>
<td>Repetition Resolver</td>
<td>ENUM</td>
<td>16384 ppr</td>
<td>0</td>
<td>3</td>
<td>ERWZ</td>
<td>FVS</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Configuration des impulsions simulées pour la répétition du résolveur.
0. 256 ppr
1. 1024 ppr
2. 4096 ppr
3. 16384 ppr

17.5.5 2124 Seuil per.Sig.Resolv

<table>
<thead>
<tr>
<th>PAR</th>
<th>Description</th>
<th>UM</th>
<th>Type</th>
<th>FB</th>
<th>BIT</th>
<th>Def</th>
<th>Min</th>
<th>Maxi</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>2124</td>
<td>Seuil per.Sig.Resolv</td>
<td>V</td>
<td>FLOAT</td>
<td>2.200</td>
<td>0.000</td>
<td>4.820</td>
<td>ERWZ</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Seuil d’absence de signal : configuration de la valeur de seuil inférieure du signal du résolveur. Toute valeur inférieure à ce paramètre entraînera le déclanchement de l’alarme Alar RetVitess [22].

17.5.6 2128 INC.Seuil Resolver

<table>
<thead>
<tr>
<th>PAR</th>
<th>Description</th>
<th>UM</th>
<th>Type</th>
<th>FB</th>
<th>BIT</th>
<th>Def</th>
<th>Min</th>
<th>Maxi</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>2128</td>
<td>INC.Seuil Resolver</td>
<td>V</td>
<td>FLOAT</td>
<td>0.380</td>
<td>0.000</td>
<td>4.820</td>
<td>ERWZ</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Il indique le réglage d’un seuil maximum de variation des amplitudes des signaux de retour SIN et COS. Une alarme est signalée en cas de détection d’un écart supérieur au seuil MIS programmé entre les deux amplitudes.
Cette valeur peut être augmentée. Si l’alarme ne disparaît pas, il est probable que le Résolveur soit défectueux ou que les connexions ne soient pas correctes.

17.5.7 2094 Bloc ent 0.Resol.src

<table>
<thead>
<tr>
<th>PAR</th>
<th>Description</th>
<th>UM</th>
<th>Type</th>
<th>FB</th>
<th>BIT</th>
<th>Def</th>
<th>Min</th>
<th>Maxi</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>2094</td>
<td>Bloc ent 0.Resol.src</td>
<td>LINK</td>
<td>16</td>
<td>6000</td>
<td>0</td>
<td>16384</td>
<td>ERWZ</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

17.5.8 2096 Bloc ent 1.Resol.src

<table>
<thead>
<tr>
<th>PAR</th>
<th>Description</th>
<th>UM</th>
<th>Type</th>
<th>FB</th>
<th>BIT</th>
<th>Def</th>
<th>Min</th>
<th>Maxi</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>2096</td>
<td>Bloc ent 1.Resol.src</td>
<td>LINK</td>
<td>16</td>
<td>6000</td>
<td>0</td>
<td>16384</td>
<td>ERWZ</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Sélection de l’entrée numérique utilisée en tant que Freeze entrée 0 ou Freeze entrée 1 lorsque la rétroaction depuis le résolveur est utilisée et gérée via l’application MDPlc. L’entrée numérique est mise à jour toutes les 125 μsec.
L’entrée peut être sélectionnée parmi celles disponibles dans la liste “L_RESFREEZE”.
L’adaptateur de vitesse permet d’obtenir plusieurs gains du régulateur de vitesse en fonction de la vitesse ou bien d’une autre grandeur. Le comportement du régulateur de vitesse peut donc être configuré de manière optimale pour les exigences d’application spécifiques.

Remarque! Les régulateurs de courant, de flux et de tension peuvent être configurés selon la procédure d’auto-étalonnage. Si elle échoue, on peut étalonner manuellement les régulateur de courant et de flux (cela n’est pas valable pour les régulateurs de tension. Aucune modification ne peut être effectuée par l’utilisateur). le régulateur de vitesse soit être étalonné manuellement. Normalement, les gains varient en fonction de la vitesse du drive.

Menu PAR Description UM Type FB BIT Def Min Maxi Acc Mod

<table>
<thead>
<tr>
<th>N°</th>
<th>Description</th>
<th>UM</th>
<th>Type</th>
<th>FB</th>
<th>BIT</th>
<th>Def</th>
<th>Min</th>
<th>Maxi</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>18.1</td>
<td>2200 Régul N adapt P1</td>
<td>perc</td>
<td>INT16</td>
<td></td>
<td></td>
<td>100</td>
<td>0</td>
<td>1000</td>
<td>RW</td>
<td>F_S</td>
</tr>
<tr>
<td>18.2</td>
<td>2202 Régul N adapt I1</td>
<td>perc</td>
<td>INT16</td>
<td></td>
<td></td>
<td>100</td>
<td>0</td>
<td>1000</td>
<td>RW</td>
<td>F_S</td>
</tr>
</tbody>
</table>

Configuration du gain proportionnel et intégral du régulateur de vitesse, set 1..

<table>
<thead>
<tr>
<th>N°</th>
<th>Description</th>
<th>UM</th>
<th>Type</th>
<th>FB</th>
<th>BIT</th>
<th>Def</th>
<th>Min</th>
<th>Maxi</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>18.3</td>
<td>2204 Régul N adapt P2</td>
<td>perc</td>
<td>INT16</td>
<td></td>
<td></td>
<td>150</td>
<td>0</td>
<td>1000</td>
<td>ERW</td>
<td>F_S</td>
</tr>
<tr>
<td>18.4</td>
<td>2206 Régul N adapt I2</td>
<td>perc</td>
<td>INT16</td>
<td></td>
<td></td>
<td>100</td>
<td>0</td>
<td>1000</td>
<td>ERW</td>
<td>F_S</td>
</tr>
</tbody>
</table>

Configuration du gain proportionnel et intégral du régulateur de vitesse, set 2..

<table>
<thead>
<tr>
<th>N°</th>
<th>Description</th>
<th>UM</th>
<th>Type</th>
<th>FB</th>
<th>BIT</th>
<th>Def</th>
<th>Min</th>
<th>Maxi</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>18.5</td>
<td>2216 Régul N adapt src</td>
<td>LINK</td>
<td>16/32</td>
<td>664</td>
<td></td>
<td>0</td>
<td></td>
<td>16384</td>
<td>ERW</td>
<td>F_S</td>
</tr>
</tbody>
</table>

Sélection de l’origine (source) du signal à utiliser pour le gain adaptatif de vitesse. La liste des grandeurs pouvant être associées à la fonction figurent dans la liste de sélection "L_REF".

<table>
<thead>
<tr>
<th>N°</th>
<th>Description</th>
<th>UM</th>
<th>Type</th>
<th>FB</th>
<th>BIT</th>
<th>Def</th>
<th>Min</th>
<th>Maxi</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>18.6</td>
<td>2218 Rég adapt seuil1_2</td>
<td>perc</td>
<td>FLOAT</td>
<td></td>
<td></td>
<td>0.0</td>
<td>0.0</td>
<td>100.0</td>
<td>ERW</td>
<td>F_S</td>
</tr>
</tbody>
</table>

Configuration du seuil de vitesse pour la variation des gains du set 1 au set 2.
18.7 Reg adap bande1_2

La configuration de la bande à l'intérieur de laquelle s’effectue la variation des gains entre le set 1 et le set 2. L’utilisation de ce paramètre permet d’effectuer un passage graduel entre les deux gammes de paramètres.

<table>
<thead>
<tr>
<th>Menu</th>
<th>PAR</th>
<th>Description</th>
<th>UM</th>
<th>Type</th>
<th>FB</th>
<th>BIT</th>
<th>Def</th>
<th>Min</th>
<th>Maxi</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>18.7</td>
<td>2220</td>
<td>Reg adap bande1_2</td>
<td>perc</td>
<td>FLOAT</td>
<td>0.0</td>
<td>0.0</td>
<td>100.0</td>
<td>ERW</td>
<td>F_S</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

18.8 Valid gain 0

Validation du gain à vitesse zéro.

- **0** Dévalisé
- **1** Validé

En configurant ce paramètre à **0**, le contrôle des gains à vitesse zéro est désactivé.

En configurant ce paramètre à **1**, le contrôle des gains à vitesse zéro est validé. Cette fonction permet d’améliorer la réponse du moteur sous le seuil Vitesse >0 seuil.

18.9 Régul N adapt P0

Configuration du gain proportionnel du régulateur de vitesse à vitesse zéro.

<table>
<thead>
<tr>
<th>Menu</th>
<th>PAR</th>
<th>Description</th>
<th>UM</th>
<th>Type</th>
<th>FB</th>
<th>BIT</th>
<th>Def</th>
<th>Min</th>
<th>Maxi</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>18.9</td>
<td>2228</td>
<td>Régul N adapt P0</td>
<td>perc</td>
<td>INT16</td>
<td>100</td>
<td>0</td>
<td>1000</td>
<td>ERW</td>
<td>F_S</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

18.10 Régul N adapt I0

Configuration du gain intégral du régulateur de vitesse à vitesse zéro.

<table>
<thead>
<tr>
<th>Menu</th>
<th>PAR</th>
<th>Description</th>
<th>UM</th>
<th>Type</th>
<th>FB</th>
<th>BIT</th>
<th>Def</th>
<th>Min</th>
<th>Maxi</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>18.10</td>
<td>2230</td>
<td>Régul N adapt I0</td>
<td>perc</td>
<td>INT16</td>
<td>100</td>
<td>0</td>
<td>1000</td>
<td>ERW</td>
<td>F_S</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

18.11 Régul N actuel P

Visualisation en pourcentage du coefﬁcient proportionnel actuel du régulateur de vitesse.

<table>
<thead>
<tr>
<th>Menu</th>
<th>PAR</th>
<th>Description</th>
<th>UM</th>
<th>Type</th>
<th>FB</th>
<th>BIT</th>
<th>Def</th>
<th>Min</th>
<th>Maxi</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>18.11</td>
<td>2232</td>
<td>Régul N actuel P</td>
<td>perc</td>
<td>INT16</td>
<td>16/32</td>
<td>100</td>
<td>0</td>
<td>1000</td>
<td>ER</td>
<td>F_S</td>
<td></td>
</tr>
</tbody>
</table>

18.12 Régul N actuel I

Visualisation en pourcentage du coefﬁcient intégral actuel du régulateur de vitesse.

<table>
<thead>
<tr>
<th>Menu</th>
<th>PAR</th>
<th>Description</th>
<th>UM</th>
<th>Type</th>
<th>FB</th>
<th>BIT</th>
<th>Def</th>
<th>Min</th>
<th>Maxi</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>18.12</td>
<td>2234</td>
<td>Régul N actuel I</td>
<td>perc</td>
<td>INT16</td>
<td>16/32</td>
<td>100</td>
<td>0</td>
<td>1000</td>
<td>ER</td>
<td>F_S</td>
<td></td>
</tr>
</tbody>
</table>

18.13 Régul N gain P

Configuration du coefﬁcient proportionnel du régulateur de vitesse.

<table>
<thead>
<tr>
<th>Menu</th>
<th>PAR</th>
<th>Description</th>
<th>UM</th>
<th>Type</th>
<th>FB</th>
<th>BIT</th>
<th>Def</th>
<th>Min</th>
<th>Maxi</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>18.13</td>
<td>2236</td>
<td>Régul N gain P</td>
<td>N/rpm</td>
<td>FLOAT</td>
<td>CALCF</td>
<td>0.0</td>
<td>500.0</td>
<td>ERWS</td>
<td>F_S</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

18.14 Régul N tps I0

Configuration du coefﬁcient intégral du régulateur de vitesse. En diminuant la valeur du temps intégral, on augmente l’action intégrale du régulateur.

<table>
<thead>
<tr>
<th>Menu</th>
<th>PAR</th>
<th>Description</th>
<th>UM</th>
<th>Type</th>
<th>FB</th>
<th>BIT</th>
<th>Def</th>
<th>Min</th>
<th>Maxi</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>18.14</td>
<td>2238</td>
<td>Régul N tps I0</td>
<td>ms</td>
<td>FLOAT</td>
<td>CALCF</td>
<td>1.0</td>
<td>5000.0</td>
<td>ERWS</td>
<td>F_S</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

18.15 Reg Vit I M/A src

Sélection de l’origine (Source) du signal d’habilitation/exclusion de la partie intégrale du régulateur de vitesse (Aucune = habilité). Les possibles sélections sont énumérées dans la liste “L_DIGSEL2”

<table>
<thead>
<tr>
<th>Menu</th>
<th>PAR</th>
<th>Description</th>
<th>UM</th>
<th>Type</th>
<th>FB</th>
<th>BIT</th>
<th>Def</th>
<th>Min</th>
<th>Maxi</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>18.15</td>
<td>2244</td>
<td>Reg Vit I M/A src</td>
<td>LINK</td>
<td>16/32</td>
<td>6000</td>
<td>0</td>
<td>16384</td>
<td>ERW</td>
<td>F_S</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

18.16 Reg Vitesse P Coef

Affichage du coefﬁcient de la partie proportionnelle de sortie du régulateur de vitesse. Valeur disponible aussi via la sortie analogique.

<table>
<thead>
<tr>
<th>Menu</th>
<th>PAR</th>
<th>Description</th>
<th>UM</th>
<th>Type</th>
<th>FB</th>
<th>BIT</th>
<th>Def</th>
<th>Min</th>
<th>Maxi</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>18.16</td>
<td>2246</td>
<td>Reg Vitesse P Coef</td>
<td>perc</td>
<td>FLOAT</td>
<td>16/32</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>ER</td>
<td>F_S</td>
<td></td>
</tr>
</tbody>
</table>
Affichage du coefficient de la partie intégrale de sortie du régulateur de vitesse. Valeur disponible aussi via la sortie analogique.

Réglage de l’inertie totale de l’application par rapport à l’arbre moteur.
L’inertie est la tendance d’un corps à maintenir son état de repos ou de mouvement uniforme.
En configurant la valeur de l’inertie totale du système de commande (moteur + transmission + organe final), l’ entraînement modifie automatiquement la valeur du gain proportionnel du régulateur de vitesse IPA 2236
Régulation N gain P, de manière à augmenter la vitesse de réaction de l’ entraînement.

Réglage de l’amplitude de la bande passante.
La banda passante définit la performance dynamique en termes de capacité de traçabilité de références de vitesse ou de couple qui varient rapidement dans le temps.
En augmentant la valeur de la largeur de bande, la vitesse de réaction de l’ entraînement augmente elle aussi (augmentation automatique de IPA 2236 Régulation N gain P et réduction de IPA 2238 Régulation N tps I0).
Des bandes passantes élevées peuvent être utilisées en cas de raccordements “rigides” entre le moteur et l’ organe final. Le cas échéant, des phénomènes d’ instabilité du système peuvent se manifester.

Remarque : En cas d’utilisation de moteurs synchrones (PAR480 = 1), la valeur effective est IPA2242*10.
19 – PARAM DE REGUL

<table>
<thead>
<tr>
<th>Menu</th>
<th>PAR</th>
<th>Description</th>
<th>UM</th>
<th>Type</th>
<th>FB</th>
<th>BIT</th>
<th>Def</th>
<th>Min</th>
<th>Maxi</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>19.1</td>
<td>2250</td>
<td>Régulateur I gain P</td>
<td>V/A</td>
<td>FLOAT</td>
<td>CALC</td>
<td>C</td>
<td>0.0</td>
<td>0.0</td>
<td>ERWS</td>
<td>F_S</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Configuration du coefficient proportionnel du régulateur de courant.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19.2</td>
<td>2252</td>
<td>Régulateur I temps I</td>
<td>ms</td>
<td>FLOAT</td>
<td>CALC</td>
<td>C</td>
<td>0.01</td>
<td>10000.0</td>
<td>ERWS</td>
<td>F_S</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Configuration du coefficient intégral du régulateur de courant</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19.3</td>
<td>2270</td>
<td>Rég tension gain P</td>
<td>Wb/V</td>
<td>FLOAT</td>
<td>CALC</td>
<td>C</td>
<td>0.0</td>
<td>0.0</td>
<td>ERWS</td>
<td>F_S</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Configuration du coefficient proportionnel du régulateur de tension</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19.4</td>
<td>2272</td>
<td>Rég tension temp I</td>
<td>s</td>
<td>FLOAT</td>
<td>CALC</td>
<td>C</td>
<td>0.1</td>
<td>100.0</td>
<td>ERWS</td>
<td>F_S</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Configuration du coefficient intégral du régulateur de tension</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>La distorsion de la tension de sortie pourrait causer une rotation du moteur non uniforme</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19.5</td>
<td>2280</td>
<td>Lim tps bande morte</td>
<td>V</td>
<td>FLOAT</td>
<td>SIZE</td>
<td>C</td>
<td>0.0</td>
<td>50.0</td>
<td>ERWS</td>
<td>F_VS</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Configuration de la valeur de compensation en tension pour les temps morts</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19.6</td>
<td>2282</td>
<td>Lim der bande morte</td>
<td>V/A</td>
<td>FLOAT</td>
<td>SIZE</td>
<td>C</td>
<td>0.0</td>
<td>200.0</td>
<td>ERWS</td>
<td>F_VS</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Configure la valeur du gradient de compensation pour les temps morts</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Dead time compensation

La fonction de compensation des temps morts (**Dead time compensation**), compense les distorsions de la tension de sortie provoquées par la chute de tension des IGBT et de la caractéristiques de commutation.

<table>
<thead>
<tr>
<th>Menu</th>
<th>PAR</th>
<th>Description</th>
<th>UM</th>
<th>Type</th>
<th>FB</th>
<th>BIT</th>
<th>Def</th>
<th>Min</th>
<th>Maxi</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>19.7</td>
<td>2290</td>
<td>Tension de base</td>
<td>V</td>
<td>FLOAT</td>
<td>CALC</td>
<td>C</td>
<td>50.0</td>
<td>690.0</td>
<td>ERWS</td>
<td>F_S</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Configuration de la tension de base du moteur. Ce paramètre est automatiquement calculé par l’auto-apprentissage.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19.8</td>
<td>2292</td>
<td>Marge de tension</td>
<td>perc</td>
<td>FLOAT</td>
<td>C</td>
<td>5.0</td>
<td>0.0</td>
<td>10.0</td>
<td>ERWS</td>
<td>F_S</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Configuration de la marge de régulation de la tension en fonction de celle qui est disponible. Dans le cas de configuration de la Tension de base proche ou égale à la valeur effective du réseau, la Marge de tension représente la marge admise par la régulation de tension de manière à pouvoir activer des variations de courant rapides suite à des prises de charges subites.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Une valeur de 5% permet une prise de charge très rapide au détriment de la tension de sortie et donc de la puissance de sortie (réduction de la puissance de sortie).</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>La valeur minimale (1%) permet d’obtenir la tension de sortie maximale (aux alentours de 98%) de la tension de réseau mais au détriment de la qualité de la réponse dynamique.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Menu PAR Description UM Type FB BIT Def Min Maxi Acc Mod

19.9 132 Lim courant magnet

<table>
<thead>
<tr>
<th>UM</th>
<th>Type</th>
<th>FB</th>
<th>BIT</th>
<th>Def</th>
<th>Min</th>
<th>Maxi</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>FLOAT</td>
<td>CALCF</td>
<td>0.0</td>
<td>CALCF</td>
<td>FVS</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Configuration du courant de magnétisation dans le fonctionnement à des vitesses supérieures à la vitesse nominale du moteur.

19.10 144 Valid.Anticp.Tension

<table>
<thead>
<tr>
<th>UM</th>
<th>Type</th>
<th>FB</th>
<th>BIT</th>
<th>Def</th>
<th>Min</th>
<th>Maxi</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIT</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>ERWZ</td>
<td>F_S</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Ce paramètre (uniquement pour les moteurs synchrones) permet d'habiliter/exclure la fonction interne feedforward de Tension du régulateur de courant pour pouvoir désaccoupler les composantes de courant de couple et de magnétisation. L'exclusion de ce paramètre s'avère utile surtout en cas d'utilisation de moteurs Torque.

0 Off
1 On

19.11 152 Compensation rotor

<table>
<thead>
<tr>
<th>UM</th>
<th>Type</th>
<th>FB</th>
<th>BIT</th>
<th>Def</th>
<th>Min</th>
<th>Maxi</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIT</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>ERWZ</td>
<td>FVS</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Habille la compensation du désalignement du rotor en présence de moteurs avec un nombre élevé de couples polaires.
20 – COUPLE

Menu PAR Description UM Type FB BIT Def Min Maxi Acc Mod

20.1 2350 Limite de couple pos

A FLOAT 16/32 CALCF 0.0 CALCF ERWS FVS

Configuration de la limite de couple activée du drive pour le sens positif du courant (rotation en sens horaire et freinage en sens antihoraire).

Menu PAR Description UM Type FB BIT Def Min Maxi Acc Mod

20.2 2352 Limite de couple nég

A FLOAT 16/32 CALCF 0.0 CALCF ERWS FVS

Configuration de la limite de couple activée du drive pour le sens négatif du courant (rotation en sens antihoraire et freinage en sens horaire).

Menu PAR Description UM Type FB BIT Def Min Maxi Acc Mod

20.3 2354 Limite de couple sél

ENUM Off 0 4 ERWZ FVS
Configuration du type de comportement du drive en limite de courant

0 Off
1 Lim couple +/-
2 Lim C Mot/Gen
3 T lim sym
4 T lim pos/neg

En configurant 0 aucun type de limitation de courant n’est configuré.

En configurant 1, la limite de couple positif activé est la Limite de couple pos et la limite de couple négatif activé est la Limite de couple nég, la limite est effectuée sur le courant de couple.

Limites de couple avec Limite de couple sél = 1

En configurant 2 trois conditions sont possibles:

1 – Si la vitesse du moteur est > +1% de la vitesse nominale, la limite de couple positive activée est la Limite de couple pos et la limite de couple négative activée est la Limite de couple nég.

2 - Si la vitesse du moteur est > +1% de la vitesse nominale, la limite de couple positive activée est la Limite de couple nég et la limite de couple négative activée est la Limite de couple pos.

3 - Si la vitesse du moteur est comprise entre ± 1% de la vitesse nominale, la limite de couple positive activée est Limite de couple pos et la limite de couple négative activée est Limite de couple nég

En configurant 3, les limites de couple sont symétriques. La valeur du paramètre 2358 lim.couple pos src est prise comme référence de couple. Ce mode n’est pas géré en contrôle V/f. La limite est effectuée sur le courant de couple

En configurant 4, les limites de couple sont attribuées de manière autonome, en configurant comme référence de couple positif la valeur du paramètre 2358 Lim.couple pos src et comme référence de couple négatif la valeur du paramètre 2370 Lim.couple neg.src symétriques. La valeur du paramètre 2370 Lim.couple neg. src est prise comme référence de couple. Ce mode n’est pas géré en contrôle V/f. La limite est effectuée sur le courant de couple

<table>
<thead>
<tr>
<th>Menu</th>
<th>PAR</th>
<th>Description</th>
<th>UM</th>
<th>Type</th>
<th>FB</th>
<th>BIT</th>
<th>Def</th>
<th>Min</th>
<th>Maxi</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>20.4</td>
<td>2358</td>
<td>Lim.couple pos src</td>
<td>LINK</td>
<td>16/32</td>
<td>6000</td>
<td>0</td>
<td>16384</td>
<td>ERWZ</td>
<td>F_S</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Sélection de l’origine (source) à utiliser pour le paramétrage de la limite de couple :

Si le paramètre 2354 Limite de couple sel est paramtré sur 3 la limite de couple est symétrique
Si le paramètre 2354 Limite de couple sel est paramtré sur 4 la limite de couple est positive
La liste des signaux pouvant être associés à la fonction peuvent être sélectionnés dans la liste de sélection “L_PLIM”.

<table>
<thead>
<tr>
<th>Menu</th>
<th>PAR</th>
<th>Description</th>
<th>UM</th>
<th>Type</th>
<th>FB</th>
<th>BIT</th>
<th>Def</th>
<th>Min</th>
<th>Maxi</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>20.5</td>
<td>2370</td>
<td>Lim.couple neg.src</td>
<td>LINK 16/32</td>
<td>6000</td>
<td>0</td>
<td>16384</td>
<td>ERWZ</td>
<td>FVS</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Sélection de l’origine (source) à utiliser pour la limite de couple négative. La liste des signaux pouvant être associés à la fonction peuvent être sélectionnés dans la liste de sélection “L_PLIM”.

<table>
<thead>
<tr>
<th>Menu</th>
<th>PAR</th>
<th>Description</th>
<th>UM</th>
<th>Type</th>
<th>FB</th>
<th>BIT</th>
<th>Def</th>
<th>Min</th>
<th>Maxi</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>20.6</td>
<td>2372</td>
<td>Limite de couple pos</td>
<td>perc</td>
<td>FLOAT 16/32</td>
<td>CALCF</td>
<td>0.0</td>
<td>CALCF</td>
<td>ERW</td>
<td>F_S</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Configuration de la limite positive de la limitation de couple.

<table>
<thead>
<tr>
<th>Menu</th>
<th>PAR</th>
<th>Description</th>
<th>UM</th>
<th>Type</th>
<th>FB</th>
<th>BIT</th>
<th>Def</th>
<th>Min</th>
<th>Maxi</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>20.7</td>
<td>2374</td>
<td>Limite de couple neg</td>
<td>perc</td>
<td>FLOAT 16/32</td>
<td>CALCF</td>
<td>0.0</td>
<td>CALCF</td>
<td>ERW</td>
<td>F_S</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Configuration de la limite négative de la limitation de couple.

<table>
<thead>
<tr>
<th>Menu</th>
<th>PAR</th>
<th>Description</th>
<th>UM</th>
<th>Type</th>
<th>FB</th>
<th>BIT</th>
<th>Def</th>
<th>Min</th>
<th>Maxi</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>20.8</td>
<td>2376</td>
<td>Sel.unité lim couple</td>
<td>ENUM</td>
<td>%</td>
<td>0</td>
<td>1</td>
<td>ERW</td>
<td>F_S</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Sélection de l’unité de mesure pour les limitations de couple.

0 %

1 Nm

<table>
<thead>
<tr>
<th>Menu</th>
<th>PAR</th>
<th>Description</th>
<th>UM</th>
<th>Type</th>
<th>FB</th>
<th>BIT</th>
<th>Def</th>
<th>Min</th>
<th>Maxi</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>20.9</td>
<td>2360</td>
<td>Lim.couple pos actu</td>
<td>A</td>
<td>FLOAT 16/32</td>
<td>0</td>
<td>0.0</td>
<td>0.0</td>
<td>ER</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Menu</th>
<th>PAR</th>
<th>Description</th>
<th>UM</th>
<th>Type</th>
<th>FB</th>
<th>BIT</th>
<th>Def</th>
<th>Min</th>
<th>Maxi</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>20.10</td>
<td>2362</td>
<td>Lim.couple nég actu</td>
<td>A</td>
<td>FLOAT 16/32</td>
<td>0</td>
<td>0.0</td>
<td>0.0</td>
<td>ER</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Menu</th>
<th>PAR</th>
<th>Description</th>
<th>UM</th>
<th>Type</th>
<th>FB</th>
<th>BIT</th>
<th>Def</th>
<th>Min</th>
<th>Maxi</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>20.11</td>
<td>2378</td>
<td>Filtre Couple ref 1</td>
<td>ms</td>
<td>FLOAT</td>
<td>0.0</td>
<td>0.0</td>
<td>1000.0</td>
<td>ERW</td>
<td>F_S</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Configuration d’un filtre sur l’affichage de la référence de couple. Défaut = 0, exclu.

<table>
<thead>
<tr>
<th>Menu</th>
<th>PAR</th>
<th>Description</th>
<th>UM</th>
<th>Type</th>
<th>FB</th>
<th>BIT</th>
<th>Def</th>
<th>Min</th>
<th>Maxi</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>20.12</td>
<td>2380</td>
<td>Consigne couple 1</td>
<td>perc</td>
<td>FLOAT 16/32</td>
<td>0</td>
<td>-300.0</td>
<td>300.0</td>
<td>ERW</td>
<td>F_S</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Configuration d’une consigne digitale de couple. L’importance de la consigne de courant est proportionnelle au courant activé sur le moteur et détermine l’importance du couple, le signe détermine le sens du couple.

<table>
<thead>
<tr>
<th>Menu</th>
<th>PAR</th>
<th>Description</th>
<th>UM</th>
<th>Type</th>
<th>FB</th>
<th>BIT</th>
<th>Def</th>
<th>Min</th>
<th>Maxi</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>20.13</td>
<td>2382</td>
<td>Consigne couple 1 src</td>
<td>LINK 16/32</td>
<td>3104</td>
<td>0.0</td>
<td>16384</td>
<td>ERWZ</td>
<td>F_S</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Sélection de l’origine (source) du signal à utiliser comme consigne de couple. Les signaux pouvant être associés à la fonction figurent dans la liste de sélection “L_VREF”.

<table>
<thead>
<tr>
<th>Menu</th>
<th>PAR</th>
<th>Description</th>
<th>UM</th>
<th>Type</th>
<th>FB</th>
<th>BIT</th>
<th>Def</th>
<th>Min</th>
<th>Maxi</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>20.14</td>
<td>2392</td>
<td>Visu cons couple 1 %</td>
<td>perc</td>
<td>FLOAT 16/32</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>ER</td>
<td>F_S</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Affichage en % de la référence de couple 1.

<table>
<thead>
<tr>
<th>Menu</th>
<th>PAR</th>
<th>Description</th>
<th>UM</th>
<th>Type</th>
<th>FB BIT</th>
<th>Def</th>
<th>Min</th>
<th>Maxi</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>20.15</td>
<td>2346</td>
<td>Ref cor de par 1</td>
<td>A</td>
<td>FLOAT</td>
<td>16/32</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>ER</td>
<td>F_S</td>
</tr>
</tbody>
</table>

Affichage de la valeur de la référence de couple 1 en Amps. Le monitorage est toujours actif, entraînement habilité ou exclu.

<table>
<thead>
<tr>
<th>Menu</th>
<th>PAR</th>
<th>Description</th>
<th>UM</th>
<th>Type</th>
<th>FB BIT</th>
<th>Def</th>
<th>Min</th>
<th>Maxi</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>20.16</td>
<td>2348</td>
<td>Visu cons couple 1</td>
<td>Nm</td>
<td>FLOAT</td>
<td></td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>ER</td>
<td>F_S</td>
</tr>
</tbody>
</table>

Affichage en Nm de la référence de couple 1.

<table>
<thead>
<tr>
<th>Menu</th>
<th>PAR</th>
<th>Description</th>
<th>UM</th>
<th>Type</th>
<th>FB BIT</th>
<th>Def</th>
<th>Min</th>
<th>Maxi</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>20.17</td>
<td>2384</td>
<td>Filtre consig couple</td>
<td>ms</td>
<td>FLOAT</td>
<td></td>
<td>*</td>
<td>0.125</td>
<td>10.000</td>
<td>ERW</td>
<td>F_S</td>
</tr>
</tbody>
</table>

Configuration d’un filtre sur l’affichage de la référence de couple.
* Flux Vect B.F. = 0,125 ; Flux Vect B.O. = 1,000 .

<table>
<thead>
<tr>
<th>Menu</th>
<th>PAR</th>
<th>Description</th>
<th>UM</th>
<th>Type</th>
<th>FB BIT</th>
<th>Def</th>
<th>Min</th>
<th>Maxi</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>20.18</td>
<td>2386</td>
<td>Consigne de couple</td>
<td>perc</td>
<td>FLOAT</td>
<td>16/32</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>ER</td>
<td>F_S</td>
</tr>
</tbody>
</table>

Affichage de la valeur de la référence de couple en %.

<table>
<thead>
<tr>
<th>Menu</th>
<th>PAR</th>
<th>Description</th>
<th>UM</th>
<th>Type</th>
<th>FB BIT</th>
<th>Def</th>
<th>Min</th>
<th>Maxi</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>20.19</td>
<td>2390</td>
<td>Consigne de couple %</td>
<td>Nm</td>
<td>FLOAT</td>
<td>16/32</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>ER</td>
<td>F_S</td>
</tr>
</tbody>
</table>

Affichage de la valeur de la référence de couple en Nm.

<table>
<thead>
<tr>
<th>Menu</th>
<th>PAR</th>
<th>Description</th>
<th>UM</th>
<th>Type</th>
<th>FB BIT</th>
<th>Def</th>
<th>Min</th>
<th>Maxi</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>20.20</td>
<td>2394</td>
<td>Couple %</td>
<td>perc</td>
<td>FLOAT</td>
<td>16/32</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>ER</td>
<td>F_S</td>
</tr>
</tbody>
</table>

Affichage du couple nominal du moteur en %.
Les valeurs sont disponibles via des sorties analogiques.

<table>
<thead>
<tr>
<th>Menu</th>
<th>PAR</th>
<th>Description</th>
<th>UM</th>
<th>Type</th>
<th>FB BIT</th>
<th>Def</th>
<th>Min</th>
<th>Maxi</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>20.21</td>
<td>2398</td>
<td>Couple</td>
<td>Nm</td>
<td>FLOAT</td>
<td></td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>ER</td>
<td>F_S</td>
</tr>
</tbody>
</table>

Affichage du couple nominal du moteur en Nm.
Les valeurs sont disponibles via des sorties analogiques.

<table>
<thead>
<tr>
<th>Menu</th>
<th>PAR</th>
<th>Description</th>
<th>UM</th>
<th>Type</th>
<th>FB BIT</th>
<th>Def</th>
<th>Min</th>
<th>Maxi</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>20.22</td>
<td>2366</td>
<td>Red.lim.cour.couple</td>
<td>A</td>
<td>FLOAT</td>
<td>16/32</td>
<td>CALC</td>
<td>0.0</td>
<td>CALC</td>
<td>ERWS</td>
<td>FVS</td>
</tr>
</tbody>
</table>

Paramétrage de la limite du courant de couple lorsqu’on active la commande 2368 Red.clim.courant src. La valeur par défaut et la valeur maximum sont automatiquement calculées par le drive toutes les fois que sont modifiées les données de chaque du moteur et après une procédure d’auto-étalonnage.

<table>
<thead>
<tr>
<th>Menu</th>
<th>PAR</th>
<th>Description</th>
<th>UM</th>
<th>Type</th>
<th>FB BIT</th>
<th>Def</th>
<th>Min</th>
<th>Maxi</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>20.23</td>
<td>2368</td>
<td>Red.clim.courant src</td>
<td>LINK</td>
<td></td>
<td>16</td>
<td>6000</td>
<td>0</td>
<td>16384</td>
<td>ERW</td>
<td>FVS</td>
</tr>
</tbody>
</table>

Sélection de l’origine (source) du signal à utiliser pour la limite du courant de couple. Lorsque cette commande est activée la limite de couple se place au niveau défini par le paramètre 2366 Red.lim.cour.couple. La liste des signaux, pouvant être associés à la fonction, qui peuvent être sélectionnés dans la liste de sélection “L_DIGSEL2”.

<table>
<thead>
<tr>
<th>Menu</th>
<th>PAR</th>
<th>Description</th>
<th>UM</th>
<th>Type</th>
<th>FB BIT</th>
<th>Def</th>
<th>Min</th>
<th>Maxi</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>20.24</td>
<td>2340</td>
<td>Mis.ech.coeff.couple</td>
<td>perc</td>
<td>FLOAT</td>
<td></td>
<td>100.0</td>
<td>1.00</td>
<td>200.0</td>
<td>ERW</td>
<td>F_S</td>
</tr>
</tbody>
</table>

Facteur de mise à l’échelle du couple nominal du moteur en % (Couple %, IPA 2394) pour permettre à l’utilisateur d’afficher le couple moteur sur l’échelle désirée.
Couple mis à l’échelle % = Couple % (IPA 2394) * 100 / Mis.ech.coeff.couple (IPA 2340).
21 - SANS CAPTEUR

21.1 7008 SLS status

<table>
<thead>
<tr>
<th>Description</th>
<th>UM Type</th>
<th>FB Bit</th>
<th>Def</th>
<th>Min</th>
<th>Maxi</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>SLS status</td>
<td>ENUM</td>
<td>Off</td>
<td>0</td>
<td>2</td>
<td>R</td>
<td>FVS</td>
<td></td>
</tr>
</tbody>
</table>

Il indique l’état de fonctionnement de l’algorithme intérieur sous la commande sensorless.

- Off : non opérationnel
- 1 : Enabled : l’algorithme sensorless est activé
- 2 : Marche : l’algorithme sensorless est activé et opérationnel.

21.2 7010 SLS Vit.Min.BF

<table>
<thead>
<tr>
<th>Description</th>
<th>UM Type</th>
<th>FB Bit</th>
<th>Def</th>
<th>Min</th>
<th>Maxi</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>SLS Vit.Min.BF</td>
<td>rpm</td>
<td>FLOAT</td>
<td>CALCF</td>
<td>0.0</td>
<td>CALCF</td>
<td>RWZ</td>
<td>FVS</td>
</tr>
</tbody>
</table>

Il indique la vitesse opérationnelle minimale de l’algorithme sensorless lorsque l’estimation de vitesse est en boucle fermée (CL). Ce paramètre est automatiquement calculé pendant la procédure d’Auto-calibrage. Sa valeur correcte est ≤ à 80% du PAR 7012 SLS Vit.Max. BO.

21.3 7012 SLS Vit.Max. BO

<table>
<thead>
<tr>
<th>Description</th>
<th>UM Type</th>
<th>FB Bit</th>
<th>Def</th>
<th>Min</th>
<th>Maxi</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>SLS Vit.Max. BO</td>
<td>rpm</td>
<td>FLOAT</td>
<td>CALCF</td>
<td>0</td>
<td>CALCF</td>
<td>RWZ</td>
<td>FVS</td>
</tr>
</tbody>
</table>

Il indique la vitesse opérationnelle maximum de l’algorithme sensorless lorsque l’estimation de vitesse est en boucle ouverte (OL). Ce paramètre est automatiquement calculé pendant la procédure d’Auto-calibrage.

21.4 7014 SLS Corr.Courant Id

<table>
<thead>
<tr>
<th>Description</th>
<th>UM Type</th>
<th>FB Bit</th>
<th>Def</th>
<th>Min</th>
<th>Maxi</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>SLS Corr.Courant Id</td>
<td>A</td>
<td>FLOAT</td>
<td>CALCF</td>
<td>0</td>
<td>CALCF</td>
<td>RW</td>
<td>FVS</td>
</tr>
</tbody>
</table>

Indique le courant de flux ‘Id’ injecté dans le moteur à basse vitesse. Il est exprimé en % par rapport au courant nominal du moteur. En augmentant cette valeur, le départ arrêté du moteur en présence de charge s’en trouve amélioré, tout comme les performances de stabilité de la vitesse à plein régime.

L’augmentation de cette valeur peut néanmoins entraîner une réduction du rendement du moteur.

21.5 7016 SLS Tps.Desat.Id

<table>
<thead>
<tr>
<th>Description</th>
<th>UM Type</th>
<th>FB Bit</th>
<th>Def</th>
<th>Min</th>
<th>Maxi</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>SLS Tps.Desat.Id</td>
<td>ms</td>
<td>FLOAT</td>
<td>CALCF</td>
<td>1</td>
<td>1000</td>
<td>ERW</td>
<td>FVS</td>
</tr>
</tbody>
</table>

Indique en combien de temps, la correction de courant Id doit s’annuler une fois dépassé le seuil de vitesse maximum PAR 7018 SLS Seuil.Vit.Id. Ce paramètre est automatiquement calculé pendant la procédure de Auto-calibrage.

21.6 7018 SLS Seuil.Vit.Id

<table>
<thead>
<tr>
<th>Description</th>
<th>UM Type</th>
<th>FB Bit</th>
<th>Def</th>
<th>Min</th>
<th>Maxi</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>SLS Seuil.Vit.Id</td>
<td>rpm</td>
<td>FLOAT</td>
<td>CALCF</td>
<td>0</td>
<td>CALCF</td>
<td>ERW</td>
<td>FVS</td>
</tr>
</tbody>
</table>

Indique jusqu’à quelle vitesse, la correction de courant Id doit être maintenue.

Au-delà de ce seuil, le courant réactif est remis à zéro avec le temps programmé sur le PAR 7016 SLS Tps.Desat.Id. Si ce paramètre est placé sur 0, la remise à zéro du courant Id intervient automatiquement quand le PAR 7012 SLS Vit.Max. BO est dépassé.

Ce paramètre est automatiquement calculé pendant la procédure de Auto-calibrage.

21.7 7020 Ctrl.Mode Id

<table>
<thead>
<tr>
<th>Description</th>
<th>UM Type</th>
<th>FB Bit</th>
<th>Def</th>
<th>Min</th>
<th>Maxi</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ctrl.Mode Id</td>
<td>ENUM</td>
<td>Normale</td>
<td>0</td>
<td>1</td>
<td>ERW</td>
<td>FVS</td>
<td></td>
</tr>
</tbody>
</table>

Avec ce réglage, il est possible de sélectionner la modalité de contrôle du courant Id.

- 0 : Normale : Modalité standard.
- 1 : Avancé : Modalité adaptative.

Si la modalité adaptative a été sélectionnée, le contrôle de correction de l’estimation de vitesse en fonction de la référence est optimisé.

21.8 7022 SLS Gain.Vit.Obs

<table>
<thead>
<tr>
<th>Description</th>
<th>UM Type</th>
<th>FB Bit</th>
<th>Def</th>
<th>Min</th>
<th>Maxi</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>SLS Gain.Vit.Obs</td>
<td>FLOAT</td>
<td>1</td>
<td>0.001</td>
<td>50</td>
<td>RW</td>
<td>FVS</td>
<td></td>
</tr>
</tbody>
</table>

Règle le gain pour l’estimateur de vitesse et de position (PLL). En augmentant cette valeur, la lecture de l’estimation de vitesse est accélérée pour permettre un suivi plus précis du profil de vitesse, mais au prix d’une diminution du rejet des perturbations.
Menu PAR Description

<table>
<thead>
<tr>
<th>PAR</th>
<th>UM</th>
<th>Type</th>
<th>FB</th>
<th>BIT</th>
<th>Def</th>
<th>Min</th>
<th>Maxi</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>21.9</td>
<td>7024</td>
<td>SLS</td>
<td>K1</td>
<td>Vit.Obs</td>
<td>FLOAT</td>
<td>CALCF</td>
<td>0.0</td>
<td>35000</td>
<td>ERW</td>
</tr>
<tr>
<td>21.10</td>
<td>7026</td>
<td>SLS K2</td>
<td>Vit.Obs</td>
<td>FLOAT</td>
<td>CALCF</td>
<td>0.0</td>
<td>2000</td>
<td>ERW</td>
<td>FVS</td>
</tr>
</tbody>
</table>

Coefficient pour l’estimateur de vitesse/position (PLL).

<table>
<thead>
<tr>
<th>PAR</th>
<th>UM</th>
<th>Type</th>
<th>FB</th>
<th>BIT</th>
<th>Def</th>
<th>Min</th>
<th>Maxi</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>21.11</td>
<td>7028</td>
<td>SLS Fact.Corr.Rs</td>
<td>perc</td>
<td>INT16</td>
<td>0</td>
<td>-100</td>
<td>100</td>
<td>ERW</td>
<td>FVS</td>
</tr>
</tbody>
</table>

Correction en % de la résistance statorie mesurée pendant la procédure d’Auto-calibrage.

<table>
<thead>
<tr>
<th>PAR</th>
<th>UM</th>
<th>Type</th>
<th>FB</th>
<th>BIT</th>
<th>Def</th>
<th>Min</th>
<th>Maxi</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
</table>

Correction en % de l’inductance de dispersion mesurée pendant la procédure d’Auto-calibrage.

<table>
<thead>
<tr>
<th>PAR</th>
<th>UM</th>
<th>Type</th>
<th>FB</th>
<th>BIT</th>
<th>Def</th>
<th>Min</th>
<th>Maxi</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>21.13</td>
<td>7032</td>
<td>SLS K1</td>
<td>Moteur Obs</td>
<td>FLOAT</td>
<td>CALCF</td>
<td>0.0</td>
<td>800000</td>
<td>ERWZ</td>
<td>FVS</td>
</tr>
<tr>
<td>21.14</td>
<td>7034</td>
<td>SLS K2</td>
<td>Moteur Obs</td>
<td>FLOAT</td>
<td>CALCF</td>
<td>-305000</td>
<td>-10</td>
<td>ERWZ</td>
<td>FVS</td>
</tr>
</tbody>
</table>

Permet de modifier le comportement de l’estimateur des paramètres moteur.
Ce paramètre est automatiquement calculé pendant la procédure de Auto-calibrage.

<table>
<thead>
<tr>
<th>PAR</th>
<th>UM</th>
<th>Type</th>
<th>FB</th>
<th>BIT</th>
<th>Def</th>
<th>Min</th>
<th>Maxi</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>21.15</td>
<td>7040</td>
<td>SLS Validation rampe</td>
<td>ENUM</td>
<td>Dévalidé</td>
<td>0</td>
<td>1</td>
<td>RWZ</td>
<td>FVS</td>
<td></td>
</tr>
</tbody>
</table>

Active/désactive la possibilité de programmer un double profil de rampe durant la phase d’accélération/décélération en modalité Flux Vect B.O.
Il permet d’accélérer l’accrochage du dispositif d’estimation intérieur au profil de vitesse.
L’utilisation de cette fonction est recommandée pour les applications avec charges appliquées à haute inertie.
Quand la procédure de double rampe est activée, elle remplace les profils de rampe standard jusqu’à la vitesse programmée sur le paramètre PAR 7046.
Au-delà de cette vitesse, sont utilisés les profils d’accélération/décélération programmés dans le menu 6 - RAMPE. Il est recommandé d’utiliser la rampe de type linéaire (PAR 720 = 0).

0 Dévalidé
1 Validé

<table>
<thead>
<tr>
<th>PAR</th>
<th>UM</th>
<th>Type</th>
<th>FB</th>
<th>BIT</th>
<th>Def</th>
<th>Min</th>
<th>Maxi</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>21.16</td>
<td>7042</td>
<td>SLS Tps.Rampe.ACC</td>
<td>s</td>
<td>FLOAT</td>
<td>10.0</td>
<td>0.01</td>
<td>1000.0</td>
<td>RW</td>
<td>FVS</td>
</tr>
</tbody>
</table>

Temps d’accélération du double profil de rampe.

<table>
<thead>
<tr>
<th>PAR</th>
<th>UM</th>
<th>Type</th>
<th>FB</th>
<th>BIT</th>
<th>Def</th>
<th>Min</th>
<th>Maxi</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>21.17</td>
<td>7044</td>
<td>SLS Tps.Rampe.DEC</td>
<td>s</td>
<td>FLOAT</td>
<td>10.0</td>
<td>0.01</td>
<td>1000.0</td>
<td>RW</td>
<td>FVS</td>
</tr>
</tbody>
</table>

Temps de décélération du double profil de rampe.

<table>
<thead>
<tr>
<th>PAR</th>
<th>UM</th>
<th>Type</th>
<th>FB</th>
<th>BIT</th>
<th>Def</th>
<th>Min</th>
<th>Maxi</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>21.18</td>
<td>7046</td>
<td>SLS Seuil.Vit.Rampe</td>
<td>rpm</td>
<td>UINT32</td>
<td>CALCI</td>
<td>0</td>
<td>CALCI</td>
<td>RW</td>
<td>FVS</td>
</tr>
</tbody>
</table>

Seuil de vitesse maximum en deçà duquel est géré du double profil de rampe. réglé sur les PAR 7042 et PAR 7044.
This parameter enables selection of the type of phases (for synchronous motors) to be performed at startup: “Rotation” (1) with the rotor in motion and “Statique” (2) with the rotor stopped.

In the event of an error during phasing at startup (Rotation or Statique) the [50] Erreur codeur alarm intervenes and immediately disables the drive.

Règle le temps d’alignement du rotor quand le PAR 7048 est activé.
22 – FONCTIONS

22.1 - FONCTIONS/RAPPORT VITESSE

<table>
<thead>
<tr>
<th>Menu</th>
<th>PAR</th>
<th>Description</th>
<th>UM</th>
<th>Type</th>
<th>FB</th>
<th>BIT</th>
<th>Def</th>
<th>Min</th>
<th>Maxi</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>22.1.1</td>
<td>3000 Rapport de vitesse</td>
<td>perc</td>
<td>INT16</td>
<td>16/32</td>
<td>100</td>
<td>CALCI</td>
<td>CALCI</td>
<td>ERW</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Cette fonction permet d’appliquer un rapport de vitesse configurable (Rapport vitesse) à la référence principale et elle détermine la valeur en pourcentage du rapport de vitesse. Cette configuration peut être effectuée sous forme numérique, à travers Bus de terrain ou une entrée analogique. Cette fonction est utile dans les systèmes “multidrive” où une valeur de glissement entre les différents moteurs utilisés est requise. La valeur de vitesse qui en résulte peut être lue moyennant le paramètre Mon rapp velocità sur une sortie analogique programmable.

<table>
<thead>
<tr>
<th>Menu</th>
<th>PAR</th>
<th>Description</th>
<th>UM</th>
<th>Type</th>
<th>FB</th>
<th>BIT</th>
<th>Def</th>
<th>Min</th>
<th>Maxi</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>22.1.2</td>
<td>3002 Rapport vitesse src</td>
<td>LINK</td>
<td>16/32</td>
<td>3000</td>
<td>0</td>
<td>16384</td>
<td>ERW</td>
<td>FVS</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Sélection de l’origine (source) du signal qui détermine la valeur en pourcentage du rapport de vitesse. La borne à associer à cette fonction peut être sélectionnée dans la liste de sélection “L_VREF”.

<table>
<thead>
<tr>
<th>Menu</th>
<th>PAR</th>
<th>Description</th>
<th>UM</th>
<th>Type</th>
<th>FB</th>
<th>BIT</th>
<th>Def</th>
<th>Min</th>
<th>Maxi</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>22.1.3</td>
<td>3008 Div rapp vitesse</td>
<td>ENUM</td>
<td>1</td>
<td>0</td>
<td>3</td>
<td>ERW</td>
<td>FVS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Ce paramètre sert à régler le nombre décimal pour la configuration du PAR 3000 Rapport de vitesse. Les valeurs possibles sont illustrées dans le tableau suivant :

<table>
<thead>
<tr>
<th>Div rapp vitesse</th>
<th>Valeurs programmables dans le PAR 3000 Rapport de vitesse</th>
<th>Valeur % correspondante</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0-200</td>
<td>0-200</td>
</tr>
<tr>
<td>10</td>
<td>0-2000</td>
<td>0-200.0</td>
</tr>
<tr>
<td>100</td>
<td>0-20000</td>
<td>0-200.00</td>
</tr>
<tr>
<td>1000</td>
<td>0-32000</td>
<td>0-32.000</td>
</tr>
</tbody>
</table>

1 1
10 10
100 100
1000 1000

<table>
<thead>
<tr>
<th>Menu</th>
<th>PAR</th>
<th>Description</th>
<th>UM</th>
<th>Type</th>
<th>FB</th>
<th>BIT</th>
<th>Def</th>
<th>Min</th>
<th>Maxi</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>22.1.4</td>
<td>3010 Visu rapport vitesse</td>
<td>perc</td>
<td>FLOAT</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>ER</td>
<td>FVS</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Visualisation de la valeur du rapport de vitesse à appliquer à la valeur du signal de consigne de vitesse sélectionnée.
La fonction Droop n’est activée qu’en **Mode de Régulation** égale à Flux Vect B.O. ou bien à Flux Vect B.F. .

Le bloc se compose de:

- un noeud de comparaison entre **Equilibre T réf src** référence de couple du drive maître (initialiser sur sortie analogique du maître Cons couple ssFiltre) et référence de couple du drive esclave (Cons couple ssFiltre générée par le régulateur de vitesse).

- un régulateur proportionnel dont la sortie est ajoutée ou soustraite à la référence du régulateur de vitesse du drive esclave. Initialiser "Vitesse réf 1 src" égale à "Equil T result visu".

La correction, avant d’être appliquée à la référence du régulateur de vitesse du drive esclave, passe à travers un filtre passe-bas et une limite.

La fonction Droop est utilisée pour contrôler deux moteurs couplés.

En utilisant le bloc Droop on a l’avantage de pouvoir laisser le régulateur de vitesse validé sur les deux drives. Si l’on utilise la fonction Droop, sa correction évite la saturation du régulateur de vitesse sur l’un des deux drives. En cas de perte de charge de l’un des deux drives, la correction fournie par le bloc Droop est limitée grâce au paramètre dédié.

Cette fonction est utilisée pour réaliser une mise à l’échelle sur le courant. Ce bloc est spécifiquement utilisé lorsque deux moteurs sont mécaniquement couplés l’un à l’autre (exemple ils sont reliés au même arbre). Ils doivent tourner à la même vitesse. Si l’un des deux moteurs a tendance à tourner à une vitesse supérieure, il y aura une différence des conditions de charge qui provoqueront une situation de Overload. Le deuxième moteur se comporte comme un frein. Cette condition provoque un déséquilibre des courants qui peut être éliminé avec la fonction Droop. En ajoutant ou en soustrayant une correction à la référence du régulateur de vitesse du drive esclave,(proportionnel à la différence de charge), les deux courants sont à nouveau équilibrés.

Exemple de machine où il faut utiliser la fonction droop.

![Diagramme de droop](image)
Configuration paramètres :

Drive maître:
Sortie **ana x src** reliée à **Cons couple ssFiltre**

Drive esclave:
Equilibre T réf src relié à **entrée analogique**.
Vitesse réf 1 src reliée à **Equil T result visu**.

Configurer **“Equilibre T gain perc”**, **Equilibre T limit** , **Equilibre T filtre**.

<table>
<thead>
<tr>
<th>Menu</th>
<th>PAR</th>
<th>Description</th>
<th>UM</th>
<th>Type</th>
<th>FB</th>
<th>BIT</th>
<th>Def</th>
<th>Min</th>
<th>Maxi</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>22.2.1</td>
<td>3052</td>
<td>Equilibre T réf src</td>
<td>LINK</td>
<td>16/32</td>
<td>6000</td>
<td>0</td>
<td>16384</td>
<td>ERW</td>
<td>F_S</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Avec ce paramètre, on peut sélectionner l’origine (source) du signal **Equilibre T réf src**. Le signal à associer à cette fonction est sélectionné dans la liste de sélection **“L_LIM”**. Généralement, on doit sélectionner une entrée analogique à laquelle sera relié un signal analogique provenant du drive maître avec information sur le niveau de référence de couple.

<table>
<thead>
<tr>
<th>Menu</th>
<th>PAR</th>
<th>Description</th>
<th>UM</th>
<th>Type</th>
<th>FB</th>
<th>BIT</th>
<th>Def</th>
<th>Min</th>
<th>Maxi</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>22.2.2</td>
<td>3060</td>
<td>Equilibre T gain</td>
<td>perc</td>
<td>FLOAT</td>
<td>0.0</td>
<td>0.0</td>
<td>100.0</td>
<td>ERW</td>
<td>F_S</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Avec le paramètre **Equilibre T gain** on peut étalonner le gain du régulateur proportionnel. En configurant ce paramètre à la valeur 0.0 on force la sortie du bloc Droop à 0.

<table>
<thead>
<tr>
<th>Menu</th>
<th>PAR</th>
<th>Description</th>
<th>UM</th>
<th>Type</th>
<th>FB</th>
<th>BIT</th>
<th>Def</th>
<th>Min</th>
<th>Maxi</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>22.2.3</td>
<td>3062</td>
<td>Equilibre T filter</td>
<td>ms</td>
<td>UINT16</td>
<td>10</td>
<td>1</td>
<td>100</td>
<td>ERW</td>
<td>F_S</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Avec le paramètre **Equilibre T filter** on peut étalonner la constante de temps du filtre.

<table>
<thead>
<tr>
<th>Menu</th>
<th>PAR</th>
<th>Description</th>
<th>UM</th>
<th>Type</th>
<th>FB</th>
<th>BIT</th>
<th>Def</th>
<th>Min</th>
<th>Maxi</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>22.2.4</td>
<td>3064</td>
<td>Equilibre T limit</td>
<td>rpm</td>
<td>INT16</td>
<td>16/32</td>
<td>30</td>
<td>0</td>
<td>CALCI</td>
<td>ERWZ</td>
<td>F_S</td>
<td></td>
</tr>
</tbody>
</table>

Avec le paramètre **Equilibre T limit** on peut étalonner la valeur absolue de correction maximale appliquée à la consigne de vitesse du bloc Droop.

<table>
<thead>
<tr>
<th>Menu</th>
<th>PAR</th>
<th>Description</th>
<th>UM</th>
<th>Type</th>
<th>FB</th>
<th>BIT</th>
<th>Def</th>
<th>Min</th>
<th>Maxi</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>22.2.5</td>
<td>3070</td>
<td>Equil T résultat visu</td>
<td>rpm</td>
<td>INT16</td>
<td>16/32</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>ER</td>
<td>F_S</td>
<td></td>
</tr>
</tbody>
</table>

Avec le paramètre **Equil T résultat visu** on peut lire l’ampleur de la correction appliquée par le bloc Droop.

Normalement, cette variable est reliée sur sur **Vitesse réf 1 src** pour ajouter ou soustraire à la consigne de vitesse la correction de la fonction Droop.

Ce paramètre est disponible dans les listes de sélection des références de vitesse, des sorties analogiques, de l’esclave->maître des comparais.
Une augmentation de la réponse dynamique du régulateur de vitesse à une variation de la référence, peut être modifiée en effectuant une variation de valeur du courant durant la phase d’accélération/décélération, pour s’opposer à l’inertie de la machine.

Ces paramètres peuvent être configurés manuellement par l’utilisateur.

<table>
<thead>
<tr>
<th>Menu</th>
<th>PAR</th>
<th>Description</th>
<th>UM</th>
<th>Type</th>
<th>FB BIT</th>
<th>Def</th>
<th>Min</th>
<th>Maxi</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>22.3.1</td>
<td>3100 Compensat° inertie</td>
<td>kgm²</td>
<td>FLOAT</td>
<td>0.0</td>
<td>0.0</td>
<td>100.0</td>
<td>ERWS</td>
<td>F_S</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Valeur de la compensation d’inertie de l’arbre moteur. L’augmentation de cette valeur permet d’accélérer la recherche du setpoint de vitesse. En revanche, si la valeur d’inertie du système, renseignée dans le paramètre 2240, n’est pas correcte, cela pourrait entraîner une certaine instabilité de la vitesse.

<table>
<thead>
<tr>
<th>Menu</th>
<th>PAR</th>
<th>Description</th>
<th>UM</th>
<th>Type</th>
<th>FB BIT</th>
<th>Def</th>
<th>Min</th>
<th>Maxi</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>22.3.2</td>
<td>3102 Filtre Comp inertie</td>
<td>ms</td>
<td>UINT16</td>
<td>30</td>
<td>1</td>
<td>100</td>
<td>ERW</td>
<td>F_S</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Configuration d’un filtre sur la compensation de couple. Le filtre réduit le bruit dû à l’opération de différentiation de vitesse dans le bloc inertie.

<table>
<thead>
<tr>
<th>Menu</th>
<th>PAR</th>
<th>Description</th>
<th>UM</th>
<th>Type</th>
<th>FB BIT</th>
<th>Def</th>
<th>Min</th>
<th>Maxi</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>22.3.3</td>
<td>3104 Visu Comp inertie</td>
<td>perc</td>
<td>FLOAT</td>
<td>16/32</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>ER</td>
<td>F_S</td>
<td></td>
</tr>
</tbody>
</table>

Visualisation de la valeur de la compensation de l’inertie à la sortie du bloc fonction.
La fonction de contrôle de surcharge fournit une logique complémentaire pour protéger le moteur contre des surcharges thermiques. Cette protection a un comportement caractéristique I^2t et elle émule la protection du relais thermique du moteur contrôlé par le drive ADV200.

Quand la fonction est activée, à chaque extinction du drive, la valeur atteinte par l’intégrateur est sauvegardée. À chaque allumage du drive, la valeur sauvegardée est rétablie.

Menu	**PAR**	**Description**	**UM**	**Type**	**FB BIT**	**Def**	**Min**	**Maxi**	**Acc**	**Mod**
22.4.1 | 3200 | Valid surchg moteur | BIT | | | 0 | 0 | 1 | ERW | FVS

Validation du contrôle de la surcharge sur le moteur.

- **0** Désactivée
- **1** Activée

En configurant **0**, la fonction SURCHARGE MOTEUR est désactivée.
En configurant **1**, la fonction SURCHARGE MOTEUR est activée.
Menu PAR Description UM Type FB BIT Def Min Maxi Acc Mod
111

<table>
<thead>
<tr>
<th>22.4.2</th>
<th>3202 Facteur surchg mot</th>
<th>perc FLOAT</th>
<th>150.0</th>
<th>100.0</th>
<th>300.0</th>
<th>ERWS</th>
<th>FVS</th>
</tr>
</thead>
</table>

Configuration de la valeur de la surcharge moteur. La valeur est exprimée en pourcentage du paramètre Intensité nominale (PAR 2002) * Facteur service mot (PAR 3206).

Le courant obtenu en exécutant Intensité nominale (PAR 2002) * Facteur service mot (PAR 3206) * Facteur surchg mot (PAR 3202) représente le courant maximum qui peut circuler dans le moteur.

Si la fonction SURCHARGE MOTEUR est activée le drive règle de lui-même la limite de courant de couple de telle sorte que la valeur maximum de Iout n’excède pas cette valeur. La fonction SURCHARGE MOTEUR permet de fournir au moteur un courant égal au niveau de surcharge pendant une durée programmée sur le paramètre Temps surchg moteur (PAR 3204). Au bout de la durée programmée, la fonction SURCHARGE MOTEUR règle d’elle-même la limite de courant de couple de telle sorte que le courant maximum Iout n’excède pas la valeur Intensité nominale (PAR 2002) * Facteur service mot (PAR 3206).

Si le paramètre 3202 Facteur surchg mot a une valeur de 100 %, le courant de surcharge de la fonction Surcharge Moteur équivaut au courant continu de la fonction Surcharge Moteur. Dans ce cas, le drive se comporte comme si le cycle de surcharge avait été exécuté, à savoir qu’il règle la limite de courant de couple de telle sorte que le courant maximum Iout ne dépasse pas le courant continu, à savoir Intensité nominale (PAR 2002) * Facteur service mot (PAR 3206).

<table>
<thead>
<tr>
<th>22.4.3</th>
<th>3204 Temps surchg moteur</th>
<th>s FLOAT</th>
<th>30.0</th>
<th>10.0</th>
<th>300.0</th>
<th>ERWS</th>
<th>FVS</th>
</tr>
</thead>
</table>

Configuration de la durée de surcharge moteur en secondes.

La fonction Surcharge moteur permet de fournir au moteur un courant égal au niveau de Intensité nominale (PAR. 2002) * Facteur service mot (PAR. 3206) * Facteur surchg mot (PAR. 3202) pendant une durée programmée sur le paramètre Temps surchg moteur (PAR. 3204).

Le temps d’intervention de la protection Surcharge moteur dépend du niveau de courant qui circule dans le moteur ; un courant égal au niveau de charge est admis pendant la durée programmée sur le paramètre Temps surrch, moteur et un courant inférieur au niveau de surcharge est admis pendant une durée supérieure.

On peut attribuer cette alarme à une sortie numérique programmable (Alarme surcharge mot).

Le temps d’intervention dépend de la valeur du courant du moteur, voir figure de la page précédente.

<table>
<thead>
<tr>
<th>22.4.4</th>
<th>3206 Facteur service mot</th>
<th>perc FLOAT</th>
<th>100.0</th>
<th>25.0</th>
<th>200.0</th>
<th>ERWS</th>
<th>FVS</th>
</tr>
</thead>
</table>

Programmation du facteur de service du moteur. La valeur est exprimée en pourcentage du paramètre Intensité nominale (PAR 2002).

Le courant obtenu en exécutant Intensité nominale (PAR 2002) * Facteur service mot (PAR 3206) * Facteur surchg mot (PAR 3202) représente le courant maximum qui peut circuler dans le moteur.

Si la fonction SURCHARGE MOTEUR est activée le drive règle de lui-même la limite de courant de couple de telle sorte que la valeur maximum de Iout n’excède pas cette valeur. La fonction SURCHARGE MOTEUR permet de fournir au moteur un courant égal au niveau de surcharge pendant une durée programmée sur le paramètre Temps surchg moteur (PAR 3204). Au bout de la durée programmée, la fonction SURCHARGE MOTEUR règle d’elle-même la limite de courant de couple de telle sorte que le courant maximum Iout n’excède pas la valeur Intensité nominale (PAR 2002) * Facteur service mot (PAR 3206).

<table>
<thead>
<tr>
<th>22.4.5</th>
<th>3216 Type Vent. du moteur</th>
<th>ENUM</th>
<th>Servo Ventil</th>
<th>0</th>
<th>1</th>
<th>ERW</th>
<th>F_S</th>
</tr>
</thead>
</table>

Grâce à ce paramètre, il est possible de configurer le type de ventilation du moteur.

0 Ventil. Auto
1 Servo Ventil

Ventil. Auto indique qu’est présent un ventilateur monté sur l’arbre moteur qui tourne à une vitesse proportionnelle à celle du moteur. La ventilation est peu efficace aux basses vitesses du moteur.

Servo Ventil indique qu’est présent un ventilateur indépendant qui tourne toujours à la vitesse nominale. La ventilation est optimale sur toute la plage de vitesses du moteur.

Quand la vitesse actuelle du moteur est inférieure au seuil (PAR 2004 Vitesse nominale / 2) e PAR 3216 Type Vent. du moteur = Ventil. Auto; la ventilation étant insuffisante, l’on intervient pour réduire le temps d’intervention de la protection SURCHARGE MOTEUR.
Pour réduire le temps d’intervention de la protection, sous le seuil (PAR 2004 Vitesse nominale / 2) l’on réduit le courant continu de la fonction SURCHARGE MOTEUR.

Le courant continu de la fonction SURCHARGE MOTEUR quand la vitesse du moteur est égale au seuil (PAR 2004 Vitesse nominale / 2) s’applique le PAR 2002 Intensité nominale * PAR 3206 Facteur service mot, alors que sous le seuil, la valeur est modifiée de manière linéaire jusqu’à la valeur du PAR 2002 Intensité nominale * 3206 Facteur service mot * PAR 3218 Fact. énergie moteur quand la vitesse du moteur atteint zéro.

Le courant de surcharge de la fonction SURCHARGE MOTEUR est obtenue en exécutant le PAR 2002 Intensité nominale * 3206 Facteur service mot * PAR 3202 Facteur surchg mot et représente le courant maximum qui peut circuler dans le moteur et si la fonction SURCHARGE MOTEUR est activée, le drive règle de lui-même la limite de couple de telle sorte que la valeur maximale de lout n’excède pas cette valeur.

La fonction SURCHARGE MOTEUR permet de fournir au moteur un courant égal au niveau de surcharge pendant la durée maximale programmée sur le paramètre PAR 3204 Temps surchg moteur, quand la vitesse du moteur diminue, le temps permis diminue (voir figure en début de chapitre).

Au bout de la durée programmée, la fonction SURCHARGE MOTEUR règle d’elle-même la limite de courant de couple de telle sorte que le courant maximum lout n’excède pas la valeur du courant continu de la fonction SURCHARGE MOTEUR.

Quand la vitesse actuelle du moteur est supérieure au seuil (PAR 2004 Vitesse nominale / 2) et PAR 3216 Type Vent. du moteur = Servo Ventil, la ventilation étant suffisante, aucune réduction n’est appliquée au courant continu.

Quand PAR 3216 Type Vent. du moteur = Ventil. Auto, la ventilation étant suffisante, aucune réduction n’est appliquée au courant continu.

La fonction SURCHARGE MOTEUR permet de fournir au moteur un courant égal au niveau de surcharge pendant la durée maximale programmée sur le paramètre PAR 3204 Temps surchg moteur, quand la vitesse du moteur diminue, le temps permis diminue (voir graphiques).

Au bout de la durée programmée, la fonction SURCHARGE MOTEUR règle d’elle-même la limite de courant de couple de telle sorte que le courant maximum lout n’excède pas la valeur du courant continu de la fonction SURCHARGE MOTEUR.

Quand la vitesse actuelle du moteur est inférieure au seuil (PAR 2004 Vitesse nominale / 2) et PAR 3216 Type Vent. du moteur = Ventil. Auto; la ventilation étant insuffisante, l’on intervient pour réduire le temps d’intervention de la protection.

Pour réduire le temps d’intervention de la protection, sous le seuil (PAR 2004 Vitesse nominale / 2), l’on réduit le courant continu de la fonction SURCHARGE MOTEUR.

Le courant continu de la fonction SURCHARGE MOTEUR quand la vitesse du moteur est égale au seuil (PAR 2004 Vitesse nominale / 2) s’applique le PAR 2002 Intensité nominale * PAR 3206 Facteur service mot, alors que sous le seuil, la valeur est modifiée de manière linéaire jusqu’à la valeur du PAR 2002 Intensité nominale * 3206 Facteur service mot * PAR 3218 Fact. énergie moteur quand la vitesse du moteur atteint zéro.

Le courant de surcharge de la fonction SURCHARGE MOTEUR est obtenue en exécutant le PAR 2002 Intensité nominale * 3206 Facteur service mot * PAR 3202 Facteur surchg mot et représente le courant maximum qui peut circuler dans le moteur et si la fonction SURCHARGE MOTEUR est activée, le drive règle de lui-même la limite de couple de telle sorte que la valeur maximale de lout n’excède pas cette valeur.

La fonction SURCHARGE MOTEUR permet de fournir au moteur un courant égal au niveau de surcharge pendant la durée maximale programmée sur le paramètre PAR 3204 Temps surchg moteur, quand la vitesse du moteur diminue, le temps permis diminue (voir graphiques).}

Tableau 22.1.4.6

<table>
<thead>
<tr>
<th>Menu</th>
<th>PAR</th>
<th>Description</th>
<th>UM</th>
<th>Type</th>
<th>FB</th>
<th>BIT</th>
<th>Def</th>
<th>Min</th>
<th>Maxi</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>22.4.6</td>
<td>3218</td>
<td>Fact. énergie moteur</td>
<td>perc</td>
<td>FLOAT</td>
<td>50.0</td>
<td>0.0</td>
<td>100.0</td>
<td>ERWS</td>
<td>F_S</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Grâce à ce paramètre, il est possible de configurer le facteur de derating. La valeur est exprimée en pourcentage du PAR 2002 Intensité nominale * PAR 3206 Facteur service mot.

Quand la vitesse actuelle du moteur est inférieure au seuil (PAR 2004 Vitesse nominale / 2) et PAR 3216 Type Vent. du moteur = Servo Ventil, la ventilation étant insuffisante, l’on intervient pour réduire le temps d’intervention de la protection.

Pour réduire le temps d’intervention de la protection, sous le seuil (PAR 2004 Vitesse nominale / 2), l’on réduit le courant continu de la fonction SURCHARGE MOTEUR.

Le courant continu de la fonction SURCHARGE MOTEUR quand la vitesse du moteur est égale au seuil (PAR 2004 Vitesse nominale / 2) s’applique le PAR 2002 Intensité nominale * PAR 3206 Facteur service mot, alors que sous le seuil, la valeur est modifiée de manière linéaire jusqu’à la valeur du PAR 2002 Intensité nominale * 3206 Facteur service mot * PAR 3218 Fact. énergie moteur quand la vitesse du moteur atteint zéro.

Le courant de surcharge de la fonction SURCHARGE MOTEUR est obtenue en exécutant le PAR 2002 Intensité nominale * 3206 Facteur service mot * PAR 3202 Facteur surchg mot et représente le courant maximum qui peut circuler dans le moteur et si la fonction SURCHARGE MOTEUR est activée, le drive règle de lui-même la limite de couple de telle sorte que la valeur maximale de lout n’excède pas cette valeur.

La fonction SURCHARGE MOTEUR permet de fournir au moteur un courant égal au niveau de surcharge pendant la durée maximale programmée sur le paramètre PAR 3204 Temps surchg moteur, quand la vitesse du moteur diminue, le temps permis diminue (voir graphiques).
22.5 - FONCTIONS/SURC RES FREIN

Les résistances de freinage peuvent être sujettes à des surcharges imprévues à la suite de pannes. Il est impératif de protéger les résistances en utilisant des dispositifs de protection thermique: Ces dispositifs ne doivent pas interrompre le circuit où est installée la résistance, mais leur contact auxiliaire doit interrompre l'alimentation de la partie puissance du drive. Si la résistance prévoit un contact de protection, il doit être utilisé en même temps que celui du dispositif de protection thermique.

Menu PAR Description UM Type FB BIT Def Min Maxi Acc Mod
22.5.1 3250 Control Res freinage BIT 0 0 1 ERWZS FVS
Validation du contrôle de la surcharge de la résistance de freinage extérieure.

Menu PAR Description UM Type FB BIT Def Min Maxi Acc Mod
22.5.2 3252 Valeur Res freinage ohm FLOAT SIZE 5.0 1000.0 ERWS FVS
Configuration de la valeur ohmique de la résistance de freinage extérieure.

Menu PAR Description UM Type FB BIT Def Min Maxi Acc Mod
22.5.3 3254 Puissance Res frein kW FLOAT SIZE 0.1 100.0 ERWS FVS
Configuration de la puissance pouvant être continuellment dissipée par la résistance de freinage extérieure.

Menu PAR Description UM Type FB BIT Def Min Maxi Acc Mod
22.5.4 3256 Fact surch Res frein FLOAT SIZE 1.5 10.0 ERWS FVS
Configuration du facteur de surcharge de la résistance extérieure.

Menu PAR Description UM Type FB BIT Def Min Maxi Acc Mod
22.5.5 3258 Tps surchg Res frein s FLOAT SIZE 0.5 50.0 ERWS FVS
Configuration du temps d'intervention de la surcharge de la résistance de freinage extérieure.

Les paramètres IPA 3272 Valid.BU src et IPA 3274 Valid.BU inv gèrent l'habilitation/exclusion, depuis l'entrée logique, de la BU interne branchée sur une résistance de freinage, avec ou sans klixon de protection. La BU interne doit être habilitée via le paramètre IPA 3250 Bres control. Deux modes d'utilisation sont prévus :

1) En cas d'utilisation d'une résistance avec klixon, le contact de protection peut être branché sur une entrée logique (en configurant convenablement IPA 3272 depuis la liste de sélection L_DIGSEL1). L'entrée logique permettra l'habilitation de l'unité de freinage lorsque la température de la résistance sera inférieure au seuil de protection, ou bien son exclusion dans le cas contraire.

2) En présence d'une résistance sans klixon, il est possible d'utiliser l'état d'une alarme (par exemple, ResFrein schar) pour habiliter l'unité de freinage lorsque l'alarme n'est pas activée :
- configurer IPA 3272 Valid.BU src = IPA 4708 Visu alarme digit 1 (dépuis la liste de sélection L_DIGSEL1),
- configurer IPA 4700 Sel Alarme digit 1 = [15] ResFrein schar,
- configurer IPA 3274 Valid.BU inv = 1 pour inverser l'état logique.

Les paramètres IPA 3272 Valid.BU src et IPA 3274 Valid.BU inv gèrent l'habilitation/exclusion, depuis l'entrée logique, de la BU interne branchée sur une résistance de freinage, avec ou sans klixon de protection. La BU interne doit être habilitée via le paramètre IPA 3250 Bres control. Deux modes d'utilisation sont prévus :

1) En cas d'utilisation d'une résistance avec klixon, le contact de protection peut être branché sur une entrée logique (en configurant convenablement IPA 3272 depuis la liste de sélection L_DIGSEL1). L'entrée logique permettra l'habilitation de l'unité de freinage lorsque la température de la résistance sera inférieure au seuil de protection, ou bien son exclusion dans le cas contraire.

2) En présence d'une résistance sans klixon, il est possible d'utiliser l'état d'une alarme (par exemple, ResFrein schar) pour habiliter l'unité de freinage lorsque l'alarme n'est pas activée :
- configurer IPA 3272 Valid.BU src = IPA 4708 Visu alarme digit 1 (dépuis la liste de sélection L_DIGSEL1),
- configurer IPA 4700 Sel Alarme digit 1 = [15] ResFrein schar,
- configurer IPA 3274 Valid.BU inv = 1 pour inverser l'état logique.

Menu PAR Description UM Type FB BIT Def Min Maxi Acc Mod
22.5.7 3274 Bremsw Freigabe Inv BIT 0 0 1 ERW FVS
Inverse l'état logique de la commande d'habilitation de la BU en provenance de IPA 3272 Valid.BU src.
- 0 Off: inversion exclue
- 1 On: inversion habilitée
Dans le drive ADV200, on peut mémoriser deux séries de paramètres indépendants qui peuvent être sélectionnées au moyen du clavier ou d'une commande externe.

De cette manière on peut modifier rapidement et automatiquement tous les paramètres du drive afin de les adapter aux différentes exigences de fonctionnement. Par exemple, on peut piloter alternativement deux moteurs ayant des caractéristiques différentes.

Les paramètres d’application Mdplc ne figurent pas dans les deux sets de paramètres. On pourra commuter tous les paramètres du drive entre deux sets indépendants mais l’on n’aura qu’un seul set de paramètres de l’application.

En utilisant le Configurateur GF_eXpress, il est possible de gérer cette fonction en utilisant les commandes présentes sur la barre des outils du programme : **R0|1** → “read set 0/1”

Cette commande permet de lire le réglage 0 ou set 0 (et de sauvegarder sur un fichier .gfe le réglage 1 ou set 1) ou inversement en fonction du réglage présentement actif. **W0|1** → “write set 0/1”

Cette commande permet de charger sur le drive les réglages de paramètres.

Les commandes de la barre des outils «Copy set 0» et «Copy set 1» servent en revanche, une fois le fichier .gfe ouvert dans lequel ont été sauvegardés les deux réglages, à charger sur la grille des paramètres respectivement le réglage 0 et le réglage 1, sans aucune interaction avec le drive. Naturellement, le contenu précédent de la grille des paramètres (qui ne coïncidait pas nécessairement avec le réglage 0 ni avec le réglage 1) est perdu. Cela permet de savoir quelles valeurs sont effectivement envoyées au drive.

Menu PAR Description UM Type FB BIT Def Min Maxi Acc Mod

<table>
<thead>
<tr>
<th>22.6.1</th>
<th>3300 Valid 2 Jeu de param</th>
<th>ENUM</th>
<th>Dévalidé</th>
<th>0</th>
<th>1</th>
<th>ERW</th>
<th>FVS</th>
</tr>
</thead>
</table>

Validation de la gestion de deux jeux de paramètres.

0 Dévalidé
1 Validé

En configurant 0 un seul jeu de paramètres est géré (celui qui est utilisé comme jeu par défaut).

En configurant 1, on peut configurer deux jeux de paramètres distincts, sélectionnables à l’aide d’un signal de commande amené sur une entrée numérique du Bornier.

<table>
<thead>
<tr>
<th>22.6.2</th>
<th>3302 Sél Jeu de param src</th>
<th>LINK</th>
<th>16</th>
<th>6000</th>
<th>0</th>
<th>16384</th>
<th>ERWZ</th>
<th>FVS</th>
</tr>
</thead>
</table>

** Sélection de l’origine (source) du signal à utiliser pour sélectionner le jeu de paramètres à utiliser.** La borne ou la commande numérique pouvant être associée à la fonction peut être sélectionnée parmi celles qui sont disponibles dans la liste de sélection “L_DIGSEL2”.

<table>
<thead>
<tr>
<th>22.6.3</th>
<th>3304 Visu jeu parma actu</th>
<th>ENUM</th>
<th>16</th>
<th>Set 0</th>
<th>0</th>
<th>0</th>
<th>ER</th>
<th>FVS</th>
</tr>
</thead>
</table>

Visualisation du jeu de paramètres actuellement utilisés.

0 Jeu de param (set) 0
1 Jeu de param (set) 1

| 22.6.4 | 3306 Copi jeu param 0->1 | BIT | 0 | 0 | 1 | ERW | FVS |
| --- | --- | --- | --- | --- | --- | --- | --- | --- |
Procédure pour la préparation et la gestion du double jeu de paramètres

Création d’un second jeu:
En effectuant cette fonction, le jeu de paramètres 0 est copié sur le jeu 1. Avant d’activer la gestion du double jeu de paramètres, il convient de programmer le premier jeu avec les valeurs correctes.
Lorsque le premier jeu est prêt, on peut activer le second en suivant cette procédure:

1. Activer la gestion du double jeu de paramètres en validant 3300 Abil jeu paramètres.
2. Copier le jeu 0 sur jeu 1 à l’aide de la commande 3306 Copi jeu param 0->1.
 De cette manière on crée dans le jeu 1 une base de paramètres de départ sur lequel apporter les modifications. Sauvegarder les paramètres.
3. Activer le jeu 1 en utilisant le paramètre 3302 sel Jeu de param src.
 Pour sélectionner manuellement le jeu 1, configurer de paramètre sur “Un”.
 Autrement, sélectionner la source souhaitée.
4.Modifier les paramètres du jeu 1 en fonction des exigences.
5. Sauvegarder les paramètres.

Pour modifier le jeu en cours d'utilisation, il faudra agir sur la source sélectionnée dans le paramètre 3302 sel Jeu de param src. Cette modification pourra être effectuée uniquement lorsque le drive est désactivé.

Lorsque le double paramétrage est activé, le numéro du jeu en cours d’utilisation apparaîtra sur le clavier à côté du numéro de chaque paramètre.

Modification et sauvegarde des paramètres:
Lorsque le double paramétrage est activé, la modification des paramètres qui doivent être identiques dans les deux jeux doit être effectuée séparément sur chaque jeu.
L’opération de sauvegarde ne s’effectue que sur le jeu activé à ce moment-là, par conséquent, si l’on veut sauvegarder les deux jeux, il faudra d’abord en sauvegarder un et ensuite sélectionner l’autre et le sauvegarder.

Remarque! Toute modification des paramètres relatifs à la "série de paramètres", effectuée lorsqu’elle est activée, elle sera perdue lors de la commutation suivante si l’on ne lance pas une commande Copi jeu param 0->1. Pour mémoriser de manière permanente, (même en coupant l’alimentation au drive), il faut lancer la commande Sauvegarde paramètre (menu CONFIGURATION).

22.7 - FONCTIONS/SPEED CAPTURE

Cette fonction permet d’accrocher le drive à un moteur tournant par inertie ou entraîné par la charge. La fonction peut également être utilisée en cas de Redémarrage automatique après une condition d’alarme.

Principaux champs d’utilisation:
- Accrochage à un moteur actionné par la charge (par exemple avec des moteurs de pompes entraînés par le liquide)
- Accrochage à un moteur qui sera connecté directement au secteur électrique
- Accrochage à un moteur tournant à cause d’une désactivation momentanée du drive
- Accrochage à un moteur tournant en cas de redémarrage automatique après l’intervention d’une alarme

Remarque!: Si l’on valide le drive avec le moteur qui tourne et cette fonction désactivée, un blocage du drive peut se produire à cause de l’intervention des protections de Surcourant ou de Surtension.

<table>
<thead>
<tr>
<th>Menu</th>
<th>PARI</th>
<th>Description</th>
<th>UM</th>
<th>Type</th>
<th>FB BI</th>
<th>Def</th>
<th>Min</th>
<th>Maxi</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>22.7.1</td>
<td>3350</td>
<td>Reprise à la volée</td>
<td>ENUM</td>
<td>Dévalide</td>
<td>0</td>
<td>2</td>
<td>ERW</td>
<td>FV_</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Grâce à ce paramètre, il est possible de valider la fonction d’accrochage à un moteur qui tourne.

0 Dévalide
1 Alarm restart
2 Enable&restart

En configurant 0 la fonction d’accrochage à un moteur qui tourne est désactivée. La fréquence de sortie part de 0 et va à la consigne paramétrée en utilisant la rampe. En cas d’habilitation de l’entraînement, moteur en marche et fonction exclue, l’entraînement peut se bloquer à cause de l’intervention des protections de Surtension ou de Surtension.

En configurant 1, la fonction d’accrochage à un moteur en rotation sera effectuée au redémarrage, après chaque réinitialisation automatique d’une alarme.

En configurant 2, la fonction d’accrochage à un moteur en rotation sera effectuée à chaque habilitation du drive et après chaque réinitialisation automatique d’une alarme.
Cette fonction est disponible avec le **Mode de Regulation** = **Flux Vect B.F.** (moteurs asynchrones et synchrones) ou **U/f control** (moteurs asynchrones).

Cette fonction n’est pas disponible avec le **Mode de Regulation** = **Flux Vect B.O.**.

Avec **Mode de Regulation** = **Flux Vect B.F.**, la procédure d’accrochage consiste à forcer la fréquence de sortie à la valeur mesurée par le codeur, puis on amène la vitesse du moteur jusqu’à la valeur de consigne en utilisant la rampe

![Flux vector CL](image)
Cette fonction permet de contrôler une absence d’alimentation ou une interruption momentanée de la tension du réseau.

Lorsque la fonction est activée le drive commande un arrêt sur rampe contrôlée ; grâce à l’énergie régénérée par la charge, on soutient l’alimentation du Dc Link et il est donc possible de contrôler la vitesse du moteur. Tant qu’il sera possible de récupérer l’énergie (vitesse du moteur proche de zéro mais pas zéro), on contrôlera la vitesse du moteur, ensuite l’alarme de Sous tension intervendrait et le moteur s’arrêterait par inertie de manière non contrôlée.

La fonction est efficace uniquement avec des charges qui accumulent suffisamment d’énergie (généralement des charges ayant un moment d’inertie élevé et qui lors de la coupure sur le réseau ont une vitesse de rotation non proche de zéro). La fonction ne peut être utilisée pour des charges passives.

La fonction peut être utilisée exclusivement avec le Mode de Regulation = Flux Vect B.F. (moteurs asynchrones et synchrones) et Mode de Regulation = U/f control (moteurs asynchrones).

La fonction Power loss s’active lorsque la tension de Dc Link descend au-dessous d’un seuil configuré interne-ment en fonction de la tension du réseau à une valeur supérieure au seuil de Sous tension. À l’activation de la fonction le drive commande un arrêt avec une rampe de décélération configurable par l’utilisateur. Lors de cette phase, la limite de courant est contrôlée par un régulateur sur la tension Dc Link qui a comme setpoint un seuil configuré internement en fonction de la tension du réseau à une valeur inférieure au seuil de Surtension.

Le régulateur prévoit deux paramètres d’étalonnage (proportionnel et intégral) qui sont pré-calculés par le drive en fonction de la grandeur et des données de la plaque du moteur. Si le régulateur agit sur la limite de courant la conséquence sera que la vitesse du moteur ne suit pas la rampe de décélération paramétrée. La fonction continue tant qu’il est possible de récupérer de l’énergie, après quoi se déclenche une alarme de Sous tension. Si le réseau est réinitialisé pendant la phase de rampe de décélération, l’utilisateur peut configurer le comportement du drive. Les possibilités sont : continuer de toutes les manières jusqu’à la vitesse zéro ou suspendre la rampe de décélération et se placer sur la consigne paramétrée.

Le drive n’est pas à même de reconnaître en toute autonomie le retour de la tension du réseau, ce qui fait que cette information doit être fournie de l’extérieur par l’entrée numérique Perte Alim src.

La présence de l’unité de freinage garantit la non-intervention de l’alarme de Surtension et la fonction a l’avantage de pouvoir exécuter l’arrêt du moteur en assurant le temps paramétré.

Le régulateur de la fonction Power loss a un setpoint supérieur au seuil d’activation du freinage, il ne s’activera donc pas et ne modifiera pas la limite de courant permettant ainsi de respecter le temps de la rampe de décélération paramétrée. L’intervention de l’unité de freinage dissipe l’énergie du moteur dans la résistance, ce qui fait que l’énergie disponible pour soutenir le Dc Link diminue, en réduisant le temps disponible pour contrôler l’arrêt du moteur. La présence de l’unité de freinage peut faire que la vitesse du moteur, auquel on ne réussit pas à récupérer l’énergie, soit plus élevée que le moteur sans unité de freinage.

La fonction peut être utilisée tant sur des machines comprenant un seul drive, que sur des machines comprenant plusieurs drives, dont les vitesses doivent rester synchronisées.

Pour les machines comprenant un seul drive, il suffit d’activer la fonction Power loss.
Pour les machines comprenant plusieurs driver, il faut mettre en commun les Dc Link : la fonction Power loss doit être activée uniquement sur le drive identifié comme master et non sur les slaves. En général le drive master est celui qui commande la charge avec une plus grande inertie. Le drive master, grâce au signal Perte Alim Ratio, fournit le rapport entre la vitesse du moteur et la consigne de la vitesse. En connectant la sortie Perte Alim Ratio du master à l’entrée Rapport vitesse src (liste de sélection L_VREF) des drives slaves è, il est possible d’obtenir la synchronisation de la ligne. La connexion master => slave peut être réalisé à l’aide des signaux analogiques ou du bus de terrain.

Pour le bon fonctionnement de la fonction Power loss, il faut configurer les alarmes suivante comme décrit ci-dessous : La consigne de vitesse et la limite du courant sont contrôlées internement par la fonction Power loss, il pourrait donc y avoir une différence entre consigne de vitesse et vitesse du moteur, ce qui enclencherait l’alarme Pert Csign Vit : pour éviter cette situation, il faut paramétrer le Par 4552 Action Erreur consig = Ignore

Pendant l’absence du secteur, le relevé de la perte d’une phase d’alimentation peut ne pas fonctionner correctement, ce qui activerait l’alarme Manque Phase : pour éviter cette situation, il faut paramétrer le Par 4660 Action Manque phase= Ignore

Powerloss

![Diagramme Powerloss](PowerLoss_01.vsd)

<table>
<thead>
<tr>
<th>Menu</th>
<th>PAR</th>
<th>Description</th>
<th>UM</th>
<th>Type</th>
<th>FB BIT</th>
<th>Def</th>
<th>Min</th>
<th>Maxi</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>22.8.1</td>
<td>3400 Fonction Perte Alim</td>
<td>ENUM</td>
<td>Dévalidé</td>
<td>0</td>
<td>1</td>
<td>ERWZ</td>
<td>FV_</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Avec ce paramètre, il est possible d’activer la fonction de power loss.

- 0 Dévalidé
- 1 Validé

En configurant 0 la fonction Power loss est désactivée. En cas d’absence de réseau l’alarme Sous-tension interviendra.

En configurant 1 la fonction Power loss est activée. En cas d’absence du réseau la fonction s’activera en essayant de contrôler la vitesse du moteur et d’empêcher l’intervention de l’alarme Sous tension.
22.8.2 Perte Alim tps accel

Description: Configuration du temps d’accélération utilisé durant le fonctionnement en Power loss. Le temps de rampe d’accélération est utilisé lorsque **Perte Alim mode = Restart** est sélectionné et il doit être réglé selon les conditions requises par la machine.

<table>
<thead>
<tr>
<th>Menu PAR</th>
<th>Description</th>
<th>UM</th>
<th>Type</th>
<th>FB BIT</th>
<th>Def</th>
<th>Min</th>
<th>Maxi</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>22.8.2</td>
<td>Perte Alim tps accel</td>
<td>s</td>
<td>FLOAT</td>
<td></td>
<td>10.0</td>
<td>0.01</td>
<td>100.0</td>
<td>ERW</td>
<td>FV_</td>
</tr>
</tbody>
</table>

22.8.3 Perte Alim tps decel

Description: Configuration du temps de décélération utilisé durant le fonctionnement en Power loss.

Le temps de rampe de décélération doit être suffisamment court (en cas de petite vitesse) pour permettre au drive d’entrer rapidement en mode de régénération, dans le cas contraire l’alarme **Sous tension** s’enclenche. Si le temps de rampe de décélération est paramétré trop court le drive, lorsqu’il entre en régénération, peut ne pas réussir à contrôler la tension du Dc Link et provoquer l’intervention de l’alarme **Surtension**.

Un temps de décélération plus long est nécessaire aux grandes vitesses du moteur pour éviter l’intervention de l’alarme **Surtension**.

Le réglage de ce paramètre doit être compris entre la condition de fonctionnement à petite vitesse et à grande vitesse du moteur.

<table>
<thead>
<tr>
<th>Menu PAR</th>
<th>Description</th>
<th>UM</th>
<th>Type</th>
<th>FB BIT</th>
<th>Def</th>
<th>Min</th>
<th>Maxi</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>22.8.3</td>
<td>Perte Alim tps decel</td>
<td>s</td>
<td>FLOAT</td>
<td></td>
<td>2.0</td>
<td>0.01</td>
<td>100.0</td>
<td>ERW</td>
<td>FV_</td>
</tr>
</tbody>
</table>

22.8.4 Perte Alim Vdcref

Description: Configuration du seuil de contrôle de la tension sur la liaison CC durant l’arrêt contrôlé en l’absence de tension d’alimentation. La valeur maximum configurable est la limite de surtension du drive.

<table>
<thead>
<tr>
<th>Menu PAR</th>
<th>Description</th>
<th>UM</th>
<th>Type</th>
<th>FB BIT</th>
<th>Def</th>
<th>Min</th>
<th>Maxi</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>22.8.4</td>
<td>Perte Alim Vdcref</td>
<td>V</td>
<td>FLOAT</td>
<td></td>
<td>CALCF</td>
<td>0.0</td>
<td>CALCF</td>
<td>ERWZ</td>
<td>FV_</td>
</tr>
</tbody>
</table>

22.8.5 Perte Alim gain P

Description: Paramétrage du gain proportionnel pendant la fonction de Power loss.

Augmenter en cas d’erreur **Surtension** ; l’alarme de **Surtension** peut être prévenue même en augmentant la valeur du temps de décélération.

Augmenter si la tension de Dc Link est réglée à une valeur différente du setpoint.

<table>
<thead>
<tr>
<th>Menu PAR</th>
<th>Description</th>
<th>UM</th>
<th>Type</th>
<th>FB BIT</th>
<th>Def</th>
<th>Min</th>
<th>Maxi</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>22.8.5</td>
<td>Perte Alim gain P</td>
<td>A/V</td>
<td>FLOAT</td>
<td></td>
<td>CALCF</td>
<td>0</td>
<td>100.000</td>
<td>ERWS</td>
<td>FV_</td>
</tr>
</tbody>
</table>

22.8.6 Perte Alim Tps I

Description: Paramétrage du gain intégral pendant la fonction de Power loss.

Diminuer si la tension de Dc Link est réglée à une valeur différente du setpoint.

<table>
<thead>
<tr>
<th>Menu PAR</th>
<th>Description</th>
<th>UM</th>
<th>Type</th>
<th>FB BIT</th>
<th>Def</th>
<th>Min</th>
<th>Maxi</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>22.8.6</td>
<td>Perte Alim Tps I</td>
<td>ms</td>
<td>FLOAT</td>
<td></td>
<td>CALCF</td>
<td>1.0</td>
<td>1000.0</td>
<td>ERWS</td>
<td>FV_</td>
</tr>
</tbody>
</table>

22.8.7 Perte Alim mode

Description: Avec ce paramètre, il est possible de configurer le comportement de la fonction power loss lorsque la tension du réseau est rétablie.

Il est possible de paramétrer, si au retour de la tension du réseau le drive reste à la vitesse zéro ou se replacer au setpoint paramétré. Le drive n’est pas à même de reconnaître de manière autonome le retour de la tension du réseau, cette information doit donc être fournie par l’extérieur à l’aide de l’entrée numérique **Perte Alim src**.

<table>
<thead>
<tr>
<th>Menu PAR</th>
<th>Description</th>
<th>UM</th>
<th>Type</th>
<th>FB BIT</th>
<th>Def</th>
<th>Min</th>
<th>Maxi</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>22.8.7</td>
<td>Perte Alim mode</td>
<td>ENUM</td>
<td>Ramp down</td>
<td></td>
<td>0</td>
<td>1</td>
<td>ERWZ</td>
<td>FV_</td>
<td></td>
</tr>
</tbody>
</table>

- 0 Ramp down
- 1 Restart
Cas 1) Fin rampe et tension de réseau non rétablie
Le drive commande une décelération avec rampe paramétrée par le paramètre **Perte Alim tps decel**.
Le drive contrôlera automatiquement la tension du Dc Link et bloquera l’alarme de **Surtension**.
Si la tension du réseau n’est pas rétablie à proximité de la vitesse zéro, lorsque l’énergie régénérée n’est pas suffisante, le drive entre en alarme **Sous tension** et peut même s’arrêter.

Ramp down et tension de réseau non rétablie

![Diagramme de fonctionnement](PowerLoss_02.vsd)
Cas 2) Fin rampe et tension du réseau rétablie
Le drive commande une décélération avec une rampe paramétrée par le paramètre Perte Alim tps decel. Le drive contrôlera automatiquement la tension du Dc Link et bloquera l’alarme de Surtension. Si la tension du réseau est rétablie et qu’est appliqué le signal Tension réseau OK, le drive se portera à la vitesse zéro et restera activé à vitesse zéro. Pour repartir, il faut désactiver et activer le drive.

Ramp down et tension de réseau rétablie
Cas 3) Redémarrage et tension du réseau non rétablie
Le drive commande une décélération avec rampe paramétrée par le paramètre **Perte Alim tps decel**. Le drive contrôlera automatiquement la tension du Dc Link et bloquera l’alarme de **Surtension**.
Si la tension du réseau n’est pas rétablie à proximité de la vitesse zéro, lorsque l’énergie régénérée n’est pas suffisante, le drive entre en alarme **Sous tension** et peut même s’arrêter.

Restart et tension de réseau non rétablie

Diagramme:

- Drv enable
- Alimentation
- Vdc
- Réf vitesse
- Vitesse
- Powerloss Next active
- Powerloss Ramp down
- Powerloss Next ratio

(L’alimentation n’est pas rétablie pendant que la fonction est activée)

(La tension de réseau n’est pas rétablie)

(L’alimentation n’est pas rétablie)

(Poids de l’environnement)
Cas 4) Redémarrage et tension du réseau rétablie
Le drive commande une décélération avec rampe paramétrée par le paramètre Perte Alim tps decel. Le drive contrôlera automatiquement la tension du Dc Link et bloquera l’alarme de Surtension.
Si la tension du réseau est rétablie et qu’est appliqué le signal Tension réseau OK, le drive arrêtera immédiatement la rampe de décélération et exécutera une rampe d’accélération paramétrée par le paramètre Perte Alim tps acel pour se porter à la consigne paramétrée.

Restart et tension de réseau rétablie

![Diagram showing Restart and network tension restored](PowerLoss_05.vsd)

<table>
<thead>
<tr>
<th>Menu</th>
<th>PNR</th>
<th>Description</th>
<th>UM</th>
<th>Type</th>
<th>FB Bit</th>
<th>Def</th>
<th>Min</th>
<th>Maxi</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>22.8.8</td>
<td>3440</td>
<td>Perte Alim src</td>
<td>LINK</td>
<td>16</td>
<td>6000</td>
<td>0</td>
<td>16384</td>
<td>ERWZ</td>
<td>FV_</td>
<td></td>
</tr>
</tbody>
</table>

Avec ce paramètre, il est possible de sélectionner l’origine (source) du signal Tension réseau OK. Le signal à associer à cette fonction peut être sélectionné dans la liste de sélection “L_DIGSEL2”.
Si le signal n’est pas activé, cela signifie qu’il n’y a pas de courant (Tension réseau pas OK), par contre, si le signal est activé cela signifie qu’il y a du courant (Tension réseau OK).

Dans les conditions par défaut, l’origine du signal Perte Alim src est Zero. L’utilisateur doit connecter un capteur externe, informant le drive quant à la condition de la tension du réseau.
Si la fonction est configurée en Perte Alim mode = Restart, lorsque le signal de présence alimentation s’active (Tension réseau OK) le drive arrête la rampe de décélération et se place sur la consigne paramétrée.
En cas d’une machine ayant plusieurs driver, le signal du capteur externe doit être connecté uniquement au drive master.

22.9 - FONCTIONS/COMPARAISON

Cette fonction permet de faire la comparaison entre les deux signaux ou les grandeurs.

<table>
<thead>
<tr>
<th>Menu</th>
<th>PAR</th>
<th>Description</th>
<th>UM</th>
<th>Type</th>
<th>FB BIT</th>
<th>Def</th>
<th>Min</th>
<th>Maxi</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>22.9.1</td>
<td>3650</td>
<td>Valeur compar ED1</td>
<td>perc</td>
<td>FLOAT</td>
<td>32</td>
<td>0</td>
<td>-100.0</td>
<td>100.0</td>
<td>ERW</td>
<td>FVS</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

Configuration de la valeur numérique du premier élément de la comparaison.

<table>
<thead>
<tr>
<th>Menu</th>
<th>PAR</th>
<th>Description</th>
<th>UM</th>
<th>Type</th>
<th>FB BIT</th>
<th>Def</th>
<th>Min</th>
<th>Maxi</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>22.9.2</td>
<td>3652</td>
<td>Valeur compar ED2</td>
<td>perc</td>
<td>FLOAT</td>
<td>32</td>
<td>0</td>
<td>-100.0</td>
<td>100.0</td>
<td>ERW</td>
<td>FVS</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

Configuration de la valeur numérique du second élément de la comparaison.

<table>
<thead>
<tr>
<th>Menu</th>
<th>PAR</th>
<th>Description</th>
<th>UM</th>
<th>Type</th>
<th>FB BIT</th>
<th>Def</th>
<th>Min</th>
<th>Maxi</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>22.9.3</td>
<td>3660</td>
<td>Val comp ED1 src</td>
<td>LINK</td>
<td>32</td>
<td>3650</td>
<td>0</td>
<td>16384</td>
<td>ERW</td>
<td>FVS</td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

Sélection de l’origine (source) du signal à utiliser comme premier terme de comparaison. Les grandeurs pouvant être sélectionnées dans la fonction de comparaison figurent dans la liste de sélection “L_CMP”.

<table>
<thead>
<tr>
<th>Menu</th>
<th>PAR</th>
<th>Description</th>
<th>UM</th>
<th>Type</th>
<th>FB BIT</th>
<th>Def</th>
<th>Min</th>
<th>Maxi</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>22.9.4</td>
<td>3662</td>
<td>Val comp ED2 src</td>
<td>LINK</td>
<td>32</td>
<td>3652</td>
<td>0</td>
<td>16384</td>
<td>ERW</td>
<td>FVS</td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

Sélection de l’origine (source) du signal à utiliser comme second terme de comparaison. Les grandeurs pouvant être sélectionnées dans la fonction de comparaison figurent dans la liste de sélection “L_CMP”.

<table>
<thead>
<tr>
<th>Menu</th>
<th>PAR</th>
<th>Description</th>
<th>UM</th>
<th>Type</th>
<th>FB BIT</th>
<th>Def</th>
<th>Min</th>
<th>Maxi</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>22.9.5</td>
<td>3670</td>
<td>Fonction comparer</td>
<td>ENUM</td>
<td>Aucun</td>
<td></td>
<td>0</td>
<td>8</td>
<td>ERW</td>
<td>FVS</td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

Configuration de la fonction de comparaison à effectuer entre compar ED2 et Valeur compar ED1 qui active la sortie PAR 3676 Sortie comparer
En configurant 0, le comparateur n’est pas validé.

En configurant 1, la sortie du comparateur s’active lorsque la valeur Valeur compar ED1 est comprise dans la fenêtre résultant de la valeur Valeur compar ED2 ± la tolérance configurée par la Fenêtre comparateur.

En configurant 2, la sortie du comparateur s’active lorsque la valeur de Valeur compar ED1 n’est pas comprise dans la fenêtre résultant de la valeur Valeur compar ED2 ± la tolérance configurée par la Fenêtre comparateur.

En configurant 3, la sortie du comparateur s’active lorsque la valeur de Valeur compar ED1 est inférieure à la Valeur compar ED2.

En configurant 4, la sortie du comparateur s’active lorsque la valeur de est supérieure à la Valeur compar ED2.

En configurant 5, la sortie du comparateur s’active lorsque la valeur absolue de Valeur compar ED2 est comprise dans la fenêtre résultant de la absolue de la valeur Valeur compar ED2 ± la tolérance configurée par Fenêtre comparateur.

En configurant 6, la sortie du comparateur s’active lorsque la valeur absolue de Valeur compar ED1 n’est pas comprise dans la fenêtre résultant de la absolue de la valeur Valeur compar ED2 ± la tolérance configurée par Fenêtre comparateur.

En configurant 7, la sortie du comparateur s’active lorsque la valeur absolue de Valeur compar ED1 est inférieure à la valeur absolue de Valeur compar ED2.

En configurant 8, la sortie du comparateur s’active lorsque la valeur absolue de Valeur compar ED1 est supérieure à la valeur absolue de Valeur compar ED2.

Menu PAR Description UM Type FB BIT Def Min Maxi Acc Mod
22.9.6 3672 Fenêtre comparateur perc FLOAT 0.0 0.0 100.0 ERW FVS

Configuration de la fenêtre de tolérance pour la comparaison des signaux Valeur compar ED1 et Valeur compar ED2.

Menu PAR Description UM Type FB BIT Def Min Maxi Acc Mod
22.9.7 3674 Retard comparateur s FLOAT 0.0 0.0 30.0 ERW FVS

Configuration du temps de retard de la signalisation du résultat de la comparaison.

Menu PAR Description UM Type FB BIT Def Min Maxi Acc Mod
22.9.8 3676 Sortie comparateur BIT 16 0 0 1 ER FVS

Visualisation de l’état de la sortie du comparateur:

0 Le résultat de la comparaison configurée est négatif.
1 Le résultat de la comparaison configurée est positif
22.10 - FONCTIONS/MOT INTERNES

Les variables généralement employées sont utilisées pour l’échange de données entre les différents composants d’un système Bus On peut les comparer aux variables d’un PLC. La figure suivante décrit la structure principale du système. Avec l’aide des Pads on peut, par exemple, transmettre des informations d’un Bus de terrain vers une carte en option. Tous les Pads peuvent écrire et lire.

Les Pads peuvent aussi être utilisés pour échanger des informations avec un système d’application MDPlc téléchargé dans le drive, pour de plus amples informations voir la notice MDPlc.

Configuration de variables habituellement utilisées, 32 Bit. Les paramètres PAD peuvent être utilisés comme paramètres de soutien pour placer sur des sorties analogiques ou numériques des grandeurs écrites par un bus de terrain, ligne sérieelle, etc.
22.11 - FONCTIONS/CONTRÔLE VDC

Grâce à cette fonction, il est possible de contrôler la tension et la puissance récupérée dans le DC link pendant la phase de régénération (par exemple, pendant la rampe de freinage). Lorsque cette fonction est activée, si l’énergie régénérée par la charge pendant la phase de freinage fait augmenter la tension sur le DC link, le drive évitera l’intervention de l’alarme Sovratension en limitant le courant régénéré.

La fonction Contrôle fonct.Vdc s’active automatiquement (si le paramètre 3450 Contrôle fonct.Vdc est paramtré sur 1) lorsque la tension sur le DC link dépasse un seuil préfixé, elle dépend de la tension du réseau et inférieur au seuil de Surtension.

Ce seuil est également utilisé pour le régulateur qui contrôle la limite du courant régénéré.

La vitesse du moteur, si la fonction Contrôle fonct.Vdc est activée, pourrait ne pas suivre les temps de rampe programmés.

Si le régulateur ne réussit pas à limiter l’énergie régénérée pendant la rampe de décélération et éviter l’alarme de Surtension, il est possible de bloquer momentanément la rampe en configurant sur le paramètre 754 Blocage de rampe l’information Contr.bloc.rampe Vdc.

La fonction restera activée tant que l’énergie régénérée par la charge ne s’annule et que la tension du DC link ne descend pas au-dessous du seuil de désactivation (inférieur au seuil d’activation).

Menu PAR Description UM Type FB BIT Def Min Maxi Acc Mod

<table>
<thead>
<tr>
<th>PAR</th>
<th>Description</th>
<th>UM</th>
<th>Type</th>
<th>FB BIT</th>
<th>Def</th>
<th>Min</th>
<th>Maxi</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>22.11</td>
<td>Contrôle fonct.Vdc</td>
<td>ENUM</td>
<td>Dévalidé</td>
<td>0</td>
<td>1</td>
<td>ERWZ FVS</td>
<td>0</td>
<td>1</td>
<td>ERWZ FVS</td>
</tr>
</tbody>
</table>

Avec ce paramètre, il est possible d’activer la fonction Contrôle Vcc.

0 Dévalidé
1 Validé

En configurant 0 la fonction est désactivée : en cas de récupération d’énergie, l’alarme de Surtension intervient

En configurant 1 la fonction est activée : en cas de récupération d’énergie la fonction s’activera en essayant de contrôler le courant régénéré par le moteur et en bloquant l’intervention de l’alarme de Surtension.

Menu PAR Description UM Type FB BIT Def Min Maxi Acc Mod

<table>
<thead>
<tr>
<th>PAR</th>
<th>Description</th>
<th>UM</th>
<th>Type</th>
<th>FB BIT</th>
<th>Def</th>
<th>Min</th>
<th>Maxi</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>22.11</td>
<td>Contrôle gain P Vdc</td>
<td>A/V</td>
<td>FLOAT</td>
<td>CALCF</td>
<td>0.0</td>
<td>100.000</td>
<td>ERWS FVS</td>
<td>0.0</td>
<td>100.000</td>
</tr>
</tbody>
</table>

Paramétrage du gain proportionnel utilisé pendant la fonction Contrôle fonct.Vdc. La valeur paramétrée doit être augmentée, en cas d’intervention de l’alarme de Surtension, Il est possible de prévenir l’alarme de Surtension même en allongeant la rampe de décélération. La valeur de ce paramètre doit être augmentée même si la tension du DC link a été réglée sur une valeur différente du setpoint

Menu PAR Description UM Type FB BIT Def Min Maxi Acc Mod

<table>
<thead>
<tr>
<th>PAR</th>
<th>Description</th>
<th>UM</th>
<th>Type</th>
<th>FB BIT</th>
<th>Def</th>
<th>Min</th>
<th>Maxi</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>22.11</td>
<td>Tps.contrôle I Vdc</td>
<td>ms</td>
<td>FLOAT</td>
<td>CALCF</td>
<td>1.0</td>
<td>1000.0</td>
<td>ERWS FVS</td>
<td>1.0</td>
<td>1000.0</td>
</tr>
</tbody>
</table>

Paramétrage du temps intégral utilisé pendant la fonction Contrôle fonct.Vdc. La valeur paramétrée doit être diminuée si la tension du DC link a été réglée à une valeur différente du setpoint.
22.12 - FONCTIONS/CONTRÔLE FREIN

Grâce à cette fonction, il est possible de commander le frein de stationnement du moteur.

Ne pas utiliser simultanément la fonction Contr.fonct frein et la fonction CONTRÔLE FREIN, car cette dernière, si elle est activée avant la commande Start, essaie d’effectuer la phase de synchronisation avec la vitesse du moteur avec le frein fermé.

Menu	PAR	Description	UM	Type	FB	BIT	Def	Min	Maxi	Acc	Mod
22.12.1 | 3170 | Contr.fonct frein | ENUM | Dévalidé | 0 | 3 | ERWZ | FVS

Avec ce paramètre, il est possible d’activer la fonction Contr.fonct frein.

- 0 Dévalidé
- 1 Standard
- 2 Mode levage 1
- 3 Mode levage 2

En configurant 0 la fonction est désactivée.
En réglant la valeur sur 1, la fonction Standard est activée.
En réglant la valeur sur 2, la fonction Mode levage 1 dédiée aux applications de levage avec le drive standard est activée.
En réglant la valeur sur 3, la fonction Mode levage 2 dédiée aux applications de levage avec le drive doté d’application spéciale “Positionneur” est activée.

Dans la modalité “Mode levage 1”, sont utilisés tous les paramètres compris entre PAR 3170 et PAR 3186, alors que dans la modalité “Mode levage 2”, sont également utilisés les paramètres PAR 3188 et 3190, alors que le paramètre 3182 est sans effet (dans la mesure où est prise en compte la valeur de “couple” et non pas la valeur de “courant”). Si le drive se trouve dans la modalité de régulation “U/f”, il est uniquement possible de sélectionner “Standard” et “Mode levage 1”.

Si la modalité “Mode levage 2” est activée et que le drive se trouve en “Vect Flux CL” ou “Vect Flux OL”, en passant à “Contrôle V/f” la modalité de contrôle frein (PAR 3170) est automatiquement désactivée.

En fonction de la modalité de contrôle de la régulation, sont possibles les sélections suivantes:

1) Uf control -> “Standard” ; “Mode levage 1” (pour moteurs asynchrones)
2) Flux Vect B.F. -> “Standard” ; “Mode levage 1” ; “Mode levage 2”
3) Flux Vect B.O. -> “Standard” ; “Mode levage 1” ; “Mode levage 1”

Phase d’ouverture
Phase d’ouverture:
Lorsque le drive reçoit la commande Start, il ouvre immédiatement le frein et pour s’assurer que ce dernier est effectivement ouvert, il bloque les consignes pendant un temps programmable sur le paramètre 3172 Tps.ouv. frein.

Phase de fermeture:
Lorsque le drive reçoit la commande Stop et le signal consigne = 0, après un temps programmable sur le paramètre 3174 Tps.ferm.frein, il ferme le frein de stationnement. Il faut paramétrer dans le paramètre 3174 Tps.ferm.frein une valeur suffisamment longue pour être sûrs que le moteur est effectivement arrêté avant d’activer le frein.

Si la fonction est activée, l’intervention d’une ou de plusieurs alarmes ou la désactivation du drive entraîne immédiatement la fermeture du frein.

Modalité “Hoist mode 1”
A l’aide du paramètre PAR 3194 Brake ramp freeze, il est possible de geler la référence de vitesse pendant les phases d’ouverture/fermeture du frein.

Si PAR 3194 = “Dévalidé”, le mode “Hoist mode 1” n’utilise pas le gel de la référence de vitesse.

Si PAR 3194 Brake ramp freeze est configuré sur “Dévalidé”, le mode “Hoist mode 1” inclut la fonction liée au gel de la référence de vitesse (voir schéma ci-dessous).
Phase d’ouverture:
Réglage des paramètres 3172, 3176, 3182, 3184, 3186.

Une fois que le drive se trouve dans les conditions de “Drive prêt” et “Start” (après des commandes d’activation et start), le frein est ouvert (à savoir qu’est augmenté le signal correspondant au PAR 3180 Contr.frein mon, qui à son tour doit être attribué à une sortie numérique) si, une fois que la référence de vitesse Vitesse ref totale (PAR 664, pris en compte comme valeur absolue) a atteint la valeur réglée sur le PAR 3176 Seuil. Vit.Ouv.frein, une autre condition est satisfaite qui est établie en réglant les paramètres 3182, 3184 et 3186. À travers le paramètre 3182 Sel.Seuil.Ouv.Frein, il est établi si doit être effectuée la comparaison avec le courant de sortie du drive (valeur 1, Cour sortie) ou avec le couple distribué (valeur 0, “Réf couple %”). À travers les paramètres 3184 Seuil.Ouv.Frein et 3186 Seuil.Ouv.Frein src, est établie la valeur du seuil sur la base de laquelle la comparaison doit être effectuée (réglage également possible à travers une entrée analogique, bus de champ, Pad, FastLink, etc.).

Si la valeur du paramètre 3182 Sel.Seuil.Ouv.Frein est égale à Intensité de sortie, le frein est ouvert dans une des 3 conditions suivantes:

- Le seuil défini par les paramètres 3184/3186 est positif et le paramètre 250 Intensité de sortie est supérieur au seuil.
- Le seuil défini par les paramètres 3184/3186 est négatif et le paramètre 250 Intensité de sortie est inférieur au seuil.
- Le seuil est nul, aussi le frein reste dans tous les cas ouvert.

Si la valeur du paramètre 3182 Sel.Seuil.Ouv.Frein est égale à “Réf couple %”, le frein est ouvert dans une des 3 conditions suivantes:

- Le seuil défini par les paramètres 3184/3186 est positif et le paramètre 2386 Consigne de couple % est supérieur au seuil.
- Le seuil défini par les paramètres 3184/3186 est négatif et le paramètre 2386 Consigne de couple % est inférieur au seuil.
- Le seuil est nul, aussi le frein reste dans tous les cas ouvert.

Les valeurs des seuils sont exprimées en pourcentage et se réfèrent aux valeurs nominales de courant ou de couple du drive.

Le paramètre 3172 Tps.ouv.frein représente un retard programmable entre le moment où intervient la double condition d’ouverture (référence de vitesse + courant ou couple) et la commande d’ouverture effective transmise par le drive.

Si, après avoir atteint la condition sur la référence de vitesse, la condition sur le courant ou le coupe n’est pas satisfaite, le drive se met en condition d’alarme Défaut frein, qui peut être gérée à travers le paramètre 4684 Action défaut frein (par défaut programmé sur Désactivé).

Phase de fermeture:
Si le drive est désactivé (y compris à cause d’une quelconque alarme gérée de façon à désactiver le drive), la commande de fermeture du frein intervient aussitôt, quelle que soit la condition de fonctionnement.

Pour la fermeture normale, il est nécessaire de régler les paramètres 3174 et 3178.

Après que le frein a été ouvert, l’on attend la commande de “Stop”, pour transmettre ensuite la commande de fermeture quand la référence de vitesse est inférieure à la valeur réglée sur le paramètre 3178 Seuil.Vit.Ferm. frein, alors que le paramètre 3174 Tps.ferm.frein permet de programmer un retard entre la condition de fermeture et la commande effective de fermeture transmise par le drive. Après la condition de fermeture, à l’intérieur de l’intervalle temporel défini par Tps.ferm.frein, il est également possible de faire redémarrer le drive à travers la commande normale de “Start”. Dans ce cas, le décompte du temps est remis à zéro et le drive se met à nouveau en attente de la condition de fermeture, enclenché avec une nouvelle commande de “Stop”.

Dans U/f control , compte tenu de l’absence de contrôle précis sur la vitesse réelle et sur le couple, l’alarme ‘Pert Rétroac’ n’est pas gérée ; il est par conséquent nécessaire d’envisager l’utilisation d’éventuels contrôles externes au drive pour détécter la chute d’une charge suspendue.
Modalité “Mode levage 2” :
Cette modalité est utilisable uniquement quand l’application “Positionneur” est installée sur le drive.

Phase d’ouverture:

Réglage des paramètres 3172, 3176, 3184, 3186, 3188 et 2382.
Le paramètre 3182 Sel.Seuil.Ouv.Frein n’est pas pris en compte, dans la mesure où indépendamment de sa valeur, les grandeurs prises en compte sont toujours à entendre comme “couple” et non comme “courant” (puisque le positionneur peut être utilisé uniquement dans la modalité Flux Vect B.F.).

Quand intervient une transition 0->1 du signal “Drive prêt” (activation du drive) la commande d’ouverture du frein est aussitôt transmise. Au même moment, le paramètre 3192 Visu.Seuil.Ouv.Frein, conjointement au bloc CONFIG COUPLE, commence à augmenter de la valeur 0 jusqu’à la valeur de seuil définie en sortie au sélecteur associé au couple de paramètres 3184/3186. Cette valeur augmente avec un temps de rampe de montée d’une durée programmable sur le paramètre 3188 Temps couple frein. Le paramètre 3188 doit être réglé sur une valeur proche du retard d’ouverture du frein (à savoir le temps le frein met à s’ouvrir à compter de la commande d’ouverture). Cette rampe est contrôlable à travers le paramètre 2392 Visu cons couple 1, visible
La commande de Start du positionneur (présente dans la liste des commandes de l’application “Positionneur”) provoque l’augmentation de la valeur du paramètre 664 Vitesse ref totale. Quand cette référence de vitesse a atteint le seuil défini par le paramètre 3176 Seuil.Vit.Ouv.frein (et dans tous les cas pas avant que ne se soit écoulée une durée égale au PAR 3172 Tps.ouv.frein, mesurée à partir de l’ouverture du frein), la valeur de pré-couple injecté (3192 Visu.Seuil.Ouv.Frein) après l’ouverture est ramené à 0 avec une rampe de descente d’une durée égale à la valeur du PAR 3188 Temps couple frein.

Dans la phase transitoire d’ouverture, le “positionneur” pourrait générer un référencé de vitesse supérieure au seuil “Vitesse ouvert frein”, susceptible de déclencher le retrait du pré-couple (en estimant par erreur l’enclenchement d’un positionnement). Pour éviter cette éventualité, il est possible de régler le paramètre 3172 Tps. ouv.frein, en imposant que la comparaison sur la référence de vitesse soit effectuée après un certain intervalle de temps.

Dans cette modalité de fonctionnement, l’alarme “Défaut frein” ne peut jamais intervenir dans la mesure où elle n’est pas prévue dans la modalité sélectionnée “Mode levage 2”.

Phase de fermeture:

Quand le drive est désactivé (y compris à cause d’une quelconque alarme gérée de façon à désactiver le drive), la commande de fermeture du frein intervient aussitôt, quelle que soit la condition de fonctionnement. Pour la fermeture normale, il est nécessaire de régler les paramètres 3174, 3178 et 3190.

Une fois que la phase d’ouverture du frein est terminée et une fois que s’est écoulée une durée au moins égale à la valeur de 3190 Attente ferm frein (mesurée à partir de l’instant de fin du retrait du pré-couple), l’on attend que la référence de vitesse soit inférieure à la valeur réglée sur le PAR 3178 Seuil.Vit.Ferm.frein.

Le paramètre 3174 Tps.ferm.frein permet de programmer un retard entre la condition de fermeture et la commande effective de fermeture du frein transmise par le drive.

Une fois effective la condition de fermeture du frein (à l’intérieur de l’intervalle temporelle défini par Tps.ferm. frein), il est également possible de faire redémarrer le drive à travers une nouvelle commande de positionnement ; dans ce cas, le décompte du temps est remis à zéro et le drive se remet en attente de la condition de fermeture, correspondant à une valeur de la référence de vitesse inférieure à Seuil.Vit.Ferm.frein et après que ce soit écoulée une durée égale à Attente ferm frein.

Le paramètre 3190 Attente ferm frein peut par conséquent être raisonnablement programmé sur une valeur à peine inférieure à la durée d’un positionnement. Cela assure en effet que pendant sa durée la référence de vitesse puisse également passer en deçà du seuil de fermeture Seuil.Vit.Ferm.frein sans que la commande de fermeture ne soit transmise.

Tableau des paramètres réglables

<table>
<thead>
<tr>
<th>Numéro</th>
<th>Description</th>
<th>UM</th>
<th>Type</th>
<th>FB</th>
<th>BIT</th>
<th>Def</th>
<th>Min</th>
<th>Maxi</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>22.12.2</td>
<td>3172 Tps.ouv.frein</td>
<td>s</td>
<td>FLOAT</td>
<td>FB</td>
<td>BIT</td>
<td>0.20</td>
<td>0.0</td>
<td>60.0</td>
<td>ERW</td>
<td>FVS</td>
</tr>
<tr>
<td></td>
<td>Réglage du temps d’attente pour l’ouverture d’un frein mécanique externe.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22.12.3</td>
<td>3174 Tps.ferm.frein</td>
<td>s</td>
<td>FLOAT</td>
<td>FB</td>
<td>BIT</td>
<td>0.20</td>
<td>0.0</td>
<td>60.0</td>
<td>ERW</td>
<td>FVS</td>
</tr>
<tr>
<td></td>
<td>Paramétrage du temps d’attente pour atteindre la vitesse zéro du moteur avant la fermeture du frein.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22.12.4</td>
<td>3176 Seuil.Vit.Ouv.frein</td>
<td>rpm</td>
<td>INT16</td>
<td>FB</td>
<td>BIT</td>
<td>0</td>
<td>0</td>
<td>CALCI</td>
<td>ERW</td>
<td>FVS</td>
</tr>
<tr>
<td></td>
<td>Réglage de la valeur du seuil de vitesse d’ouverture frein.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22.12.5</td>
<td>3178 Seuil.Vit.Ferm.frein</td>
<td>rpm</td>
<td>INT16</td>
<td>FB</td>
<td>BIT</td>
<td>0</td>
<td>0</td>
<td>CALCI</td>
<td>ERW</td>
<td>FVS</td>
</tr>
<tr>
<td></td>
<td>Réglage de la valeur du seuil de vitesse de fermeture frein.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22.12.6</td>
<td>3194 Brake ramp freeze</td>
<td>ENUM</td>
<td>Dévalidé</td>
<td>FB</td>
<td>BIT</td>
<td>0</td>
<td>1</td>
<td>ERWZ</td>
<td>FVS</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ce paramètre permet de “geler” la référence de vitesse pendant les phases d’ouverture/fermeture du frein en mode “Hoist Mode 1”.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0 Dévalidé</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1 Validité</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
22.12.7 3182 Sel.Seuil.Ouv.Frein

Sélection du type de comparaison entre la valeur du seuil d'ouverture frein et la valeur de couple ou de courant de sortie du drive.

0 Cons couple %
1 Intens sortie

22.12.8 3184 Seuil.Ouv.Frein

Valeur du seuil à hauteur de laquelle la comparaison doit être effectuée.

22.12.9 3186 Seuil.Ouv.Frein src

Sélection de l’origine (source) du signal à utiliser. Les grandeurs pouvant être sélectionnées dans la fonction de comparaison figurent dans la liste de sélection “L_TCREF”.

22.12.10 3188 Temps couple frein

Temps de rampe du paramètre 3192 Visu.Seuil.Ouv.Frein pour passer de la valeur jusqu’à la valeur de seuil défini par les PAR 3184 / 3186 (uniquement avec sélection “Mode levage 2”).

22.12.11 3190 Attente ferm frein

22.13 - FONCTIONS/FACTEUR DIMENS.

Le facteur Fonction permet d’exprimer la vitesse du drive dans une unité de mesure autre que les tpm, habituellement dénommée unité utilisateur. Pour convertir la valeur de tpm en unité utilisateur, on applique un facteur de conversion qui peut être configuré comme nombre fractionnaire à l’aide de deux paramètres :

PAR 3900 Dim factor num et PAR 3902 Dim factor den.

La formule de conversion est
\[
\text{rpm} = \frac{\text{Dim factor num}}{\text{Dim factor den}} \times \text{unité utilisateur}
\]

L’unité de mesure affichée pour les paramètres exprimés en unité utilisateur peut être modifiée à travers le clavier ou le configurateur GF-eXpress. Le texte de l’unité de mesure est programmé dans le PAR 3904 Dim factor text, étant un UNIT32, peut contenir jusqu’à 4 caractères maximum.

Les valeurs par défaut des paramètres qui définissent le facteur fonction sont :

PAR 3900 Dim factor num = 1 ; PAR 3902 Dim factor den = 1 ; PAR 3904 Dim factor text = “rpm”

Les paramètres exprimés par défaut en tpm qui peuvent être affichés en unité utilisateur sont les suivants :

<table>
<thead>
<tr>
<th>PAR</th>
<th>Description</th>
<th>UM</th>
<th>UU</th>
</tr>
</thead>
<tbody>
<tr>
<td>628</td>
<td>Gestion des rampes</td>
<td>rpm</td>
<td>X</td>
</tr>
<tr>
<td>664</td>
<td>Vitesse ref totale</td>
<td>rpm</td>
<td>X</td>
</tr>
<tr>
<td>260</td>
<td>Vitesse moteur</td>
<td>rpm</td>
<td>X</td>
</tr>
<tr>
<td>600</td>
<td>Dig ramp ref 1</td>
<td>rpm</td>
<td>X</td>
</tr>
<tr>
<td>602</td>
<td>Dig ramp ref 2</td>
<td>rpm</td>
<td>X</td>
</tr>
<tr>
<td>604</td>
<td>Dig ramp ref 3</td>
<td>rpm</td>
<td>X</td>
</tr>
<tr>
<td>620</td>
<td>Ramp ref 1 visu</td>
<td>rpm</td>
<td>X</td>
</tr>
<tr>
<td>622</td>
<td>Ramp ref 2 visu</td>
<td>rpm</td>
<td>X</td>
</tr>
<tr>
<td>624</td>
<td>Ramp ref 3 visu</td>
<td>rpm</td>
<td>X</td>
</tr>
<tr>
<td>626</td>
<td>Ramp ref total visu</td>
<td>rpm</td>
<td>X</td>
</tr>
<tr>
<td>634</td>
<td>Lim.haut Rampe ref</td>
<td>rpm</td>
<td>X</td>
</tr>
<tr>
<td>636</td>
<td>Lim.bas Rampe ref</td>
<td>rpm</td>
<td>X</td>
</tr>
<tr>
<td>630</td>
<td>Saut de frequency</td>
<td>rpm</td>
<td></td>
</tr>
</tbody>
</table>
134 ADV200 • Description des fonctions et liste des paramètres

<table>
<thead>
<tr>
<th>Valeur initiale</th>
<th>Valeur à programmer</th>
<th>Ordre</th>
<th>Excédent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Den = 1 Num = 1</td>
<td>Den 30 – Num 10</td>
<td>Num – Den</td>
<td>Aucune</td>
</tr>
<tr>
<td>Den = 1 Num = 1</td>
<td>Den 30 – Num 10</td>
<td>Den – Num</td>
<td>Oui</td>
</tr>
<tr>
<td>Den = 30 Num = 10</td>
<td>Den 1 – Num 1</td>
<td>Num – Den</td>
<td>Oui</td>
</tr>
<tr>
<td>Den = 30 Num = 10</td>
<td>Den 1 – Num 1</td>
<td>Den – Num</td>
<td>Aucune</td>
</tr>
</tbody>
</table>

Si un excédent se produit lors de la programmation de l’un des deux paramètres, le second est automatiquement configuré avec la même valeur, en faisant en sorte que la valeur de conversion résultante soit égale à 1.

Lancement du configurateur

Si l’on transmet les paramètres depuis le configurateur GF-eXpress, l’ordre dans lequel ils sont écrits est prédéfini : il est donc possible qu’un excédent intermédiaire se produise durant la programmation de valeurs valables.

Si la valeur du premier paramètre transmis par le configurateur suffit à générer un excédent, on configure la valeur du second paramètre égale à la première (ceci force provisoirement le facteur de dimension sur 1) ; l’écriture successive du second paramètre ramènera donc le facteur dimensionnel à la valeur correcte.

Modification de la Déviation maximale de vitesse

Lorsque l’on modifie le PAR 680 **Vitesse pour 10V**, pour éviter un excédent, les paramètres PAR 3900 **Dim factor num** et PAR 3902 **Dim factor den** sont forcés sur 1.
22.13 - FONCTIONS/CONTROL MODE

<table>
<thead>
<tr>
<th>Menu</th>
<th>PAR</th>
<th>Description</th>
<th>UM</th>
<th>Type</th>
<th>FB BIT</th>
<th>Def</th>
<th>Min</th>
<th>Maxi</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>22.13.1</td>
<td>3900</td>
<td>Dim facteur num</td>
<td>UINT16</td>
<td>1</td>
<td>1</td>
<td>65535</td>
<td>ERW</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Facteur dimensionnel à numérateur.

<table>
<thead>
<tr>
<th>Menu</th>
<th>PAR</th>
<th>Description</th>
<th>UM</th>
<th>Type</th>
<th>FB BIT</th>
<th>Def</th>
<th>Min</th>
<th>Maxi</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>22.13.2</td>
<td>3902</td>
<td>Dim facteur den</td>
<td>UINT16</td>
<td>1</td>
<td>1</td>
<td>65535</td>
<td>ERW</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Facteur dimensionnel à dénominateur.

<table>
<thead>
<tr>
<th>Menu</th>
<th>PAR</th>
<th>Description</th>
<th>UM</th>
<th>Type</th>
<th>FB BIT</th>
<th>Def</th>
<th>Min</th>
<th>Maxi</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>22.13.3</td>
<td>3904</td>
<td>Dim factor text</td>
<td>UINT32</td>
<td>7172210</td>
<td>0</td>
<td>0</td>
<td>ERW</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

L’unité de mesure affichée pour les paramètres exprimés en unité utilisateur peut être modifiée par l’utilisateur, mais uniquement à travers le configurateur. Le texte de l’unité de mesure peut contenir jusqu’à 4 caractères.

22.14 - FONCTIONS/CONTROL MODE

<table>
<thead>
<tr>
<th>Menu</th>
<th>PAR</th>
<th>Description</th>
<th>UM</th>
<th>Type</th>
<th>FB BIT</th>
<th>Def</th>
<th>Min</th>
<th>Maxi</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>22.14</td>
<td>556</td>
<td>Mode de pilot sel</td>
<td>ENUM</td>
<td>Rampe</td>
<td>0</td>
<td>2</td>
<td>ERWZ</td>
<td>F_S</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Configuration du mode de fonctionnement du drive.

Mode **Flux Vect B.F.**

0 Couple

1 Vitesse

2 Rampe

Lors du **contrôle de couple (0 - Couple)** la consigne et la charge du moteur déterminent la vitesse et le sens de rotation du moteur. L’on peut configurer des limites de couple symétriques, pour chaque sens de rotation et pour le fonctionnement comme moteur/générateur. Ce type de contrôle n’est disponible qu’en mode de réglage **Flux Vect B.F.**. Dans ce mode, la fonction **Rampe** n’est pas utilisée pour générer la consigne de vitesse du drive et par conséquent elle peut être utilisée en mode stand-alone.

Dans le **contrôle de vitesse (1 - Vitesse)** la consigne arrive directement après le circuit de rampe, permettant ainsi une réponse extrêmement rapide aux variations du signal, idéal dans les applications qui nécessitent d’une réponse dynamique élevée. Ce type de contrôle est disponible dans les molalités de réglage **Flux Vect B.F.**. Dans ce mode, la fonction **Rampe** n’est pas utilisée pour générer la consigne de vitesse du drive et elle peut donc être utilisée en mode stand-alone.

Dans le **contrôle en rampe (2 - Rampe)** la consigne de vitesse est appliquée à l’entrée du bloc “Rampe” et
elle est produite par le bloc “Ramp ref”, qui permet de configurer non seulement les temps d’accélération/ décélération mais aussi le Rampe type (linéaire ou à S avec jerks personnalisables). Ce type de contrôle et disponible dans tous les modes de réglage.

<table>
<thead>
<tr>
<th>Menu</th>
<th>PAR</th>
<th>Description</th>
<th>UM</th>
<th>Type</th>
<th>FB BIT</th>
<th>Def</th>
<th>Min</th>
<th>Maxi</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>22.14.2</td>
<td>6200</td>
<td>Mode Ctrl src</td>
<td>LINK</td>
<td>16</td>
<td>556</td>
<td>0</td>
<td>16384</td>
<td></td>
<td>ERWZ</td>
<td>F_S</td>
</tr>
</tbody>
</table>

Sélection de la source de la fonction **Mode de commande**. Le paramètre à associer à cette fonction doit être choisi dans la liste de sélection “L_CTRLMODE”.

Si PAR 6200 = “Mode de pilot sel”, la valeur de PAR 6208 est configurée via PAR 556.
Si PAR 6200 = “Visu Mode Ctrl sel”, la valeur de PAR 6208 est configurée via PAR 6206.
Si PAR 6200 = “PAD X”, la valeur du PAD sera prise en compte.

<table>
<thead>
<tr>
<th>Menu</th>
<th>PAR</th>
<th>Description</th>
<th>UM</th>
<th>Type</th>
<th>FB BIT</th>
<th>Def</th>
<th>Min</th>
<th>Maxi</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>22.14.3</td>
<td>6202</td>
<td>Mode Ctrl sel 0 src</td>
<td>LINK</td>
<td>16</td>
<td>6000</td>
<td>0</td>
<td>16384</td>
<td></td>
<td>ERWZ</td>
<td>F_S</td>
</tr>
<tr>
<td>22.14.4</td>
<td>6204</td>
<td>Mode Ctrl sel 1 src</td>
<td>LINK</td>
<td>16</td>
<td>6000</td>
<td>0</td>
<td>16384</td>
<td></td>
<td>ERWZ</td>
<td>F_S</td>
</tr>
</tbody>
</table>

Sélection de la fonction **Mode de commande** au travers des entrées numériques :

<table>
<thead>
<tr>
<th>Mode Ctrl sel 0 src</th>
<th>Mode Ctrl sel 1 src</th>
<th>Flux Vect B.O.</th>
<th>Flux Vect B.F.</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>Couple</td>
<td>Rampe</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>Vitesse</td>
<td>Vitesse</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>Rampe</td>
<td>Rampe</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Menu</th>
<th>PAR</th>
<th>Description</th>
<th>UM</th>
<th>Type</th>
<th>FB BIT</th>
<th>Def</th>
<th>Min</th>
<th>Maxi</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>22.14.5</td>
<td>6206</td>
<td>Visu Mode Ctrl sel</td>
<td>UINT32</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>ER</td>
<td>F_S</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Affichage de la sélection configurée via PAR 6202 **Mode Ctrl sel 0 src** et PAR 6204 **Mode Ctrl sel 1 src**.

<table>
<thead>
<tr>
<th>Menu</th>
<th>PAR</th>
<th>Description</th>
<th>UM</th>
<th>Type</th>
<th>FB BIT</th>
<th>Def</th>
<th>Min</th>
<th>Maxi</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>22.14.6</td>
<td>6208</td>
<td>Visu mode Ctrl</td>
<td>ENUM</td>
<td>Couple</td>
<td>0</td>
<td>0</td>
<td>ER</td>
<td>F_S</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Affichage de la sélection configurée via PAR 6200 **Mode Ctrl src**, PAR 6202 **Mode Ctrl sel 0 src** et PAR 6204 **Mode Ctrl sel 1 src**.

- 0 Couple
- 1 Vitesse
- 2 Rampe
22.15 - FONCTIONS/TEMP CONTROL

Cette fonction inclut essentiellement deux comparateurs avec hystérésis.

A travers la gestion de sondes de température, telles que PTC, PT100 ou KTY84, il est possible de commander, via les sorties logiques de l’entraînement, des électrovannes extérieures pour l’activation des systèmes de refroidissement de l’entraînement et/ou du moteur.

La fonction TEMP CONTROL agit uniquement en fonction de la température mesurée par la sonde correspondante, à partir de laquelle elle commande la sortie logique. Elle n’effectue aucun contrôle en ce qui concerne les conditions de sécurité du système (formation de condensation/sur-humidité). Il appartient à l’utilisateur de s’assurer, à l’aide de systèmes externes au variateur, de la sécurité des conditions de fonctionnement.

![Diagramme de fonctionnement]

Tableau des paramètres

<table>
<thead>
<tr>
<th>Menu</th>
<th>PAR</th>
<th>Description</th>
<th>UM</th>
<th>Type</th>
<th>FB</th>
<th>BIT</th>
<th>Def</th>
<th>Min</th>
<th>Maxi</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>22.15.1</td>
<td>3500</td>
<td>Temp variateur src</td>
<td>LINK</td>
<td>32</td>
<td>6000</td>
<td>0</td>
<td></td>
<td>16384</td>
<td>ERW</td>
<td>FVS</td>
<td></td>
</tr>
<tr>
<td>22.15.2</td>
<td>3504</td>
<td>Seuil temp variateur</td>
<td>degC</td>
<td>INT32</td>
<td>45</td>
<td>1</td>
<td>100</td>
<td></td>
<td>ERW</td>
<td>FVS</td>
<td></td>
</tr>
<tr>
<td>22.15.3</td>
<td>3508</td>
<td>Seuil hys variateur</td>
<td>degC</td>
<td>INT32</td>
<td>2</td>
<td>0</td>
<td></td>
<td></td>
<td>CALCI</td>
<td>ERW</td>
<td>FVS</td>
</tr>
<tr>
<td>22.15.4</td>
<td>3502</td>
<td>Temp moteur src</td>
<td>LINK</td>
<td>32</td>
<td>6000</td>
<td>0</td>
<td></td>
<td>16384</td>
<td>ERW</td>
<td>FVS</td>
<td></td>
</tr>
<tr>
<td>22.15.5</td>
<td>3506</td>
<td>Seuil temp moteur</td>
<td>degC</td>
<td>INT32</td>
<td>45</td>
<td>1</td>
<td>100</td>
<td></td>
<td>ERW</td>
<td>FVS</td>
<td></td>
</tr>
<tr>
<td>22.15.6</td>
<td>3510</td>
<td>Seuil hyst moteur</td>
<td>degC</td>
<td>INT32</td>
<td>2</td>
<td>0</td>
<td></td>
<td></td>
<td>CALCI</td>
<td>ERW</td>
<td>FVS</td>
</tr>
</tbody>
</table>

Sélection de l’origine du signal (source) pour la gestion d’un signal de température. Le paramètre à associer à cette fonction doit être choisi dans la liste de sélection "L_TEMPCTRL".

Configuration du seuil d’intervention du comparateur à hystérésis.

Configuration d’une plage de tolérance relative au seuil d’intervention configuré dans le PAR 3504.

Sélection de l’origine du signal (source) pour la gestion d’un signal de température. Le paramètre à associer à cette fonction doit être choisi dans la liste de sélection "L_TEMPCTRL".

Configuration du seuil d’intervention du comparateur à hystérésis.

Configuration d’une plage de tolérance relative au seuil d’intervention configuré dans le PAR 3506.
La fonction LC assure le contrôle anti-condensation d’un entraînement refroidi par eau (ADV200-LC).
Elle permet d’établir si les conditions d’exploitation sont sûres, de commander l’électrovanne du circuit de refroidissement et, si nécessaire, d’indiquer la température admise du liquide de refroidissement.
En fonction de l’humidité et de la température ambiante mesurées par des capteurs intégrés, le point de rosée (“dew point”) est déterminé et comparé avec la température du liquide de refroidissement, mesurée à l’aide d’une sonde située sur la plaque de l’entraînement, à proximité du collecteur d’entrée, ou bien par une sonde externe.
Si la température du liquide de refroidissement est inférieure au point de rosée, l’indicateur de moniteur “Condensation” est activé.
A travers la sortie logique de l’entraînement, l’indicateur de moniteur est généralement utilisé pour commander l’électrovanne du circuit de refroidissement.
Si la condition de “Condensation” persiste pendant une durée programmable, une alarme est activée.
Les conditions de sécurité sont reprises dans le graphique “Safe operating area” ci-dessous.
La fonction LC détecte aussi la condition de “Sur-humidité”, en gérant l’alarme correspondante.

Contrôle “anti-condensation”
- Le point de rosée, disponible sous forme de paramètre de moniteur IPA 6032 Point Temp.rosée, est déterminé en mesurant les paramètres Température de l’air IPA 6022 et Humidité de l’air IPA 6020
- Le sélecteur associé au paramètre IPA 6040 Temp.liquide.src permet de configurer la sonde utilisée pour mesurer la température du liquide de refroidissement.
- Si IPA 6040 Temp.liquide.src = Admin.temp.liquide (IPA 6038, configuration par défaut), la mesure est réalisée à l’aide d’une sonde placée sur la plaque de l’entraînement, à proximité du collecteur d’entrée.
- Si IPA 6040 Temp.liquide.src = E ana 1X temp visu ou 2X, la mesure est réalisée à l’aide d’une sonde extérieure (PT100, PTC ou KTY84), branchée sur la carte optionnelle EXP-IO-SENS-100-ADV (voir le manuel de l’option).
- La température du liquide de refroidissement est affichée dans le paramètre de moniteur IPA 6042 Affich.Temp. Liquide. Si la température du liquide est inférieure au point de rosée IPA 6032, majoré de l’offset IPA 6048 Offset rosée OFF, pendant une durée supérieure àIPA 4576 Retard condensation (par défaut = 5s), l’indicateur de moniteur IPA 6044 Etat condensation est activé. L’indicateur peut être déporté sur une sortie logique pour la commande de la vanne externe, utilisée pour gérer la circulation du liquide de refroidissement.
 Indicateur désactivé = niveau sortie logique = L = vanne ouverte

Contrôle de la température du liquide :
Indicateur activé = **niveau sortie logique = H = vanne fermée**

La sortie numérique peut être configurée dans le menu **SORTIES DIGITALES**. Par exemple : IPA 1314 **Sortie dig 3 src = Condensation** (la sortie sera disponible sur la borne 13 de la carte de régulation).

Si nécessaire, il est possible d'inverser l'état d'exploitation de la sortie logique : IPA 1434 **Inv Sortie dig 3X = On.**

Remarque : il est néanmoins nécessaire d'évaluer l'absorption de la bobine de la vanne de circulation en fonction de la capacité de charge de la sortie logique. Au cas où l'absorption dépasserait la capacité de charge, il sera nécessaire d'utiliser un relais externe. Dans ce cas, il est conseillé d'utiliser un relais statique.

- La valeur résultant de la somme entre IPA 6032 **Point Temp.rosée** et IPA 6048 **Offset rosée ON** est indiquée dans le paramètre IPA 6036 **Consign.temp.liquide** ; elle correspond à la température minimum admise pour le liquide de refroidissement. Cette valeur peut être utilisée en guise de référence pour un contrôleur/réglage externe.

- Si l'état de "**Condensation**" persiste pendant une durée supérieure au retard défini dans le menu **ALARMS CONFIG**, paramètre IPA 4592 **Temp.condensation** (par défaut = 30s), la condition d'alarme [32] **Condensation** est signalée en association avec le contrôleur/contrôleur externe.

- **Si l'installation comporte un contrôleur de température du liquide de refroidissement**, la durée programmée dans IPA 4592 **Temp.condensation** doit correspondre au temps minimum nécessaire pour que la température atteigne la valeur de PAR 6036 **Consign.temp.liquide**.

Les activités normalement prévues en cas d’alarme de condensation sont les suivantes :

1) IPA 4590 **Action condensation = Désactiver** (programmation par défaut)

Dans ce cas, la condition est inscrite dans la liste et dans l'historique des alarmes ; le relais Entraînement OK s'ouvre et le variateur et désactivé. Le moteur s'arrête en fonction de l'inertie, des frottements et du couple résistant appliqué sur l'axe.

Il est conseillé d'utiliser l'état OK du relais pour ouvrir le télérupteur de ligne du variateur.

Pour faire redémarrer l'entraînement, en plus de rétablir la sécurité des conditions d’exploitation, il est nécessaire d'acquitter l'alarme (déjà le clavier, l'entrée logique ou le bus de champ).

2) IPA 4590 **Action condensation = Signaler**

Dans ce cas, la condition est inscrite dans la liste et dans l'historique des alarmes, mais les commandes vers le variateur ne sont pas modifiées. Le moteur continue d'être commandé selon les références programmées.

Il appartient à l'utilisateur de prendre toutes les mesures aptes à éviter d'éventuelles pannes de l'entraînement : désactiver le variateur et ouvrir le télérupteur de ligne.

Si la température du point de rosée égale ou supérieure à PAR 6036 **Consign.temp.liquide**, l'alarme sera automatiquement annulée.

- **La condition d’"alarme condensation" peut être déportée sur une sortie logique du variateur** :

 - **Menu ALARM CONFIG – IPA 4702 Sel Alarme digit 1 = Condensation**
 - **Menu SORTIES DIGITALES – IPA 1316 Sortie dig 4 src= Visu alarme digit 1** (la sortie sera disponible sur la borne 14 de la carte de régulation).

Le phénomène de condensation se produit lorsque la température du liquide à l’entrée du variateur est nettement inférieure à la température ambiante (intérieur de l’armoire électrique).

L’écart de température admis dépend du taux (%) d’humidité ambiante.

La température à laquelle l’air, saturé de vapeur d’eau, "précipite", est dite point de rosée (dew point). Le graphique ci-dessous peut être utilisé pour vérifier si les conditions d’exploitation (combinaison de température ambiante, humidité et température du liquide de refroidissement) sont sûres et, éventuellement, pour sélectionner la température admise du liquide de refroidissement.

Les conditions de sécurité sont obtenues lorsque le point de travail se trouve au-dessous de la courbe "Safe condition area" correspondante. Le cas échéant, il faudra prendre en augmentant la température du liquide de refroidissement (ou, éventuellement, en agissant sur la température et l'humidité ambiante). Les courbes indiquées correspondent au niveau de la mer (1013 mbars).

Remarque : L’augmentation de la température du liquide de refroidissement pourrait entraîner une réduction de 1,5% par degré du courant nominal et de surcharge du variateur au-dessus de 35°C.
En présence d’une température de l’armoire électrique de 30°C, d’une humidité relative de 40% et d’une température du liquide de refroidissement de 20°C (la courbe inférieure dans la figure ci-dessous), les conditions de fonctionnement de l’entraînement sont sûres.

En cas d’augmentation de la température ambiante à 35°C et de l’humidité relative à 60%, les conditions de fonctionnement du variateur ne seraient plus sûres. Dans ce cas, pour obtenir des conditions de fonctionnement de sécurité, la température du liquide de refroidissement devrait atteindre au moins 25°C.

Le tableau suivant (tableau du point de rosée) reprend, au format numérique, les données du graphique précédent (température d’entrée du liquide de refroidissement [°C] en fonction de la température ambiante et de l’humidité de l’air).

<table>
<thead>
<tr>
<th>Température ambiante [°C]</th>
<th>Humidité de l’air [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>10 20 30 40 50 60 70 80 90 100</td>
</tr>
<tr>
<td>-5</td>
<td>-29 -22 -18 -15 -13 -11 -8 -7 -6 -5</td>
</tr>
<tr>
<td>0</td>
<td>-26 -19 -14 -11 -8 -6 -4 -3 -2 -0</td>
</tr>
<tr>
<td>5</td>
<td>-23 -15 -11 -7 -5 -2 0 2 3 5</td>
</tr>
<tr>
<td>10</td>
<td>-19 -11 -7 -3 0 1 4 6 8 9</td>
</tr>
<tr>
<td>15</td>
<td>-18 -7 -3 1 4 7 9 11 13 15</td>
</tr>
<tr>
<td>20</td>
<td>-12 -4 1 5 9 12 14 16 18 20</td>
</tr>
<tr>
<td>25</td>
<td>-8 0 5 10 13 16 19 21 23 25</td>
</tr>
<tr>
<td>30</td>
<td>-5 1 6 10 14 18 21 24 26 28</td>
</tr>
<tr>
<td>35</td>
<td>-2 8 14 18 22 25 28 31 33 35</td>
</tr>
<tr>
<td>40</td>
<td>1 11 18 22 27 31 33 36 38 40</td>
</tr>
<tr>
<td>45</td>
<td>4 15 22 27 32 36 38 41 43 45</td>
</tr>
<tr>
<td>50</td>
<td>8 19 28 32 36 40 43 45 48 50</td>
</tr>
</tbody>
</table>

Le point de rosée dépend aussi de la pression absolue, c’est-à-dire de l’altitude d’installation de l’armoire électrique. Au-dessus du niveau de la mer (0 m), la pression atmosphérique diminue, tout comme le point de rosée. C’est pourquoi il est toujours possible de vérifier la température du liquide de refroidissement en prenant en compte les courbes et les tableaux calculés pour une altitude de 0 m.

Dans des conditions d’exploitation continues, tout variateur refroidi par liquide fonctionne à des températures inférieures par rapport à un variateur refroidi par air, au profit de la longévité des composants de puissance (par exemple, condenseurs électrolytiques et modules IGBT).

Ces derniers ont notamment été dimensionnés en supposant une utilisation continue du liquide de refroidissement, à partir des débits nominaux indiqués dans le manuel. Une utilisation discontinue du liquide de refroidissement (par exemple, pour réduire le risque de condensation) ou une utilisation continue, mais avec des débits inférieurs par rapport à ceux indiqués, peuvent réduire non seulement les performances de l’entraînement, mais aussi la longévité de certains composants.
Contrôle de “Sur-humidité”

Le capteur d’humidité intégré dans l’entraînement permet de signaler une condition non sûre et de déclencher une éventuelle alarme.

L’indication de Sur-humidité IPA 6046 est activée lorsque la valeur du paramètre IPA 6020 Humidité de l’air dépasse le seuil programmé dans le paramètre IPA 4596 Seuil plus humidité (par défaut = 85%) pendant une durée supérieure à IPA 4578 Retard plus humidité.

L’alarme interne [52] Err captHumidit, permet de détecter un éventuel problème de communication entre le capteur d’humidité et la carte de régulation de l’entraînement.

Valeur de moniteur de l’humidité de l’air, mesurée par le capteur sur la carte de puissance.

Valeur de moniteur de la température de l’air, mesurée par la carte de puissance.

Valeur de moniteur de la température de rosée en fonction des paramètres PAR 6020 et PAR 6022.

Définition d’un Offset programmable pouvant être ajouté à la valeur du point de rosée, de manière à ce que la sortie Etat condensation (IPA 6044) soit désactivée (Niveau sortie logique = L = vanne de circulation ouverte) lorsque la température du liquide (IPA 6042) est supérieure à Point Temp.rosée (IPA 6032) + Offset rosée OFF (IPA 6034).

Le paramètre IPA 6034 Offset rosée OFF ne peut être réglé sur une valeur inférieure à celle du paramètre IPA 6048 Offset rosée ON.

Définition d’un Offset programmable pouvant être ajouté à la valeur du point de rosée, de manière à ce que la sortie Etat condensation (IPA 6044) soit activée (Niveau sortie logique = H = vanne de circulation fermée) lorsque la température du liquide (IPA 6042) est inférieure à Point Temp.rosée (IPA 6032) + Offset rosée ON (IPA 6048).

Le paramètre IPA 6048 Offset rosée ON ne peut être réglé sur une valeur supérieure à celle du paramètre IPA 6034 Offset rosée OFF.

Moniteur du Setpoint de température du liquide, somme des paramètres PAR 6032 et PAR 6034.

Il s’agit de la valeur que doit atteindre la température du liquide d’entrée de refroidissement pour pouvoir rester au-dessous des courbes internes de sécurité pour éviter des situations de condensation. L’utilisateur doit agir depuis l’extérieur sur la valeur de température pour éviter des situations d’alarme.

Moniteur de la température du liquide de refroidissement à l’entrée de la plaque du dissipateur.

Sélection de la source de la valeur de la température du liquide de refroidissement.

La liste de sélection est indiquée dans L_TEMPCTRL.

Moniteur de la valeur de la température du liquide.
22.17 - FONCTIONS/MINUTEUR

Menu de gestion de deux modules Timer programmables et indépendants, afin de retarder l’effet des entrées logiques et de tous les paramètres inclus dans la liste de sélection L_DIGSEL1.

Menu PAR Description UM Type FB BIT Def Min Maxi Acc Mod
22.17.1 3550 Minut 1 src LINK 32BIT 6000 0 16384 ERW FVS
22.17.5 3560 Minut 2 src LINK 32BIT 6000 0 16384 ERW FVS

Permet d’attribuer le signal de commande à retarder à l’entrée du bloc de fonction Timer X. Les signaux utilisables pour cette fonction peuvent être configurés parmi ceux disponibles dans la liste de sélection L_DIGSEL1.

Menu PAR Description UM Type FB BIT Def Min Maxi Acc Mod
22.17.2 3552 Minut 1 Tps.Pos s FLOAT 0.10 0.0 30.0 ERW FVS
22.17.6 3562 Minut 2 Tps.Pos s FLOAT 0.10 0.0 30.0 ERW FVS

Configuration du front de retard positif.

Menu PAR Description UM Type FB BIT Def Min Maxi Acc Mod
22.17.3 3554 Minut 1 Tps.Neg s FLOAT 0.10 0.0 30.0 ERW FVS
22.17.7 3564 Minut 2 Tps.Neg s FLOAT 0.10 0.0 30.0 ERW FVS

Configuration du front de retard négatif.

Menu PAR Description UM Type FB BIT Def Min Maxi Acc Mod
22.17.4 3556 Visu.status.temps 1 INT32 0 0 0 ER FVS
22.17.8 3566 Visu.status.temps 2 INT32 0 0 0 ER FVS

Affichage de l’état de la sortie du Timer.
Les paramètres de ce menu permettent de gérer les limites de couple de l’entraînement de manière dynamique, en fonction de conditions du type On/Off, comme dans le cas, par exemple, de la vitesse du moteur (au-dessus ou au-dessous d’un certain seuil).

Menu	**PAR**	**Description**	**UM**	**Type**	**FB**	**BIT**	**Def**	**Min**	**Maxi**	**Acc**	**Mod**
22.18.1 | 2330 | Lim.de couple haut | perc | FLOAT | | 100.0 | 0.0 | CALCF | ERW | F_S
Configuration de la limite de couple supérieure.
Si ce paramètre est configuré sur une valeur inférieure à IPA 2332 Lim. de couple bas, IPA 2332 prendra automatiquement la même valeur.

22.18.2 | 2332 | Lim. de couple bas | perc | FLOAT | | 70.0 | 0.0 | CALCF | ERW | F_S
Configuration de la limite de couple inférieure.
Ce paramètre ne peut être inférieur à la valeur configurée dans le paramètre IPA 2330 Lim.de couple haut.

22.18.3 | 2334 | Rampe lim. de couple | ms | UINT16 | | 1000 | 0 | 60000 | ERW | F_S
Configuration du temps nécessaire pour passer de manière linéaire de 0% à 100% du couple nominal.

22.18.4 | 2336 | Sel.lim.couple src | LINK | 16/32 | | 976 | 0 | 16384 | ERW | F_S
 Sélection de l’origine (source) à utiliser pour gérer la limite de couple adaptatif :
Les signaux pouvant être associés à la fonction peuvent être sélectionnés dans la liste “L_DIGSEL1”.

22.18.5 | 2338 | Adapt.lim. de couple | perc | FLOAT | | 0.0 | 0.0 | 0.0 | ER | F_S
Limite de couple adaptatif en %, calculée à l’intérieur de l’entraînement en fonction du paramètre de moniteur, sélectionné dans IPA 2336 Sel.lim.couple src.
Si le paramètre de moniteur est égal à 0, IPA 2338 prendra la valeur de PA 2332 Lim. de couple bas
Si le paramètre de moniteur est égal à 1, IPA 2338 prendra la valeur de IPA 2330 Lim.de couple haut.
23 – COMMUNICATION

23.1 - COMMUNICATION/RS485

Le drive ADV200 est fourni équipé d’une porte (connecteur à bac 9 pôles D-SUB: XS) pour le raccordement de la ligne série RS485 utilisée pour communiquer point à point drive PC (à travers le logiciel de configuration GF-eXpress) ou bien pour le raccordement multidrop, où il est nécessaire d’utiliser la carte optionnelle OPT-RS485-ADV. (il est possible de raccorder jusqu’à un maximum de 20 entraînements).

Le format de la ligne série RS485 est: 8 bits donnés, aucune parité et un bit de stop.

<table>
<thead>
<tr>
<th>Menu</th>
<th>PAR</th>
<th>Description</th>
<th>UM</th>
<th>Type</th>
<th>FB</th>
<th>BIT</th>
<th>Def</th>
<th>Min</th>
<th>Maxi</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>23.1.1</td>
<td>3800</td>
<td>Adresse variateur</td>
<td>UINT16</td>
<td>1</td>
<td>1</td>
<td>255</td>
<td>ERW</td>
<td>FVS</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Configuration de l’adresse à laquelle répond le drive lorsqu’il est connecté à la ligne série RS485.

<table>
<thead>
<tr>
<th>Menu</th>
<th>PAR</th>
<th>Description</th>
<th>UM</th>
<th>Type</th>
<th>FB</th>
<th>BIT</th>
<th>Def</th>
<th>Min</th>
<th>Maxi</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>23.1.2</td>
<td>3802</td>
<td>Vitesse de com RS485</td>
<td>ENUM</td>
<td>38400</td>
<td>0</td>
<td>2</td>
<td>ERW</td>
<td>FVS</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Configuration de la vitesse de communication série RS485 (Baud Rate).

0 9600
1 19200
2 38400

<table>
<thead>
<tr>
<th>Menu</th>
<th>PAR</th>
<th>Description</th>
<th>UM</th>
<th>Type</th>
<th>FB</th>
<th>BIT</th>
<th>Def</th>
<th>Min</th>
<th>Maxi</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>23.1.3</td>
<td>3810</td>
<td>Paramètre série</td>
<td>ENUM</td>
<td>None,8,1</td>
<td>0</td>
<td>3</td>
<td>ERW</td>
<td>FVS</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Paramétrage du format des données dans la communication port série RS485.

0 None,8,1
1 None,8,2
2 Even,8,1
3 Odd,8,1

<table>
<thead>
<tr>
<th>Menu</th>
<th>PAR</th>
<th>Description</th>
<th>UM</th>
<th>Type</th>
<th>FB</th>
<th>BIT</th>
<th>Def</th>
<th>Min</th>
<th>Maxi</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>23.1.4</td>
<td>3804</td>
<td>Protocol RS485</td>
<td>ENUM</td>
<td>Modbus</td>
<td>0</td>
<td>1</td>
<td>ERW</td>
<td>FVS</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Configuration du protocole de communication série RS485:

0 Modbus
1 Jbus

En configurant 0, on sélectionne le protocole de communication série Modbus RTU (Remote Terminal Unit).

En configurant 1, on sélectionne le protocole de communication série Jbus. Le protocole JBUS fonctionne exactement comme le Modbus et n’en diffère que par la numération des adresses: dans le Modbus elles partent de zéro (0000 = 1ère adresse) alors que dans le JBUS elles partent de 1 (0001 = 1ère adresse) en maintenant cet écart pour toute la numération.

<table>
<thead>
<tr>
<th>Menu</th>
<th>PAR</th>
<th>Description</th>
<th>UM</th>
<th>Type</th>
<th>FB</th>
<th>BIT</th>
<th>Def</th>
<th>Min</th>
<th>Maxi</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>23.1.5</td>
<td>3806</td>
<td>Retard RS485</td>
<td>ms UINT16</td>
<td>0</td>
<td>0</td>
<td>1000</td>
<td>ERW</td>
<td>FVS</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Configuration du retard minimum entre la réception du dernier octet par le drive et le début de sa réponse. Ce retard évite des conflits sur la ligne de série lorsque l’interface RS485 utilisée n’est pas prévue pour une commutation automatique Tx/Rx. Le paramètre ne concerne que l’utilisation de la ligne série standard RS485.

Exemple : si le retard de la communication Tx/Rx sur le maître est de 20ms maximum, la configuration du paramètre Retard RS485 doit être supérieure à 20ms: 22ms.

<table>
<thead>
<tr>
<th>Menu</th>
<th>PAR</th>
<th>Description</th>
<th>UM</th>
<th>Type</th>
<th>FB</th>
<th>BIT</th>
<th>Def</th>
<th>Min</th>
<th>Maxi</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>23.1.6</td>
<td>3808</td>
<td>Inversion mots RS485</td>
<td>BIT</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>ERW</td>
<td>FVS</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Ce paramètre valide l’échange de la lecture des parties Haute et Basse des words pour les paramètres de type FLOAT, UINT32, INT32 en utilisant le protocole Modbus.
23.2 - COMMUNICATION/BUS CONFIG

23.2.1 4000 Type Bus de terrain

Configuration du type de Bus de terrain à utiliser.

- 0 Off
- 1 CanOpen
- 2 DeviceNet
- 3 Profibus
- 10 DS402
- 30 Profidrive
- 40 Rte

En configurant 0, aucun bus de terrain n’est sélectionné.

En configurant 1, on sélectionne le bus de terrain CanOpen.

En configurant 2, on sélectionne le bus de terrain DeviceNet.

En configurant 3, on sélectionne le bus de terrain Profibus.

En configurant 10, on sélectionne le Profil DS402.

En configurant 30, on sélectionne le Profi Profidrive.

En configurant 40, on sélectionne la carte Real Time Ethernet

23.2.2 4004 Vites Bus de terrain

Configuration de la vitesse du réseau de communication (Baud Rate)

- 0 Auto
- 1 125k
- 2 250k
- 3 500k
- 4 1M
- 5 9600
- 6 19200
- 7 93750
- 8 187.5k
- 9 1.5M
- 10 3M
- 11 6M
- 12 12M

23.2.3 4006 Type Bus de terrain

Configuration de l’adresse du nœud du drive lorsqu’il est connecté au réseau

23.2.4 4010 Valid bus M->esclave

Configuration de la mise à jour des données provenant du bus de terrain.

- 0 Dévalide
- 1 Validé

En configurant 0, on annule la possibilité de pouvoir transmettre des commandes et des références du Plc du drive à travers le bus de terrain.

En configurant 1, on peut transmettre des commandes et des références du Plc du drive à travers le bus de terrain.
32.2.5 4012 Mode d’alarme Bus

Configuration du mode de génération de l’alarme **Alarm BusOptio**.

- **0** Off
- **1** On

En configurant **0**, l’alarme n’est générée que si le drive est validé.

En configurant **1** l’alarme est générée même si le drive est désactivé.

32.2.6 4014 Etat Bus de terrain

Visualisation de l’état logique de la connexion du bus de terrain. La valeur dépend du type de bus utilisé.

Les états logiques suivants sont visualisés si le bus de terrain sélectionné est CANopen ou Rte:

- **0** Arrêté
- **1** PreOpérationnel
- **2** Opérationnel

Les états logiques suivants sont visualisés si le bus de terrain sélectionné est Profibus:

- **3** Erreur
- **4** Attente PRM
- **5** Attente CFG
- **6** Echang Données
- **7** Erreur DP

Les états logiques suivants sont visualisés si le bus de terrain sélectionné est Rte:

- **8** SafeOp
- **9** Init

32.2.7 4398 Protocole RTE

Visualisation du protocole Real Time Ethernet implémenté sur la carte d’expansion.

- **0** Aucun
- **1** Ethercat
- **2** EthernetIP
- **3** GdNet
- **4** Profinet
- **5** ModbusTCP (Non disponible)
- **6** Powerlink (Non disponible)
- **107** Profidrive

32.2.8 5608 IP address

Affichage de l’adresse DCP définie à travers la configuration du nœud Profinet.

23.3 - COMMUNICATION/BUS M->S

Configuration Données en entrée

On compte 16 groupes de paramètres, à structure identique, pour la configuration des données à échanger cycliquement avec le bus de champ. Chaque groupe permet d’échanger une donnée, correspondant à un paramètre du drive.

Dans le menu COMMUNICATION/BUS M->S, il est possible de configurer les données écrites par le Master (un PLC, PC ou panneau de contrôle) vers le Slave (le drive), d’où le nom du menu M->S:
Paramètre de réglage des données en entrée :

PAR 4020 **Bus M->Esc1 ipa** IPA du paramètre à échanger
Doit contenir un IPA valable correspondant au paramètre à écrire, ou 0 si sys (PAR 4022...4172 **Bus M->Esc n sys**) est Fill ou MdPlc.

Pour des paramètres de type src (Source) en sélectionnant dans l’enum correspondant PAR 4024 **Bus M->Esc n visu** la valeur du paramètre 4020 est automatiquement réglé sur l’IPA du src.

Exemple: si le PAR 4020 **Bus M->Esc1 ipa** = 610 alors PAR 610 **Ramp ref 1 src** = PAR 4020 **Bus M->Esc1 ipa**.

Pour les paramètres de type src avec type FB différent de 0, la donnée en arrivée sur le bus de champ n’est pas écrite dans la sélection de l’enum mais directement dans le mon associé au src.

Exemple: PAR 4020 **Bus M->Esc1 ipa** = 610, la référence arrivant du bus est envoyée au PAR 620 **Ramp ref 1 visu**, elle ne modifie pas la sélection de PAR 610 **Ramp ref 1 src** qui continue à viser le PAR 4020 **Bus M->Esc1 ipa**.

S’il contient un IPA valable et que le paramètre sys correspondant est forcé sur 0, il prend la valeur Fill (16 ou 32 en fonction du contenu précédent), garantissant de la sorte que la structure de la zone de données échangée ne soit pas modifiée.

PAR 4022 **Bus M->Esc 1 sys** Format de la donnée à échanger
Ce paramètre est modifié automatiquement à la valeur conseillée quand le PAR 4020...4170 **Bus M->Esc n ipa** correspondant est modifié. La valeur automatique peut être modifiée par l’utilisateur, toutefois les valeurs admises dépendent du paramètre ipa de la donnée : certaines combinaisons ne sont pas admises et déclenchent une alarme de configuration au redémarrage.

Valeurs :

- **Non attribué**: si la valeur est réglée sur “Non attribué”, ce groupe et tous les groupes suivants (indépendamment de leur sys) ne font pas partie des données échangées, indépendamment de l’IPA.

- **MotFill 16/32 bit**: la donnée est échangée sur le bus de champ mais n’est écrite dans aucun paramètre.

- **Eu**: la donnée est échangée au format entier à 16 bits avec signe avec l’unité du paramètre configuré dans l’ipa correspondant, ou dans le cas de src avec le mon correspondant (*Exemple*: si le PAR 4020 **Bus M->Esc1 ipa** = PAR 610 **Ramp ref 1 src** et le PAR 4022 **Sys M->S1 bus campo** = Eu, la donnée est en rpm), multipliée par div. Ce réglage est possible uniquement pour certains paramètres, contrôler le tableau des types FBUS dans la liste des paramètres. Pour ces paramètres, la donnée est échangée à chaque ms.

- **Eu_float**: comme Eu, mais la donnée est au format floating point 32 bit IEEE754 single precision.

- **MotCount 16/32bit**: la donnée est échangée en unité interne (voir tableau échelonnages) à chaque ms (Exemple : si le PAR 4020 **Bus M->Esc1 ipa** = 610, PAR 610 **Ramp ref 1 src** et le PAR 4022 **Sys M->S1 bus campo** = MotCount 16bit, la donnée est adaptée de telle sorte qu’une valeur de 0x4000 produit une référence égale au PAR 680 *Vitesse* pour 10V).

Ce réglage est possible uniquement pour certains paramètres, contrôler le tableau des types FBUS dans la liste des paramètres : si le champ est vide, le paramètre n’admet pas le réglage Count. Certains paramètres permettent l’utilisation de MotCount 16bit (les grandeurs pour lesquelles il n’est pas nécessaire d’échanger les 16 bits les moins significatifs) et MotCount 32bit, la règle est la suivante : si FBUS = 32bit, il est uniquement possible de régler MotCount 32bit, si 16hi ou 16lo pour MotCount 32bit et Mot-Count 16bit, avec l’indication du word du paramètre effectivement occupé. Dans le cas où serait utilisé MotCount 32bit et que le type interne du paramètre est FLOAT, la donnée doit être échangée au format floating point IEEE754 single precision, différemment comme entier (avec ou sans signe, en fonction du type interne).

- **MdPlc16/32**: indique que la donnée est destinée à l’application MdPlc, qui utilisera la valeur de PAR 4024...4174 **Bus M->Esc n visu**. Si le réglage est effectué sur MdPlc16, sont échangés les 16 bits de la partie basse du mon, si MdPlc32 tous les 32 bits. Toutes ces remarques s’appliquent si PAR 4020...4170 **Bus M->Esc n ipa** = 0 ou bien = vers le “**Bus M->Esc n visu**” correspondant (par exemple, P.4020 = 4024), différemment le comportement est identique à MotCount.

- **Par 16/32**: il s’agit du réglage par défaut pour tous les paramètres à type FB vide qui ne peuvent être échangés à 1 ms, la donnée est en effet mise à jour en BackGround. Le format de la donnée dépend du format du paramètre et du réglage : avec Par 16, la donnée est un entier à 16 bit (avec ou sans signe, en fonction du type externe du paramètre) avec la même unité de mesure du paramètre sélectionné (multiplié par div) ; Par16 est disponible uniquement si le paramètre n’est pas effectivement à 32 bit (par exemple, il n’est pas possible pour les Pad et les Compare). Avec Par 32, le format est float si le type externe du paramètre est float, différemment entier, toujours avec l’unité du paramètre. Il est possible d’échanger comme PAR également les paramètres de type FB non vide, avec les mêmes règles que celles susmentionnées.
Si l’on utilise le bus de champ CANopen le sys est également utilisé pour structure la zone de données en PDO de 8 byte. Les PDO sont créés en partant du premier groupe et il est nécessaire de garantir que les données soient contenues dans le PDO ; aussi, par exemple, un réglage avec PAR 4022 Bus M->Esc 1 sys = Count32, PAR 4032 Bus M->Esc 2 sys = MotCount 16bit, PAR 4042 Bus M->Esc 3 sys = MotCount 32bit n’est pas valable, puisque la donnée dans le groupe 3 se trouverait à cheval sur les 2 premiers PDO. Dans ce cas, il est possible de générer des PDO de longueur inférieure en utilisant le réglage Count avec ipa 0 (dans l’exemple PAR 4040 Bus M->Esc3 sys = 0, PAR 4042 Bus M->Esc3 sys bus campo = MotCount 16bit, PAR 4050 Bus M->Esc4 ipa = ipa du paramètre précédemment sur 3 et PAR 4052 Bus M->Esc 4 sys = MotCount 32bit, à savoir avec un premier PDO de 6 byte), ou bien de créer des zones non utilisées dans le PDO en utilisant Fill (le PDO a une dimension de 8 byte, mais le dernier word n’est pas utilisé).

Si les données ne peuvent pas être mappées dans les PDO, une alarme spécifique se déclenche au démarrage qui indique le groupe qui présente l’anomalie. Attention : cette gestion s’applique uniquement à CANopen et DS402, pour les autres bus de champ, la zone d’échange est contigué avec une dimension max. de 16 word (14 pour DeviceNet).

PAR 4024 Bus M->Esc 1 visu Moniteur de la donnée arrivant du master
C’est la valeur, déjà échelonnée en count internes, de la donnée arrivant du Master. Aussi, en envoyant par exemple au PAR 610 Ramp ref 1 src une valeur correspondant à PAR 680 Fondo scala velocità en rpm, la valeur interne est 0x40000000 = 1073741824. Dans l’échelonnage, est également comprise la division du paramètre div.

PAR 4026 Bus terr M->E1 div Diviseur à appliquer au paramètre
Utilisable uniquement pour sys = Eu ou Par. Divise la donnée en arrivée par la valeur saisie : de la sorte, il est possible d’augmenter la résolution de la donnée. Par exemple, si ipa = PAR 610 Ramp ref 1 src, sys est automatiquement mis à Eu. Si div = 10, le Master doit envoyer la donnée en rpm multipliée par 10, pour exemple pour envoyer une référence égale à 100,5 rpm la donnée échangée sur le bus est 1005; de la sorte, la résolution est en dixièmes de degré. Avant de saisir une valeur, il est important de prendre en compte le maximum de la donnée échangée, pour qu’elle puisse être contenue dans un entier à 16 bit (dans l’exemple la vitesse maximum possible est de 3276,7 rpm).

Utilisation
Ce groupe de paramètres est répété 16 fois, pour permettre de configurer jusqu’à 16 données en entrée, en tenant également compte de la limite maximum de 16 word (14 pour DeviceNet). Le nombre total de données configurables dépend également par conséquent du format, 16 ou 32 bit, selon les règles indiquées plus haut pour les sys.

Le drive applique les paramètres du menu COMMUNICATION/BUS M->S uniquement au démarrage, aussi, après les avoir réglés, il est nécessaire de sauvegarder et de redémarrer (procédure non nécessaire dans le cas où les réglages sont effectués par mapping dynamique par le master, pour l’heure supporté uniquement par CANopen et Ethercat). Les données sont traitées dans l’ordre, de 1 au premier avec sys = Non attribué : en fonction de la configuration, est créée une zone de données d’échange avec le bus de champ d’une dimension et composition bien définies.

Dans le cas où les données saisies ne seraient pas cohérentes (par exemple sys réglé comme Eu ou Count pour un paramètre qui ne le supporte pas, ou réglé à 16 bit pour un paramètre exclusivement à 32, ou ipa non existant, PDO de dimension erronée, etc.), se déclenche l’alarme “[17] Alarm BusOptio” avec subcode qui indique le type de problème et le groupe concerné (voir page Interface Menu/FIELDBUS WORDS MAP/M->S sur Gf_eXpress pour la signification du code).

<table>
<thead>
<tr>
<th>Menu</th>
<th>PAR</th>
<th>Description</th>
<th>UM</th>
<th>Type</th>
<th>FB BIT</th>
<th>Def</th>
<th>Min</th>
<th>Maxi</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>23.3.1</td>
<td>4020 Bus M->Esc 1 ipa</td>
<td>FBM2SIPA</td>
<td>0</td>
<td>0</td>
<td>20000</td>
<td>RW</td>
<td>FVS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>23.3.5</td>
<td>4030 Bus M->Esc 2 ipa</td>
<td>FBM2SIPA</td>
<td>0</td>
<td>0</td>
<td>20000</td>
<td>RW</td>
<td>FVS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>23.3.9</td>
<td>4040 Bus M->Esc 3 ipa</td>
<td>FBM2SIPA</td>
<td>0</td>
<td>0</td>
<td>20000</td>
<td>RW</td>
<td>FVS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>23.3.13</td>
<td>4050 Bus M->Esc 4 ipa</td>
<td>FBM2SIPA</td>
<td>0</td>
<td>0</td>
<td>20000</td>
<td>RW</td>
<td>FVS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>23.3.17</td>
<td>4060 Bus M->Esc 5 ipa</td>
<td>FBM2SIPA</td>
<td>0</td>
<td>0</td>
<td>20000</td>
<td>RW</td>
<td>FVS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>23.3.21</td>
<td>4070 Bus M->Esc 6 ipa</td>
<td>FBM2SIPA</td>
<td>0</td>
<td>0</td>
<td>20000</td>
<td>RW</td>
<td>FVS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>23.3.25</td>
<td>4080 Bus M->Esc 7 ipa</td>
<td>FBM2SIPA</td>
<td>0</td>
<td>0</td>
<td>20000</td>
<td>RW</td>
<td>FVS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>23.3.29</td>
<td>4090 Bus M->Esc 8 ipa</td>
<td>FBM2SIPA</td>
<td>0</td>
<td>0</td>
<td>20000</td>
<td>RW</td>
<td>FVS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>23.3.33</td>
<td>4100 Bus M->Esc 9 ipa</td>
<td>FBM2SIPA</td>
<td>0</td>
<td>0</td>
<td>20000</td>
<td>RW</td>
<td>FVS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>23.3.37</td>
<td>4110 Bus M->Esc 10 ipa</td>
<td>FBM2SIPA</td>
<td>0</td>
<td>0</td>
<td>20000</td>
<td>RW</td>
<td>FVS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>23.3.41</td>
<td>4120 Bus M->Esc 11 ipa</td>
<td>FBM2SIPA</td>
<td>0</td>
<td>0</td>
<td>20000</td>
<td>RW</td>
<td>FVS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>23.3.45</td>
<td>4130 Bus M->Esc 12 ipa</td>
<td>FBM2SIPA</td>
<td>0</td>
<td>0</td>
<td>20000</td>
<td>RW</td>
<td>FVS</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
23.3.49 4140 Bus M->Esc 13 ipa FBM2SIPA 0 0 20000 RW FVS
23.3.53 4150 Bus M->Esc 14 ipa FBM2SIPA 0 0 20000 RW FVS
23.3.57 4160 Bus M->Esc 15 ipa FBM2SIPA 0 0 20000 RW FVS
23.3.61 4170 Bus M->Esc 16 ipa FBM2SIPA 0 0 20000 RW FVS

Paramétrage du paramètre à connecter au canal du bus. Par défaut il est paramétré sur 0, correspondant au canal inactif.
Si le paramètre à connecter est de type *sorg* (source), l’association entre canal et paramètre peut également se faire en modifiant le paramètre *sorg* dans son menu.
Lorsque l’on sélectionne un paramètre, même le format dans le paramètre sys est automatiquement configuré.

<table>
<thead>
<tr>
<th>Menu</th>
<th>PAR</th>
<th>Description</th>
<th>UM</th>
<th>Type</th>
<th>FB</th>
<th>BIT</th>
<th>Def</th>
<th>Min</th>
<th>Maxi</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>23.3.2</td>
<td>4022</td>
<td>Bus M->Esc 1 sys</td>
<td>ENUM</td>
<td>Non attribué</td>
<td>0</td>
<td>10</td>
<td>RW</td>
<td>FVS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>23.3.6</td>
<td>4032</td>
<td>Bus M->Esc 2 sys</td>
<td>ENUM</td>
<td>Non attribué</td>
<td>0</td>
<td>10</td>
<td>RW</td>
<td>FVS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>23.3.10</td>
<td>4042</td>
<td>Bus M->Esc 3 sys</td>
<td>ENUM</td>
<td>Non attribué</td>
<td>0</td>
<td>10</td>
<td>RW</td>
<td>FVS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>23.3.14</td>
<td>4052</td>
<td>Bus M->Esc 4 sys</td>
<td>ENUM</td>
<td>Non attribué</td>
<td>0</td>
<td>10</td>
<td>RW</td>
<td>FVS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>23.3.18</td>
<td>4062</td>
<td>Bus M->Esc 5 sys</td>
<td>ENUM</td>
<td>Non attribué</td>
<td>0</td>
<td>10</td>
<td>RW</td>
<td>FVS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>23.3.22</td>
<td>4072</td>
<td>Bus M->Esc 6 sys</td>
<td>ENUM</td>
<td>Non attribué</td>
<td>0</td>
<td>10</td>
<td>RW</td>
<td>FVS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>23.3.26</td>
<td>4082</td>
<td>Bus M->Esc 7 sys</td>
<td>ENUM</td>
<td>Non attribué</td>
<td>0</td>
<td>10</td>
<td>RW</td>
<td>FVS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>23.3.30</td>
<td>4092</td>
<td>Bus M->Esc 8 sys</td>
<td>ENUM</td>
<td>Non attribué</td>
<td>0</td>
<td>10</td>
<td>RW</td>
<td>FVS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>23.3.34</td>
<td>4102</td>
<td>Bus M->Esc 9 sys</td>
<td>ENUM</td>
<td>Non attribué</td>
<td>0</td>
<td>10</td>
<td>RW</td>
<td>FVS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>23.3.38</td>
<td>4112</td>
<td>Bus M->Esc 10 sys</td>
<td>ENUM</td>
<td>Non attribué</td>
<td>0</td>
<td>10</td>
<td>RW</td>
<td>FVS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>23.3.42</td>
<td>4122</td>
<td>Bus M->Esc 11 sys</td>
<td>ENUM</td>
<td>Non attribué</td>
<td>0</td>
<td>10</td>
<td>RW</td>
<td>FVS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>23.3.46</td>
<td>4132</td>
<td>Bus M->Esc 12 sys</td>
<td>ENUM</td>
<td>Non attribué</td>
<td>0</td>
<td>10</td>
<td>RW</td>
<td>FVS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>23.3.50</td>
<td>4142</td>
<td>Bus M->Esc 13 sys</td>
<td>ENUM</td>
<td>Non attribué</td>
<td>0</td>
<td>10</td>
<td>RW</td>
<td>FVS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>23.3.54</td>
<td>4152</td>
<td>Bus M->Esc 14 sys</td>
<td>ENUM</td>
<td>Non attribué</td>
<td>0</td>
<td>10</td>
<td>RW</td>
<td>FVS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>23.3.58</td>
<td>4162</td>
<td>Bus M->Esc 15 sys</td>
<td>ENUM</td>
<td>Non attribué</td>
<td>0</td>
<td>10</td>
<td>RW</td>
<td>FVS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>23.3.62</td>
<td>4172</td>
<td>Bus M->Esc 16 sys</td>
<td>ENUM</td>
<td>Non attribué</td>
<td>0</td>
<td>10</td>
<td>RW</td>
<td>FVS</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Configuration du format de la donnée reçue sur le canal. Lorsque l’on programme le paramètre src, il format est automatiquement programmé sur le sys correspondant Si le paramètre src est remis à null, le format de la donnée ne change pas. La valeur du format peut être sélectionnée dans la liste suivante en fonction du paramètre sélectionné comme source:

0 Non attribué
1 MotCount 16bit
2 MotCount 32bit
3 MotFill 16bit
4 MotFill 3 bit
5 Mdplc 16
6 Mdplc 32
7 EU
8 Eu float
9 Par 16
10 Par 32

En configurant 0, le canal n’est pas attribué.
En configurant 1, la donnée est attribuée comme format count à 16 bit.
En configurant 2, la donnée est attribuée comme format count à 32 bit.
En configurant 3 à la donnée 16 bit non utilisés sont réservés sur le canal.
En configurant 4 à la donnée 32 bit non utilisés sont réservés sur le canal.
En configurant 5 à la donnée est attribuée comme format count à 16 bit utilisé par Mdplc.
En configurant 6 à la donnée est attribuée comme format count à 32 bit utilisé par Mdplc.
En configurant 7 à la donnée est attribuée comme format unité d’ingénieur sur nombre entier à 16 bit.
En configurant 8 à la donnée est attribuée comme format unité d’ingénieur sur nombre entier à 32 bit.
En configurant 9, on attribue à la donnée comme format unité de l’ingénierie sur entier à 16 bits pas en temps réel (5-10ms)
En configurant 10, on attribue à la donnée comme format unité de l’ingénierie sur entier à 32 bits ou sur float si le paramètre connecté est de type float pas en temps réel (5-10ms).

Remarque! Si le paramètre sys n’est Non attribué, tous les canaux suivants du fieldbus ne seront pas lus même s’ils sont programmés.

Menu PAR Description UM Type FB BIT Def Min Maxi Acc Mod
23.3.3 4024 Bus M->Esc 1 visu INT32 16 0 0 0 ERW FVS
23.3.7 4034 Bus M->Esc 2 visu INT32 16 0 0 0 ERW FVS
23.3.11 4044 Bus M->Esc 3 visu INT32 16 0 0 0 ERW FVS
23.3.15 4054 Bus M->Esc 4 visu INT32 16 0 0 0 ERW FVS
23.3.19 4064 Bus M->Esc 5 visu INT32 16 0 0 0 ERW FVS
23.3.23 4074 Bus M->Esc 6 visu INT32 16 0 0 0 ERW FVS
23.3.27 4084 Bus M->Esc 7 visu INT32 16 0 0 0 ERW FVS
23.3.31 4094 Bus M->Esc 8 visu INT32 16 0 0 0 ERW FVS
23.3.35 4104 Bus M->Esc 9 visu INT32 16 0 0 0 ERW FVS
23.3.39 4114 Bus M->Esc 10 visu INT32 16 0 0 0 ERW FVS
23.3.43 4124 Bus M->Esc 11 visu INT32 16 0 0 0 ERW FVS
23.3.47 4134 Bus M->Esc 12 visu INT32 16 0 0 0 ERW FVS
23.3.51 4144 Bus M->Esc 13 visu INT32 16 0 0 0 ERW FVS
23.3.55 4154 Bus M->Esc 14 visu INT32 16 0 0 0 ERW FVS
23.3.59 4164 Bus M->Esc 15 visu INT32 16 0 0 0 ERW FVS
23.3.63 4174 Bus M->Esc 16 visu INT32 16 0 0 0 ERW FVS

Visualisation de la valeur reçue provenant du bus. Ce paramètre doit être associé au paramètre src pour activer le canal M->S.

L’utilisateur peut modifier les paramètres sys aussi de M->S que de S->M. Un contrôle est effectué sur la cohérence du sys avec le paramètre attribué au canal.

Un paramètre Bus M->Esc x visu pourra être attribué à un seul “src”. L’attribution à plusieurs src sera signalée comme erreur durant l’initialisation du fieldbus.

Menu PAR Description UM Type FB BIT Def Min Maxi Acc Mod
23.3.4 4026 Bus terr M->E1 div FLOAT 1.0 1.0 1000.0 ERW FVS
23.3.8 4036 Bus terr M->E2 div FLOAT 1.0 1.0 1000.0 ERW FVS
23.3.12 4046 Bus terr M->E3 div FLOAT 1.0 1.0 1000.0 ERW FVS
23.3.16 4056 Bus terr M->E4 div FLOAT 1.0 1.0 1000.0 ERW FVS
23.3.20 4066 Bus terr M->E5 div FLOAT 1.0 1.0 1000.0 ERW FVS
23.3.24 4076 Bus terr M->E6 div FLOAT 1.0 1.0 1000.0 ERW FVS
23.3.28 4086 Bus terr M->E7 div FLOAT 1.0 1.0 1000.0 ERW FVS
23.3.32 4096 Bus terr M->E8 div FLOAT 1.0 1.0 1000.0 ERW FVS
23.3.36 4106 Bus terr M->E9 div FLOAT 1.0 1.0 1000.0 ERW FVS
23.3.40 4116 Bus terr M->E10 div FLOAT 1.0 1.0 1000.0 ERW FVS
23.3.44 4126 Bus terr M->E11 div FLOAT 1.0 1.0 1000.0 ERW FVS
23.3.48 4136 Bus terr M->E12 div FLOAT 1.0 1.0 1000.0 ERW FVS
23.3.52 4146 Bus terr M->E13 div FLOAT 1.0 1.0 1000.0 ERW FVS
23.3.56 4154 Bus terr M->E14 div FLOAT 1.0 1.0 1000.0 ERW FVS
23.3.60 4166 Bus terr M->E15 div FLOAT 1.0 1.0 1000.0 ERW FVS
23.3.64 4176 Bus terr M->E16 div FLOAT 1.0 1.0 1000.0 ERW FVS

Les paramètres Bus terr M->Ex div peuvent être utilisés pour augmenter la résolution de la donnée transmise sur le bus du drive dans le canal correspondant en mode échange EU et EU_float. La valeur du paramètre est
utilisée par le drive comme diviseur de la donnée à l’arrivée, permettant ainsi de transférer un numéro contenant des nombres décimaux.

N.B.: L'utilisateur doit vérifier la dimension en bits de la donnée transmise pour s'assurer que la valeur maximale en bits est contenue dans un nombre entier à 16 bits. Par exemple, en spécifiant comme diviseur “Bus terr M->Ex div” = 1000, la valeur maximale utilisable pour la donnée échangée est 32,768 (32768/1000).

Exemple : Bus terr M->Ex div = 10, M->S1 par bus champ = Ramp ref 1 src. Bus M->Esc 1 sys = EU. Si le PLC envoie une valeur décimale 1000 sur le premier mot, la valeur de Ramp ref 1 sur le drive devient 1000/10 = 100.

23.4 - COMMUNICATION/BUS S->M

Configuration Données en sortie

Dans le menu COMMUNICATION/BUS S->M, il est possible de configurer les données lues par le Master (un PLC, PC ou panneau de contrôle) provenant du Slave (le drive).

Les 16 groupes ont un fonctionnement semblable à celui des groupes du menu COMMUNICATION/BUS M->S; ci-après, sont indiquées les seules différences :

PAR 4180 Bus Esc->M 1 ipa : les différences par rapport à M->S concernant la non-gestion des src, aussi, l'ipa se réfère toujours au paramètre saisi (par exemple pour contrôler la rampe 1 en entrée, il est nécessaire de choisir le PAR 620 Ramp ref 1 visu; en revanche, si PAR 610 Ramp ref 1 src on lit la sélection de l'enum de ce src).

En outre, dans le cas de sys = MdPlc16/32, il n’est pas possible de saisir ipa 0 mais il est nécessaire de saisir l’ipa du dig correspondant, pour le premier groupe PAR 4184 Bus Esc->M 1 valeur, etc.), l’application MdPlc se charge ensuite d’écrire une valeur dans ce paramètre, qui est envoyée sur le bus comme valeur à 16 ou 32 bit en fonction du sys.

Dans ce cas également, si l’on programme 0 quand l’ipa était réglé sur une valeur non nulle le sys est mis en automatique à MotFill 16bit ou 32bit, pour garantir la structure de la zone de données d’échange.

PAR 4182 Bus Esc->M 1 sys : la seule différence concerne le réglage MdPlc16/32, comme indiqué plus haut, pour permettre d’envoyer tous les 32 bit ou le seul word bas du dig correspondant.

PAR 4186 Bus terr E->M1 mul: le fonctionnement est symétrique par rapport à M->S, dans ce cas, on applique un multiplicateur qui augmente la résolution de la donnée en sortie (uniquement pour Eu et Par). Par exemple, si PAR 4180 Bus Esc->M 1 ipa = PAR 260 Vitesse moteur, PAR 4182 Bus Esc->M 1 sys = Eu, PAR 4186 Bus terr E->M1 mul = 10, la donnée envoyée sur bus est en rpm multipliés par 10 : si le drive tourne à 100,5 rpm, le master reçoit une valeur égale à 1005.

PAR 4184 Bus Esc->M 1 valeur: pour les données en sortie, aucun moniteur n’est présent, les dig servent à envoyer une donnée fixe sur le bus (avec le sys à MotCount32) ou pour l’application MdPlc, qui écrit une valeur dans ces paramètres (avec sys à MdPlc16/32).

Les groupes sont traités dans l’ordre au démarrage comme pour M->S, en cas de problèmes de configuration, l’alarme “[17] Alarm BusOptio” se déclenche avec subcode qui indique le type de problème et le groupe concerné (voir page S->M sur Gf_eXpress pour la signification du code).

<table>
<thead>
<tr>
<th>Menu</th>
<th>PAR</th>
<th>Description</th>
<th>UM</th>
<th>Type</th>
<th>FB BIT</th>
<th>Def</th>
<th>Min</th>
<th>Maxi</th>
<th>Acc</th>
<th>Md</th>
</tr>
</thead>
<tbody>
<tr>
<td>23.4.1</td>
<td>4180</td>
<td>Bus Esc->M 1 ipa</td>
<td>FBM2SIPA</td>
<td>0</td>
<td>0</td>
<td>20000</td>
<td>RW</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>23.4.5</td>
<td>4190</td>
<td>Bus Esc->M 2 ipa</td>
<td>FBM2SIPA</td>
<td>0</td>
<td>0</td>
<td>20000</td>
<td>RW</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>23.4.9</td>
<td>4200</td>
<td>Bus Esc->M 3 ipa</td>
<td>FBM2SIPA</td>
<td>0</td>
<td>0</td>
<td>20000</td>
<td>RW</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>23.4.13</td>
<td>4210</td>
<td>Bus Esc->M 4 ipa</td>
<td>FBM2SIPA</td>
<td>0</td>
<td>0</td>
<td>20000</td>
<td>RW</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>23.4.17</td>
<td>4220</td>
<td>Bus Esc->M 5 ipa</td>
<td>FBM2SIPA</td>
<td>0</td>
<td>0</td>
<td>20000</td>
<td>RW</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>23.4.21</td>
<td>4230</td>
<td>Bus Esc->M 6 ipa</td>
<td>FBM2SIPA</td>
<td>0</td>
<td>0</td>
<td>20000</td>
<td>RW</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>23.4.25</td>
<td>4240</td>
<td>Bus Esc->M 7 ipa</td>
<td>FBM2SIPA</td>
<td>0</td>
<td>0</td>
<td>20000</td>
<td>RW</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>23.4.29</td>
<td>4250</td>
<td>Bus Esc->M 8 ipa</td>
<td>FBM2SIPA</td>
<td>0</td>
<td>0</td>
<td>20000</td>
<td>RW</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>23.4.33</td>
<td>4260</td>
<td>Bus Esc->M 9 ipa</td>
<td>FBM2SIPA</td>
<td>0</td>
<td>0</td>
<td>20000</td>
<td>RW</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>23.4.37</td>
<td>4270</td>
<td>Bus Esc->M 10 ipa</td>
<td>FBM2SIPA</td>
<td>0</td>
<td>0</td>
<td>20000</td>
<td>RW</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>23.4.41</td>
<td>4280</td>
<td>Bus Esc->M 11 ipa</td>
<td>FBM2SIPA</td>
<td>0</td>
<td>0</td>
<td>20000</td>
<td>RW</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Paramétrage du paramètre à connecter au canal du bus. Par défaut il est paramétré sur 0, correspondant au canal inactif.

Lorsque l’on sélectionne un paramètre, même le format dans le paramètre **sys** est automatiquement configuré.

Lorsque l’on programme le paramètre sour, le format est automatiquement programmé sur le **sys** correspondant. Si le paramètre sour est replacé sur nul, le format de la donnée ne change pas. La valeur du format peut être sélectionnée dans la liste suivante, en fonction du paramètre sélectionné comme source:

0 Non attribué
1 MotCount 16bit
2 MotCount 32bit
3 MotFill 16bit
4 MotFill 3 bit
5 Mdplc 16
6 Mdplc 32
7 EU
8 Eu float
9 Par 16
10 Par 32

En configurant 0, le canal n’est pas attribué.
En configurant 1, la donnée est attribuée comme format count à 16 bit.
En configurant 2, la donnée est attribuée comme format count à 32 bit.
En configurant 3 à la donnée 16 bit non utilisés sont réservés sur le canal.
En configurant 4 à la donnée 32 bit non utilisés sont réservés sur le canal.
En configurant 5 à la donnée est attribuée comme format count à 16 bit utilisé par Mdplc.
En configurant 6 à la donnée est attribuée comme format count à 32 bit utilisé par Mdplc.
En configurant 7 à la donnée est attribuée comme format unité d’ingénieur sur nombre entier à 16 bit.
En configurant 8 à la donnée est attribuée comme format unité d’ingénieur sur nombre entier à 32 bit.
En configurant **9**, on attribue à la donnée comme format unité de l’ingénierie sur entier à 16 bits pas en temps réel (5-10ms)

En paramétrant **10**, on attribue à la donnée comme format unité de l’ingénierie sur entier à 32 bits ou sur float si le paramètre connecté est de type float pas en temps réel (5-10ms)

Remarque!
Si le paramètre **sys n’est Non attribué**, tous les canaux suivants ne seront pas transférés sur fieldbus, même s’ils sont programmés.

<table>
<thead>
<tr>
<th>Menu</th>
<th>PAR</th>
<th>Description</th>
<th>UM</th>
<th>Type</th>
<th>FB Bit</th>
<th>Def</th>
<th>Min</th>
<th>Maxi</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>23.4.3</td>
<td>4184</td>
<td>Bus Esc->M 1 valeur</td>
<td>INT32</td>
<td>16</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>ERW</td>
<td>FVS</td>
<td></td>
</tr>
<tr>
<td>23.4.7</td>
<td>4194</td>
<td>Bus Esc->M 2 valeur</td>
<td>INT32</td>
<td>16</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>ERW</td>
<td>FVS</td>
<td></td>
</tr>
<tr>
<td>23.4.11</td>
<td>4204</td>
<td>Bus Esc->M 3 valeur</td>
<td>INT32</td>
<td>16</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>ERW</td>
<td>FVS</td>
<td></td>
</tr>
<tr>
<td>23.4.15</td>
<td>4214</td>
<td>Bus Esc->M 4 valeur</td>
<td>INT32</td>
<td>16</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>ERW</td>
<td>FVS</td>
<td></td>
</tr>
<tr>
<td>23.4.19</td>
<td>4224</td>
<td>Bus Esc->M 5 valeur</td>
<td>INT32</td>
<td>16</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>ERW</td>
<td>FVS</td>
<td></td>
</tr>
<tr>
<td>23.4.23</td>
<td>4234</td>
<td>Bus Esc->M 6 valeur</td>
<td>INT32</td>
<td>16</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>ERW</td>
<td>FVS</td>
<td></td>
</tr>
<tr>
<td>23.4.27</td>
<td>4244</td>
<td>Bus Esc->M 7 valeur</td>
<td>INT32</td>
<td>16</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>ERW</td>
<td>FVS</td>
<td></td>
</tr>
<tr>
<td>23.4.31</td>
<td>4254</td>
<td>Bus Esc->M 8 valeur</td>
<td>INT32</td>
<td>16</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>ERW</td>
<td>FVS</td>
<td></td>
</tr>
<tr>
<td>23.4.35</td>
<td>4264</td>
<td>Bus Esc->M 9 valeur</td>
<td>INT32</td>
<td>16</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>ERW</td>
<td>FVS</td>
<td></td>
</tr>
<tr>
<td>23.4.39</td>
<td>4274</td>
<td>Bus Esc->M 10 valeur</td>
<td>INT32</td>
<td>16</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>ERW</td>
<td>FVS</td>
<td></td>
</tr>
<tr>
<td>23.4.43</td>
<td>4284</td>
<td>Bus Esc->M 11 valeur</td>
<td>INT32</td>
<td>16</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>ERW</td>
<td>FVS</td>
<td></td>
</tr>
<tr>
<td>23.4.47</td>
<td>4294</td>
<td>Bus Esc->M 12 valeur</td>
<td>INT32</td>
<td>16</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>ERW</td>
<td>FVS</td>
<td></td>
</tr>
<tr>
<td>23.4.51</td>
<td>4304</td>
<td>Bus Esc->M 13 valeur</td>
<td>INT32</td>
<td>16</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>ERW</td>
<td>FVS</td>
<td></td>
</tr>
<tr>
<td>23.4.55</td>
<td>4314</td>
<td>Bus Esc->M 14 valeur</td>
<td>INT32</td>
<td>16</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>ERW</td>
<td>FVS</td>
<td></td>
</tr>
<tr>
<td>23.4.59</td>
<td>4324</td>
<td>Bus Esc->M 15 valeur</td>
<td>INT32</td>
<td>16</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>ERW</td>
<td>FVS</td>
<td></td>
</tr>
<tr>
<td>23.4.63</td>
<td>4334</td>
<td>Bus Esc->M 16 valeur</td>
<td>INT32</td>
<td>16</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>ERW</td>
<td>FVS</td>
<td></td>
</tr>
</tbody>
</table>

Les paramètres "**Bus terr E->Mx mul**" sont des multiplicateur que le drive applique à la donnée avant de la transmettre au bus.De cette manière, on peut augmenter la résolution de certaines valeur lues en mode EU et
EU_float, en utilisant également des nombres décimaux.

N.B.: Le drive ne vérifie pas si la représentation en bit du paramètre multiplié est contenue dans un nombre entier à 16 bit. L'utilisateur peut s’assurer que le multiplicateur est compatible avec la valeur maximale du paramètre échangé et ne dépasse pas la dimension maximale de 32768.

Exemple : Bus terr E->Mx mul = 10, S->M1 par bus campo = Vitesse moteur, Bus Esc->M 1 sys = EU. Sile moteur tourne à 100 tours, le PLC lit sur le premier mot échangé la valeur 100 * 10 = 1000.

23.5 - COMMUNICATION/COMP WORD

Sélection de l’origine (source) du signal à utiliser pour la codification dans Comp word. Cette fonction permet à l’utilisateur de composer dans un seul mot 16 signaux dont chacun d’eux peut être sélectionné parmi ceux qui sont disponibles dans la liste de sélection "L_DIGSEL1".

Les valeurs des grandeurs sélectionnée sont converties en un seul mot.

Menu PAR Description UM Type FB BIT Def Min Maxi Acc Mod
23.5.1 4400 Mot bit0 src LINK 16 6000 0 16384 ERW FVS
23.5.2 4402 Mot bit1 src LINK 16 6000 0 16384 ERW FVS
23.5.3 4404 Mot bit2 src LINK 16 6000 0 16384 ERW FVS
23.5.4 4406 Mot bit3 src LINK 16 6000 0 16384 ERW FVS
23.5.5 4408 Mot bit4 src LINK 16 6000 0 16384 ERW FVS
23.5.6 4410 Mot bit5 src LINK 16 6000 0 16384 ERW FVS
23.5.7 4412 Mot bit6 src LINK 16 6000 0 16384 ERW FVS
23.5.8 4414 Mot bit7 src LINK 16 6000 0 16384 ERW FVS
23.5.9 4416 Mot bit8 src LINK 16 6000 0 16384 ERW FVS
23.5.10 4418 Mot bit9 src LINK 16 6000 0 16384 ERW FVS
23.5.11 4420 Mot bit10 src LINK 16 6000 0 16384 ERW FVS
23.5.12 4422 Mot bit11 src LINK 16 6000 0 16384 ERW FVS
23.5.13 4424 Mot bit12 src LINK 16 6000 0 16384 ERW FVS
23.5.14 4426 Mot bit13 src LINK 16 6000 0 16384 ERW FVS
23.5.15 4428 Mot bit14 src LINK 16 6000 0 16384 ERW FVS
23.5.16 4430 Mot bit15 src LINK 16 6000 0 16384 ERW FVS

Menu PAR Description UM Type FB BIT Def Min Maxi Acc Mod
23.5.17 4432 Mot comp visu UINT32 16 0 0 0 ER FVS

Visualisation de la valeur hexadécimale de la sortie de Comp word.

23.6 - COMMUNICATION/MOTDECOMP

Configuration de l’entrée numérique qui est décodifiée par le "MotDecomp".

Menu PAR Description UM Type FB BIT Def Min Maxi Acc Mod
23.6.1 4450 Mot Dig decomp UINT32 16 0 0 0 ERW FVS
Sélection de l’origine (source) du mot à décoder par le bloc “MotDecomp”. Chaque bit faisant partie du mot à décoder est associé à un canal de sortie du bloc “MotDecomp”. Les variables utilisées pour cette fonction peuvent être configurées parmi celles qui sont disponibles dans la liste de sélection “L_WDECOMP”.

Visualisation de chaque bit qui compose le mot sélectionné à décoder.

23.7 - COMMUNICATION/ENT/SORT EXTERNE

À travers la carte en option EXP-FL-XCAN-ADV (généralement placée dans le logement 1), il est possible d’augmenter, avec un dispositif externe au drive, le nombre de I/O que le drive est en mesure de gérer. La communication avec le dispositif externe est réalisée via CAN en utilisant le profil “DS401 Device profile for generic IO modules”.

Pour de plus amples informations voir le manuel 1S5F32_EXP-FL-XCAN-ADV.
Ce paramètre montre la quantité de ressources IO détectées par le module.
Le paramètre est un 32 bits composé comme suit:

<table>
<thead>
<tr>
<th>Uint16 High</th>
<th>Uint16 Low</th>
</tr>
</thead>
<tbody>
<tr>
<td>Uint8 High</td>
<td>Uint8 Low</td>
</tr>
<tr>
<td>N. of AO</td>
<td>N. of AI</td>
</tr>
<tr>
<td>Uint8 High</td>
<td>Uint8 Low</td>
</tr>
<tr>
<td>N. of DO</td>
<td>N. of DI</td>
</tr>
</tbody>
</table>

Le paramètre est visualisé au format HEX.

Exemple:

<table>
<thead>
<tr>
<th>PAR 5482</th>
<th>N. of AO</th>
<th>N. of AI</th>
<th>N. of DO</th>
<th>N. of DI</th>
</tr>
</thead>
<tbody>
<tr>
<td>0x02041020</td>
<td>0x00000810</td>
<td>0x00000810</td>
<td>0x00000810</td>
<td>0x00000810</td>
</tr>
<tr>
<td>33620704</td>
<td>2064</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Dans le cas où la configuration détectée changerait (par rapport à la dernière sauvegardée ou à la dernière lue) le drive affiche un message et demande une intervention de l’opérateur pour pouvoir continuer.

Ce paramètre montre l’état de la communication

0 = Off
1 = On

Ce paramètre prend valeur 1 (On) quand la communication est en état de Operational.

En cas d’alarme “Déf.EntSortExt” causée par le message d’alarme Emergency slave subcode 255..65535, ce paramètre montre 4 des 5 InfoByte du message “Emergency”.

Pour les informations sur la signification des InfoByte du message Emergency, consulter le manuel du slave (Module de communication Can slave).

Voir chapitre “C. “Alarme Déf.EntSortExt [27]”

Avec ce paramètre, il est possible d’activer le fonctionnement du Fast Link et de sélectionner si le drive doit être master ou slave. In cas de fonctionnement comme slave, il est possible de sélectionner l’adresse.

0 = Disabled
1 = Master
2 = Slave 1
X = Slave X-1
16 = Slave 16

Pour le bon fonctionnement de la synchronisation des Pwm, l’adresse du drive slave doit être configurée en respectant l’ordre du branchement physique.

Active/désactive le mode Fast Link bidirectionnel.
Ce paramètre n’est significatif que pour le maître et il indique quels sont les esclaves à interroger.
Le codage utilisé est un entier ayant à 1 les bits correspondant aux esclaves à interroger, selon la convention suivante :
- le bit 0 (moins significatif) concerne l’esclave avec adresse 2
- le bit 1 concerne l’esclave avec adresse 3
- …
- …et ainsi de suite, jusqu’à l’esclave avec adresse 16.
Par exemple, pour interroger les esclaves ayant l’adresse 2 et 5, la valeur sera 9 (soit 1001 en mode binaire).
Si un ou plusieurs esclaves réglés ne sont pas présents, l’absence de leur réponse déclenchera une alarme fastlink sur le maître et, par conséquent, sur tous les esclaves (en effet, suite à une erreur, le maître tente de réinitialiser le canal, en entraînant des problèmes de communication sur les esclaves).

Sur drive master, ce paramètre est sans effet.
Sur le drive slave, avec ce paramètre, il est possible d’activer la fonction qui permet de générer les signaux du Pwm synchronisés avec les signaux Pwm du Master. Il est également possible d’activer la fonction qui permet d’exécuter des Task de contrôle synchronisés avec l’exécution des Task de contrôle du Master.

0 Off Le Fastlink exécute le passage d’informations entre les drives.
1 Pwm Le Fastlink exécute le passage d’informations entre les drives et la fonction qui permet de générer les signaux du Pwm synchronisés avec les signaux Pwm du Master s’active.
Sont synchronisées les variables gérées à 125 us dans le tableau 11) Temps de mise à jour des différentes.
2 Pwm&Ctrl Le Fastlink exécute le passage d’informations entre les drive et la fonction qui permet de générer les signaux du Pwm synchronisés avec les signaux Pwm du Master et la fonction qui permet d’exécuter des Task de contrôle synchronisés avec exécution des Task de contrôle du Master s’activent. Sont également synchronisées les variables à 1ms et 8ms du tableau "Temps de mise à jour des différentes fonctions" (dans le manuel 1S5F32_EXP-FL-XCAN-ADV) et les task MdPlc.

Ce paramètre prévoit deux variantes de fonctionnement.
Dans la première variante, le master passe au premier slave le frame de données. Le premier slave prend toutes les données du frame et passe au drive slave suivant le même frame sans apporter de modification. Le même mécanisme est répété par tous les drive slave.
Dans la seconde variante, le master passe au premier slave le frame de données. Le premier slave prend toutes les données du frame et passe au drive slave suivant le frame de données en en remplaçant une partie.
Le même mécanisme est répété par tous les drive slave.
Sur drive master, ce paramètre est sans effet.
Sur le drive slave, avec ce paramètre, il est possible de configurer la quantité de données qui doivent être remplies dans le frame de données.
Avec ce paramètre, il est possible de sélectionner l’origine (source) du signal Déf.Valid.src.
Le signal à associer à cette fonction est sélectionné dans la liste de sélection "L_DIGSEL1".

0 Déf.Valid. src non actif (Alarme FastLink non signalée)
1 Déf.Valid. src actif (Alarme FastLink signalée)

Le drive, quand il détecte des mauvais fonctionnements sur le FastLink, se positionne pour activer l’alarme "Déf FastLink [28]".

Avec cette commande, il est possible de sélectionner si la détection d’un mauvais fonctionnement doit ou non déclencher une alarme.
Dans la configuration par défaut, le déclenchement de l’alarme est activé.

En modifiant la configuration du paramètre “Déf.Valid.FL.src” il est possible de contrôler les phases lors desquelles le déclenchement de l’alarme est actif.
Par exemple, en reliant le paramètre “Déf.Valid.FL.src” à “Visu état validé” il est possible d’activer le déclenchement de l’alarme “Déf FastLink [28]” lors de la phase d’activation du drive.

Sur les installations où le power-off des drive n’est pas simultané, il peut arriver que certains drives détectent un mauvais fonctionnement du FastLink et déclenchent l’alarme FastLink.

 Avec ce paramètre, il est possible de désactiver l’alarme au Power-off en reliant le paramètre “Déf.Valid.FL.src” à “Visu état validé”.

Avec ce paramètre, il est possible de sélectionner l’origine (source) du signal FL Fwd 1 src.
Le signal à associer à cette fonction est sélectionné dans la liste de sélection “L_FBS2M”.

Sur le drive configuré comme Master avec ces paramètres il est possible de sélectionner les données qui sont passées au premier slave.

Sur les drive configurés comme Slave avec ces paramètres il est possible de sélectionner les données que le slave doit ajouter au frame de données en remplaçant les données reçues du drive précédent.

Dans la configuration par défaut, l’opération de remplacement est désactivée. Pour l’activer, il est nécessaire de configurer le paramètre 5712 “FL N Fw Chgt.Esclave”.

Ce paramètre, uniquement significatif pour l’entraînement esclave, indique quelle donnée entrer dans le premier mot à envoyer à l’entraînement maître lorsque l’esclave est interrogé. Les valeurs qui peuvent être sélectionnées sont indiquées dans la liste L_FLWORD.

Sur le drive master, ces paramètres ne sont pas utilisés.
Sur le drive slave ces paramètres indiquent la valeur reçue du drive précédent. En utilisant les paramètres "dir" il est possible d’utiliser la valeur reçue de signe opposé, sans modifier les données envoyées aux slave suivants.

Ces paramètres sont disponibles dans les listes de sélection des paramètres "sources" analogiques.

<table>
<thead>
<tr>
<th>Menu</th>
<th>PAR</th>
<th>Description</th>
<th>UM</th>
<th>Type</th>
<th>FB</th>
<th>Bit</th>
<th>Def</th>
<th>Min</th>
<th>Maxi</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>23.8.21</td>
<td>5850</td>
<td>FL Don 1 visu</td>
<td>INT32</td>
<td>32</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>ER</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>23.8.22</td>
<td>5852</td>
<td>FL Don 2 visu</td>
<td>INT32</td>
<td>32</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>ER</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>23.8.23</td>
<td>5854</td>
<td>FL Don 3 visu</td>
<td>INT32</td>
<td>32</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>ER</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>23.8.24</td>
<td>5856</td>
<td>FL Don 4 visu</td>
<td>INT32</td>
<td>32</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>ER</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Affichage de la données sélectionnée via les paramètres FL Don X esclave sel correspondants (PAR 5822 ... 5828).

<table>
<thead>
<tr>
<th>Menu</th>
<th>PAR</th>
<th>Description</th>
<th>UM</th>
<th>Type</th>
<th>FB</th>
<th>Bit</th>
<th>Def</th>
<th>Min</th>
<th>Maxi</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>23.8.25</td>
<td>5822</td>
<td>FL Don 1 esclave sel</td>
<td>UINT16</td>
<td>0</td>
<td>0</td>
<td>31</td>
<td>ERWZ</td>
<td>FVS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>23.8.26</td>
<td>5824</td>
<td>FL Don 2 esclave sel</td>
<td>UINT16</td>
<td>0</td>
<td>0</td>
<td>31</td>
<td>ERWZ</td>
<td>FVS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>23.8.27</td>
<td>5826</td>
<td>FL Don 3 esclave sel</td>
<td>UINT16</td>
<td>0</td>
<td>0</td>
<td>31</td>
<td>ERWZ</td>
<td>FVS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>23.8.28</td>
<td>5828</td>
<td>FL Don 4 esclave sel</td>
<td>UINT16</td>
<td>0</td>
<td>0</td>
<td>31</td>
<td>ERWZ</td>
<td>FVS</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Ce paramètre, uniquement significatif pour l’entraînement maître, indique quelle donnée de quel entraînement esclave afficher dans le paramètre FL Don X visu (l’on peut choisir d’afficher le mot 1 ou 2 d’un esclave ayant une adresse comprise entre 2 et 16). Le codage utilisé attribue à la valeur 0 la signification de premier mot de l’esclave avec adresse 2, la valeur 1 pour le premier mot de l’esclave avec adresse 3,… 14 premier mot de l’esclave avec adresse 16 ; 15 sans signification ; 16 deuxième mot de l’esclave avec adresse 2 … 30 deuxième mot de l’esclave avec adresse 16.

<table>
<thead>
<tr>
<th>Menu</th>
<th>PAR</th>
<th>Description</th>
<th>UM</th>
<th>Type</th>
<th>FB</th>
<th>Bit</th>
<th>Def</th>
<th>Min</th>
<th>Maxi</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>23.8.29</td>
<td>5720</td>
<td>Visu Sync.Eslave</td>
<td>BIT</td>
<td>16</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>ER</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Sur le drive master, ce paramètre n’est pas significatif.

Sur les drive slave, ce paramètre montre l’état de la fonction qui permet de générer les signaux du Pwm synchronisés avec les signaux Pwm du Master et de la fonction qui permet d’exécuter des Task de contrôle synchronisés avec exécution des Task de contrôle du Master.

0 Slave non synchronisé
1 Slave synchronisé

<table>
<thead>
<tr>
<th>Menu</th>
<th>PAR</th>
<th>Description</th>
<th>UM</th>
<th>Type</th>
<th>FB</th>
<th>Bit</th>
<th>Def</th>
<th>Min</th>
<th>Maxi</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>23.8.30</td>
<td>5722</td>
<td>Code Défaut FastLink</td>
<td>UINT32</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>ER</td>
<td>FVS</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Avec ce paramètre, il est possible de visualiser la cause qui a déclenché l’alarme Déf FastLink [28].

Voir chapitre C - Déf FastLink [28]
Dans le menu **ALARM CONFIG** on détermine le type d’effet que les éventuelles signalisations d’alarme ont sur les actionnements:

- Mémorisation de l’état d’alarme.
- Comment l’actionnement doit-il réagir lors de la signalisation d’alarme?
- Redémarrage automatique
- Réinitialisation de l’alarme

Pour certaines alarmes, le comportement peut être configuré séparément à chaque signalisation alors que pour les restantes, la commande Désactivé doit être effectuée. D’autre part, chaque signalisation peut être reportée à une sortie numérique programmable.

<table>
<thead>
<tr>
<th>Action</th>
<th>Ignore</th>
<th>Avertissement</th>
<th>Dévalidé</th>
<th>Arrêté</th>
</tr>
</thead>
<tbody>
<tr>
<td>L’alarme n’est pas insérée dans la liste des alarmes, ni dans l’historique alarmes et elle n’est pas signalée sur les sorties numériques et les commandes du drive ne sont pas modifiées.</td>
<td>L’ alarme est insérée dans la liste des alarmes ainsi que dans l’historique des alarmes, elle est signalée sur les sorties numériques et l’information Première alarme ainsi que l’information Alarme activée sont mises à jour et les commandes du drive ne sont pas modifiées.</td>
<td>L’ alarme est insérée dans la liste des alarmes ainsi que dans l’historique des alarmes, elle est signalée sur les sorties numériques et l’information Première alarme ainsi que l’information Alarme activée sont mises à jour et le moteur s’arrête par inertie suite à la commande d’arrêt et désactivation.</td>
<td>L’ alarme est insérée dans la liste des alarmes ainsi que dans l’historique des alarmes, elle est signalée sur les sorties numériques et l’information Première alarme ainsi que l’information Alarme activée sont mises à jour et la commande d’arrêt est activée avec la commande Arrêté. Si le mode de contrôle inséré est Rampe, l’actionnement arrive à la vitesse zéro avec le temps de rampe configuré ; lorsque la signalisation Vitesse >0 retard s’active, le drive est désactivé. Si le mode de contrôle inséré est Vitesse, l’actionnement arrive à la vitesse zéro avec le maximum de courant possible ; lorsque la signalisation Vitesse >0 retard s’active, le drive est désactivé. Si le mode de contrôle inséré est Couple, l’actionnement arrive à la vitesse zéro avec le temps configuré par la charge; lorsque la signalisation Vitesse >0 retard s’active, le drive est désactivé.</td>
<td></td>
</tr>
</tbody>
</table>

n alarmes, ayant comme action Ignore ou Avertissement, peuvent être activées simultanément.

Si une alarme est activée avec Action = Arrêté ou Arrêt rapide une autre s’activera avec une Action différente de Ignore ou Avertissement, un arrêt se produira et le drive sera désactivé.
Toutes les alarmes ne permettent pas d’arrêter l’actionnement de manière contrôlée. Le tableau suivant indique les possibilités pour configurer l’action de chaque signalisation d’alarme.

<table>
<thead>
<tr>
<th>Alarme</th>
<th>Ignore</th>
<th>Avertissement</th>
<th>Dévalidé</th>
<th>Arrêté</th>
<th>Arrêt rapide</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alarme Externe</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Mot trop chaud</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Survitesse</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Pert Csgn Vit</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Alar RetVitess</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Surcharge Var</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Surcharge Mot</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Surcharge res fr</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Drive chaud</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Air trop chaud</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Désaturation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Surintensité</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Surtension</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sous tension</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Manque Phase</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Option bus</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Seuil Défaut terre</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Erreur frein</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>EXT IO</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Panne FL</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Phase moteur absente</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Condensation (uniquement pour la série ADV200-LC)</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Ala.PerEnt.Ana</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>

Menu PAR Description UM Type FB BIT Def Min Maxi Acc Mod

| 24.1 | 4500 | Acquit alarme src | LINK | 16 | 1120 | 0 | 16384 | RW | FVS |

Sélection de l’origine (source) du signal à utiliser pour commander le rétablissement du drive après une alarme. La borne utilisable pour cette fonction peut être configurée parmi celles qui sont disponibles dans la liste de sélection “L_DIGSEL2”.

Menu PAR Description UM Type FB BIT Def Min Maxi Acc Mod

| 24.2 | 4502 | Alarme extern src | LINK | 16 | 6000 | 0 | 16384 | RW | FVS |

Sélection de l’origine (source) du signal à utiliser comme entrée après l’alarme de Alarme Externe du drive Ext-Flt. La borne utilisable pour cette fonction peut être configurée parmi celles qui sont disponibles dans la liste de sélection “L_DIGSEL2”.

Menu PAR Description UM Type FB BIT Def Min Maxi Acc Mod

| 24.3 | 4504 | Action Alarme ext | ENUM | Dévalié | 0 | 4 | RW | FVS |

0 Ignore
1 Avertissement
2 Dévalié
3 Arrêté
4 Arrêt rapide
Menu PAR Description UM Type FB BIT Def Min Maxi Acc Mod

<table>
<thead>
<tr>
<th>24.4</th>
<th>4506 Redem Alarme ext</th>
<th>ENUM</th>
<th>Dévalidé</th>
<th>0</th>
<th>1</th>
<th>RW</th>
<th>FVS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Validation du redémarrage automatique après l’alarme Alarme Externe [21]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0 Dévalidé</td>
<td>1 Valider</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>24.5</th>
<th>4508 Temps redem Al ext</th>
<th>ms UINT16</th>
<th>1000</th>
<th>120</th>
<th>30000</th>
<th>RW</th>
<th>FVS</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>24.6</th>
<th>4510 Filtre Alarme extern</th>
<th>ms UINT16</th>
<th>0</th>
<th>0</th>
<th>10000</th>
<th>RW</th>
<th>FVS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Configuration du retard entre la signalisation de l’alarme Alarme Externe [21] et l’activation de l’alarme. Si une condition d’alarme se vérifiait, le drive attendra que le temps configuré s’écoule avant d’activer le blocage. Si l’alarme devait s’interrompre dans le temps configuré, le drive n’indiquera aucune condition d’alarme.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>24.7</th>
<th>4516 Actv.surtemp moteur</th>
<th>ENUM</th>
<th>Ignore</th>
<th>0</th>
<th>4</th>
<th>ERW</th>
<th>FVS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Gère l’activité de pré-alarme sur-température moteur.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0 Ignore</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1 Avertissement</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2 Dévalidé</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3 Arrêté</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4 Arrêt Rapide</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>24.8</th>
<th>4518 Res.sonde mot %</th>
<th>perc UINT16</th>
<th>60</th>
<th>0</th>
<th>100</th>
<th>ERW</th>
<th>FVS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Représente le seuil, en % de la valeur configurée dans IPA 4532 Seuil res.sonde mot, qui déclenche la pré-alarame de sur-température moteur.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>24.9</th>
<th>4520 Moteur chaud src</th>
<th>LINK</th>
<th>16</th>
<th>6000</th>
<th>0</th>
<th>16384</th>
<th>RW</th>
<th>FVS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Sélection de l’origine (source) du signal à utiliser pour l’alarme Mot trop chaud [12]. La borne utilisable pour cette fonction peut être configurée parmi celles qui sont disponibles dans la liste de sélection “L_DIGSEL2”.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>24.10</th>
<th>4522 Action moteur chaud</th>
<th>ENUM</th>
<th>Avertissement</th>
<th>0</th>
<th>4</th>
<th>RW</th>
<th>FVS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Configuration du comportement du drive en cas d’alarme Mot trop chaud [12]. Cette alarme indique une température excessive du moteur.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0 Ignore</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1 Avertissement</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2 Dévalidé</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3 Arrêté</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4 Arrêt rapide</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>24.11</th>
<th>4524 Redem moteur chaud</th>
<th>ENUM</th>
<th>Dévalidé</th>
<th>0</th>
<th>1</th>
<th>RW</th>
<th>FVS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Validation du redémarrage automatique après l’alarme Mot trop chaud [12].</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0 Dévalidé</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1 Validé</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Menu PAR
Description UM Type FB BIT Def Min Maxi Acc Mod

24.12
4526 Temp redem mot chaud
ms UINT16 1000 120 30000 RW FVS

24.13

4528 Filtre moteur chaud
ms UINT16 1000 0 30000 RW FVS

Configuration du retard entre la signalisation de l’alarme Mot trop chaud [12] et son déclenchement. Si une condition d’alarme se vérifiait, le drive attendra que le temps configuré se soit écoulé avant d’activer l’alarme. Si l’alarme devait s’interrompre dans le temps configuré, le drive n’indiquera aucune condition d’alarme.

24.14

4530 Choix sonde moteur
ENUM SRC 0 8 ERW FVS

Sélection du type de sonde pour mesurer une température extérieure. Les sélections suivantes sont possibles :

- **0** SRC alarme gérée via IPA 4520 Moteur chaud src
- **1** Sens An1X alarme gérée avec PT100/PT1000/NI1000 lue depuis l’entrée 1 carte d’expansion(*)
- **2** Sens An2X alarme gérée avec PT100/PT1000/NI1000 lue depuis l’entrée 2 carte d’expansion(*)
- **3** KTY84 AnX alarme gérée avec KTY84 lue depuis l’entrée dédiée cartes (*)
- **4** PTC AnX alarme gérée avec PTC lue depuis l’entrée dédiée cartes (*)
- **5** KTY84 An1 alarme gérée avec KTY84 lue depuis l’entrée analogique 1 de la carte de réglage
- **6** KTY84 An2 alarme gérée avec KTY84 lue depuis l’entrée analogique 2 de la carte de réglage
- **7** PTC An1 alarme gérée avec PTC lue depuis l’entrée analogique 1 de la carte de réglage
- **8** PTC An2 alarme gérée avec PTC lue depuis l’entrée analogique 2 de la carte de réglage
- **9** Klixon AnX alarme gérée avec KLYXON, lue depuis l’entrée dédiée cartes (*)
- **10** KTY84 An1X alarme gérée avec KTY84, lue depuis l’entrée 1 carte d’expansion (*)
- **11** KTY84 An2X alarme gérée avec KTY84, lue depuis l’entrée 2 carte d’expansion (*)
- **12** PTC An1X alarme gérée avec PTC, lue depuis l’entrée 1 carte d’expansion (*)
- **13** PTC An2X alarme gérée avec PTC, lue depuis l’entrée 2 carte d’expansion (*)

(* = EXP-IO-SENS-100-ADV, EXP-IO-SENS-1000-ADV)

24.15
4514 Unit.sonde mot.KTY84
ENUM ohm 0 1 ERW FVS

Il permet de sélectionner le seuil d’intervention de l’alarme “OT moteur” en Ohms ou degrés Celsius :

- **0** ohm (IPA 4532 Seuil OT moteur et IPA 4536 Res.sonde mot visu seront exprimés en Ohms).
- **1** °C (IPA 4532 Seuil OT moteur et IPA 4536 Res.sonde mot visu seront exprimés en °C).

24.16

4532 Seuil res.sonde mot
(*) UINT16 0 0 32767 ER FVS

Il représente le seuil de résistance qui doit déclencher l’alarme “Mot trop chaud”

La variable de système “SysMotorOTMon”, disponible pour les applications dans MDPLC, a été associée au paramètre IPA 4536. Cette variable est modulée pour 2^{16} et exprimée en Ohm ou °C, suivant la sélection effectuée avec IPA 4514.

(*) Le paramètre est exprimé en counts, Ohm ou °C, suivant le type de capteur sélectionné.

Le paramètre est exprimé en Ohm si le type de capteur sélectionné est PTC An1, PTC An2.

Le paramètre est exprimé en Ohm ou °C si le type de capteur sélectionné est KTY84 An1, KTY84 An2.

24.17

4536 Res.sonde mot visu
(*) INT16 0 0 32767 ER FVS

Il représente la valeur de moniteur du capteur utilisé.

(*) Le paramètre est exprimé en counts, Ohm ou °C, suivant le type de capteur sélectionné.

Le paramètre est exprimé en Ohm si le type de capteur sélectionné est PTC An1, PTC An2.

Le paramètre est exprimé en Ohm ou °C si le type de capteur sélectionné est KTY84 An1, KTY84 An2.
Menu PAR Description UM Type FB BIT Def Min Maxi Acc Mod

<table>
<thead>
<tr>
<th>No.</th>
<th>Description</th>
<th>UM</th>
<th>Type</th>
<th>FB</th>
<th>BIT</th>
<th>Def</th>
<th>Min</th>
<th>Maxi</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>24.18</td>
<td>4540 Seuil Survitesse</td>
<td>rpm</td>
<td>INT32</td>
<td>CALCI</td>
<td>0</td>
<td>CALCI</td>
<td>RW</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
<td>Configuration du seuil au-delà duquel l’alarme Survitesse [23] se déclenche.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>No.</th>
<th>Description</th>
<th>UM</th>
<th>Type</th>
<th>FB</th>
<th>BIT</th>
<th>Def</th>
<th>Min</th>
<th>Maxi</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>24.19</td>
<td>4542 Action survitesse</td>
<td>ENUM</td>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td>4</td>
<td>RW</td>
<td>FVS</td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
<td>Configuration du comportement du drive au cas où l’alarme Survitesse [23] se déclencherait. Cette alarme indique que la vitesse du moteur a dépassé le seuil dans le paramètre 4540 Seuil Survitesse.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0 Ignore</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1 Avertissement</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2 Dévalide</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3 Arrêté</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4 Arrêt rapide</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>No.</th>
<th>Description</th>
<th>UM</th>
<th>Type</th>
<th>FB</th>
<th>BIT</th>
<th>Def</th>
<th>Min</th>
<th>Maxi</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>24.20</td>
<td>4544 Filtre Survitesse</td>
<td>ms</td>
<td>UINT16</td>
<td></td>
<td></td>
<td>0</td>
<td>0</td>
<td>5000</td>
<td>RW</td>
<td>FVS</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
<td>Configuration du retard entre la signalisation de l’alarme Survitesse [23] et son déclenchement. Si une condition d’alarme se vérifiait, le drive attendra que le temps configuré se soit écoulé avant d’activer l’alarme. Si l’alarme devait s’interrompre dans le temps configuré, le drive n’indiquera aucune condition d’alarme.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>No.</th>
<th>Description</th>
<th>UM</th>
<th>Type</th>
<th>FB</th>
<th>BIT</th>
<th>Def</th>
<th>Min</th>
<th>Maxi</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>24.21</td>
<td>4550 Seuil Erreur consign</td>
<td>rpm</td>
<td>INT16</td>
<td></td>
<td></td>
<td>* 0</td>
<td>CALCI</td>
<td>RW</td>
<td>FVS</td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
<td>Configuration du seuil en dessous duquel l’alarme Pert Csign Vit [24], se déleche.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>* Flux Vect B.F. = 100 ; Flux Vect B.O. = 50 .</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>No.</th>
<th>Description</th>
<th>UM</th>
<th>Type</th>
<th>FB</th>
<th>BIT</th>
<th>Def</th>
<th>Min</th>
<th>Maxi</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>24.22</td>
<td>4552 Action Erreur consig</td>
<td>ENUM</td>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td>4</td>
<td>RW</td>
<td>FVS</td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
<td>Configuration du comportement du drive au cas où l’alarme Pert Csign Vit [24], se déclencherait. Cette alarme indique que la différence entre la consigne du régulateur de vitesse et la vitesse actuelle du moteur est supérieure à 100 tours/min.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0 Ignore</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1 Avertissement</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2 Dévalide</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3 Arrêté</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4 Arrêt rapide</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>* Flux Vect B.F. = Ignore ; Flux Vect B.O. = Avertissement .</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>No.</th>
<th>Description</th>
<th>UM</th>
<th>Type</th>
<th>FB</th>
<th>BIT</th>
<th>Def</th>
<th>Min</th>
<th>Maxi</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>24.23</td>
<td>4554 Filtre Erreur consig</td>
<td>ms</td>
<td>UINT16</td>
<td></td>
<td></td>
<td>1000</td>
<td>0</td>
<td>10000</td>
<td>RW</td>
<td>FVS</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
<td>Configuration du retard entre la signalisation de la situation d’alarme Pert Csign Vit [24] et son déclenchement. Si une condition d’alarme se vérifiait, le drive attendra que le temps configuré se soit écoulé avant d’activer l’alarme. Si l’alarme devait s’interrompre dans le temps configuré, le drive n’indiquera aucune condition d’alarme.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>* Flux Vect B.F. = 1000 ; Flux Vect B.O. = 500 .</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>No.</th>
<th>Description</th>
<th>UM</th>
<th>Type</th>
<th>FB</th>
<th>BIT</th>
<th>Def</th>
<th>Min</th>
<th>Maxi</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>24.24</td>
<td>4556 SpdRefLoss max spdOL</td>
<td>rpm</td>
<td>INT16</td>
<td>CALCI</td>
<td>0</td>
<td>CALCI</td>
<td>RW</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
<td>Ce paramètre (actif avec Flux Vect B.O.) permet d’activer une alarme en cas de démarrage non réussi ou de blocage du rotor. Le réglage est relatif à la valeur de seuil de vitesse avant de contrôler si le rotor est bloqué ou le moteur n’est pas en rotation.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>No.</th>
<th>Description</th>
<th>UM</th>
<th>Type</th>
<th>FB</th>
<th>BIT</th>
<th>Def</th>
<th>Min</th>
<th>Maxi</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>24.25</td>
<td>4558 Seu.Min.pert.ref.vit</td>
<td>BIT</td>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>ERW</td>
<td>FVS</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
<td>Mode d’habilitation alarme pour perte de vitesse de référence sur toute la plage de vitesse du moteur</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
ou selon Seuil vitesse 3 (IPA 970).
Si Seu.Min.pert.ref.vit (IPA 4558) est "Off", l’alarme pour perte de vitesse de référence intervient car la diffé-
rence entre la valeur de référence du régulateur de vitesse et la vitesse effective du moteur est supérieure à
Seuil Erreur consign(IPA 4550).
Si Seu.Min.pert.ref.vit (IPA 4558) est "On", le comportement sera le suivant :
• Si Seuil vitesse 3 mon (IPA 976) est égal à 0 (vitesse effective inférieure au seuil), l’entraînement vérifiera
les conditions d’alarme pour perte de vitesse de référence.
• Si Seuil vitesse 3 mon (IPA 976) ≥ 1 (vitesse effective supérieure au seuil), l’entraînement NE vérifiera
pas les conditions d’alarme pour perte de vitesse de référence (alarme exclue).

Menu PAR Description UM Type FB BIT Def Min Maxi Acc Mod
24.26 4560 Action PB Retour vit ENUM Dévalide 0 4 RW FV_

Configuration du comportement du drive au cas où l’alarme Alar RetVitess [22], se déclenchera. Cette
alarme indique la perte des signaux de la rétroaction de l’encodeur.

0 Ignore
1 Avertissement
2 Dévalide
3 Arrêté
4 Arrêt rapide

Menu PAR Description UM Type FB BIT Def Min Maxi Acc Mod
24.27 4562 Filtre PB Retour vit ms UINT16 200 0 10000 RW FVS

Configuration du retard entre la signalisation de la situation d’alarme Alar RetVitess [22] et son déclenchement.
Si une condition d’alarme se vérifiait, le drive attendra que le temps configuré se soit écoulé avant d’activer
l’alarme. Si l’alarme devait s’interrompre dans le temps configuré, le drive n’indiquera aucune condition d’alarme.

Menu PAR Description UM Type FB BIT Def Min Maxi Acc Mod
24.28 4564 SpdFbkLoss threshold rpm INT16 100 5 CALCI RW FVS

Pour codeur SE (Single ended) et avec les paramètres 2110 ou 5110 = (3) Controll A-B-SE.
Le contrôle de l’alarme Alar RetVitess [22] est activé lorsque la consigne de vitesse est supérieure à la valeur
paramétrée dans ce paramètre.
Si l’on utilise des codeurs numériques incrémentiels en mode single-ended, ce paramètre permet de configu-
rer le seuil au-delà duquel le drive exécute la fonction configurée sur le paramètre 4560 Action PB Retour vit.

Menu PAR Description UM Type FB BIT Def Min Maxi Acc Mod
24.29 4570 Action Drive surchg ENUM Ignore 0 4 ERW FVS

Configuration du comportement du drive au cas où l’alarme de surcharge drive Drive ovld [13] se déclenche-
rait. Cette alarme indique que le seuil de surcharge du drive a été atteint.

0 Ignore
1 Avertissement
2 Dévalide
3 Arrêté
4 Arrêt rapide

Menu PAR Description UM Type FB BIT Def Min Maxi Acc Mod
24.30 4572 Action Moteur surchg ENUM Avertissement 0 4 ERW FVS

Configuration du comportement du drive au cas où l’alarme Surcharge Mot [14] se déclenchera. Cette
alarme indique que le seuil de surcharge du moteur a été atteint.

0 Ignore
1 Avertissement
2 Dévalide
3 Arrêté
4 Arrêt rapide
Menu PAR Description UM Type FB BIT Def Min Maxi Acc Mod
24.31 4574 Action ResFrein srch ENUM Dévalidé 0 4 ERW FVS

0 Ignore
1 Avertissement
2 Dévalidé
3 Arrêté
4 Arrêt rapide

Menu PAR Description UM Type FB BIT Def Min Maxi Acc Mod
24.32 4582 Redem Drive chaud ENUM Dévalidé 0 1 ERW FVS
Validation du redémarrage automatique après l’alarme de HeatsinkS OTUT [10].

0 Dévalidé
1 Validé

Menu PAR Description UM Type FB BIT Def Min Maxi Acc Mod
24.33 4584 Temp redem drv chaud ms UINT16 20000 120 60000 ERW FVS

Menu PAR Description UM Type FB BIT Def Min Maxi Acc Mod
24.34 4600 Action Air entrant ENUM Arrêté 0 4 ERW FVS

0 Ignore
1 Avertissement
2 Dévalidé
3 Arrêté
4 Arrêt rapide

Menu PAR Description UM Type FB BIT Def Min Maxi Acc Mod
24.35 4602 Redem Air entrant ENUM Dévalidé 0 1 ERW FVS

0 Dévalidé
1 Validé

Menu PAR Description UM Type FB BIT Def Min Maxi Acc Mod
24.36 4604 Temps redem Air ent ms UINT16 1000 120 30000 ERW FVS

Menu PAR Description UM Type FB BIT Def Min Maxi Acc Mod
24.37 4606 Filtre Air entrant ms UINT16 10000 1000 30000 ERW FVS

Menu PAR Description UM Type FB BIT Def Min Maxi Acc Mod
24.38 4610 Redem Desaturat° ENUM Dévalidé 0 1 ERW FVS
Validation du redémarrage automatique après l’alarme Désaturation. Cette alarme indique un court-circuit entre les phases du moteur ou du pont de puissance.
0 Dévalide
1 Validé

Menu PAR Description UM Type FB BIT Def Min Maxi Acc Mod

| 24.39 | 4612 Temps redem Desat | ms UINT16 | 2000 | 1000 | 10000 | ERW | FVS |

Configuration du temps après lequel l'alarme *Désaturation [5]* doit rentrer pour pouvoir effectuer le redémarrage automatique. (Temps avec signal l'alarme activé + 1000 msec).

Menu PAR Description UM Type FB BIT Def Min Maxi Acc Mod

| 24.40 | 4620 Redem Surintensité | ENUM | Dévalide | 0 | 1 | ERW | FVS |

Validation du redémarrage automatique après l'alarme *Surintensité [4]*. Cette alarme indique une surintensité (ou un court-circuit entre les phases ou vers la terre).

0 Dévalide
1 Validé

Menu PAR Description UM Type FB BIT Def Min Maxi Acc Mod

| 24.41 | 4622 Tps redem Surintens | ms UINT16 | 2000 | 1000 | 10000 | ERW | FVS |

Configuration du temps après lequel l'alarme *Surintensité [4]* doit rentrer pour pouvoir effectuer le redémarrage automatique. (Temps avec signal l'alarme activé + 1000 msec).

Menu PAR Description UM Type FB BIT Def Min Maxi Acc Mod

| 24.42 | 4630 Redém Surtension | ENUM | Dévalide | 0 | 1 | ERW | FVS |

Validation du redémarrage automatique après l'alarme *Surtension [1]*. Cette alarme indique une Überspannung du circuit intermédiaire (DC link).

0 Dévalide
1 Validé

Menu PAR Description UM Type FB BIT Def Min Maxi Acc Mod

| 24.43 | 4632 Tps redem surtension | ms UINT16 | 2000 | 1000 | 10000 | ERW | FVS |

Configuration du temps après lequel l'alarme *Surtension [1]* doit rentrer pour pouvoir effectuer le redémarrage automatique. (Temps avec signal l'alarme activé + 1000 msec).

Menu PAR Description UM Type FB BIT Def Min Maxi Acc Mod

| 24.44 | 4640 Redem sousstension | ENUM | Validé | 0 | 1 | ERW | FVS |

Validation du redémarrage automatique après l'alarme *Sous tension [2]*. Cette alarme indique une sous-tension du circuit intermédiaire (DC link).

0 Dévalide
1 Validé

Menu PAR Description UM Type FB BIT Def Min Maxi Acc Mod

| 24.45 | 4642 Tps redem sstension | ms UINT16 | 1000 | 120 | 10000 | ERW | FVS |

Configuration du temps après lequel l'alarme *Sous tension* doit rentrer pour pouvoir effectuer le redémarrage automatique. (Temps avec signal l'alarme activé + 100 msec).

Menu PAR Description UM Type FB BIT Def Min Maxi Acc Mod

| 24.46 | 4650 Tentat redem sstens | UINT16 | 5 | 0 | 1000 | ERW | FVS |

Configuration du nombre maximum de tentatives de redémarrage automatique après l'alarme *Sous tension [2]*. avant d'avoir l'alarme *Multi sousTens [6]*. En configurant ce paramètre à 1000, on dispose d'une infinité de tentatives.

Menu PAR Description UM Type FB BIT Def Min Maxi Acc Mod

| 24.47 | 4652 Attente tentat ssten | s UINT16 | 240 | 0 | 300 | ERW | FVS |
Configuration du temps après lequel, si des redémarrages automatiques ne sont pas effectués après l’alarme Sous tension [2], le comptage des tentatives déjà effectuées est remis à zéro: de cette manière, on a encore à disposition un nombre de tentatives configuré en Tentat redem sstens.

Menu PAR Description UM Type FB BIT Def Min Maxi Acc Mod

24.48 4660 Action Manque phase ENUM Dévalide 0 4 ERW FVS

Manque Phase [16] se déclenchera. Cette alarme indique l’absence d’une phase d’alimentation du drive.

0 Ignore
1 Avertissement
2 Dévalide
3 Arrêté
4 Arrêt rapide

Menu PAR Description UM Type FB BIT Def Min Maxi Acc Mod

24.49 4662 Redém Manque phase ENUM Dévalide 0 1 ERW FVS

Validation du redémarrage automatique après l’alarme Manque Phase [16].

0 Dévalide
1 Valide

Menu PAR Description UM Type FB BIT Def Min Maxi Acc Mod

24.50 4664 Tps redem Manque ph ms UINT16 1000 120 10000 ERW FVS

Configuration du temps après lequel l’alarme Manque Phase [16] doit rentrer pour pouvoir effectuer le redémarrage automatique. (Temps avec signal l’alarme activé + 100 msec).

Menu PAR Description UM Type FB BIT Def Min Maxi Acc Mod

24.51 4670 Action bus optionnel ENUM Dévalide 0 4 ERW FVS

Configuration du comportement du drive au cas où l’alarme “Alarm BusOptio” se déclencherait.

0 Ignore
1 Avertissement
2 Dévalide
3 Arrêté
4 Arrêt rapide

Menu PAR Description UM Type FB BIT Def Min Maxi Acc Mod

24.52 4672 Defaut Optbus src LINK 16 6002 0 16384 ERW FVS

Sélection de l’origine (source) du signal à utiliser pour l’alarme Alarm BusOptio [17]. La borne utilisable pour cette fonction peut être choisie parmi celles disponibles dans la liste de sélection “L_DIGSEL1”.

Défaut : PAR 6002 Un. En cas de sélection PAR 1030 Local/remote mon l’alarme sera inhibée lors de la commutation de “Distant” à “Local”.

Menu PAR Description UM Type FB BIT Def Min Maxi Acc Mod

24.53 4680 Seuil Défaut terre perc FLOAT 10.0 0 150.0 ERWS FVS

Configuration du seuil pour l’alarme Défaut terre [3].

Menu PAR Description UM Type FB BIT Def Min Maxi Acc Mod

24.54 4684 Action défaut frein ENUM Dévalide 0 4 ERW FVS

Avec ce paramètre, il est possible de configurer le comportement du drive en cas d’erreur du frein mécanique. Les activités programmables sont les suivantes:

0 Ignore
1 Avertissement
2 Dévalide
3 Arrêté
4 Arrêt Rapide
Avec ce paramètre, il est possible de configurer le comportement du drive en cas de déclenchement de l’alarme "Déf.EntSortExt" [27] en cas d’installation de la carte EXP-FL-XCAN-ADV.

Voir chapitre C - "Alarme Déf.EntSortExt [27]".

Quand l’alarme se déclenche à cause d’une erreur de communication, la dernière valeur reçue est maintenue.

Les activités programmables sont les suivantes:
- 0 Ignore
- 1 Avertissement
- 2 Dévalide
- 3 Arrêté
- 4 Arrêt Rapide

Dans le menu DRIVE INFO pour les paramètres 530, 532, 534 SlotX carte type il est possible de vérifier si est présente une carte qui supporte les fonctions XCAN External IO:

<table>
<thead>
<tr>
<th>Valeur</th>
<th>Description</th>
<th>Expansion</th>
</tr>
</thead>
<tbody>
<tr>
<td>832</td>
<td>IO FastLink</td>
<td>EXP-FL-XCAN-ADV</td>
</tr>
</tbody>
</table>

Avec ce paramètre, il est possible de configurer le comportement du drive en cas d’alarme "Déf FastLink" [28].

Si la carte EXP-FL-XCAN-ADV est installée, tous les signaux relatifs à des problèmes de communication avec Fastlink sont activés et sont gérés à travers le déclenchement d’une alarme "Déf FastLink" [28], avec sub-codes différents pour indiquer la cause de l’erreur.

Voir chapitre C - Alarme "Déf FastLink" [28].

Les activités programmables sont les suivantes:
- 0 Ignore
- 1 Avertissement
- 2 Dévalide
- 3 Arrêté
- 4 Arrêt Rapide

- 0 Ignore
- 1 Avertissement
- 2 Dévalide
- 3 Arrêté
- 4 Arrêt Rapide

Représente le délai dans lequel la condition d’alarme doit persister avant que celle-ci soit effectivement déclenchée.

Il représente un seuil du courant de sortie par rapport auquel l’alarme doit se déclencher. La valeur programmée doit être inférieure à la valeur de courant de couple nominal de l’entraînement.
En cas de coupure de la connexion entre une phase du moteur et l’entraînement, l’éventuelle signalisation d’alarme est activée lors du dépassement du seuil de vitesse programmé dans ce paramètre.

Il peut être utilisé pour masquer l’alarme dans des conditions de très basse vitesse pendant le transitoire de démarrage ; il est bloqué lorsque d’éventuels “bruits” ou perturbations peuvent entraîner une intervention anormale de l’alarme.

La valeur hexadécimale contient des informations concernant le type de problème détecté et la phase où est présente l’anomalie.

Dans certains cas, il est possible que plusieurs bits soient réglés en même temps, en fonction du type de panne. En effet, si la coupure d’une phase interrompt la circulation de courant aussi dans les deux autres phases, le code affiché indiquera l’absence de l’ensemble des trois phases, même si un seul raccordement a été coupé.

Configuration du temps de retard, exprimé en secondes, nécessaire pour que l’activation de la condition Condensation state (IPA 6044) passe de 0 à 1 après que le paramètre Affich.Temp.Liquide (IPA 6042) soit devenu inférieur à Point Temp.rosée (IPA 6032) + Offset rosée OFF (IPA 6034).

Programmation du seuil pour la signalisation de sortie Sur-humidité (PAR 6046 Etat plus d’humidité).
24.66 4578 Retard plus humidité

Configuration du temps de retard, exprimé en secondes, nécessaire pour que l’activation de la condition **Etat plus d’humidité**(IPA 6046) passe de 0 à 1 après que le paramètre **Humidité de l’air** (IPA 6020) soit devenu supérieur à **Seuil plus humidité** (IPA 4596).

24.67 4598 Code err.sonde Humid

Code d’erreur alarme Capt.Humid.Err, qui peut être :
0x0: pas d’erreur
0x1: erreur de communication sonde d’humidité/température
0x2: erreur sonde de température NTC - température liquide à l’entrée du dissipateur
0x3: la somme des deux.

24.68 4546 Perte Ent.Ana.Act

Cette alarme signale la déconnexion du signal 0.1V..10.1V ou KTY84 ou 4..20mA, relative aux paramètres IPA 1502 **Entré ana 1 type**, IPA 1552 **Entré ana 2 type**, IPA 1602 **Entré ana 1X type** et IPA 1652 **Entré ana 2X type**.

24.69 4548 Tps.Perte.Ent.Ana ms

Représente le temps pendant lequel la condition d’alarme doit perdurer avant l’intervention effective de l’alarme Ala.PerEnt.Ana.

24.70 4568 Code perte analog.

Permet de signaler l’entrée analogique en erreur

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0x01</td>
<td>erreur sur entrée analogique 1 carte de régulation standard</td>
</tr>
<tr>
<td>0x02</td>
<td>erreur sur entrée analogique 2 carte de régulation standard</td>
</tr>
<tr>
<td>0x04</td>
<td>erreur sur entrée analogique 1 carte d’expansion E/S</td>
</tr>
<tr>
<td>0x08</td>
<td>erreur sur entrée analogique 2 carte d’expansion E/S</td>
</tr>
<tr>
<td>0x10</td>
<td>erreur sur entrée KTY84 dédié cartes d’expansion EXP-SENS</td>
</tr>
</tbody>
</table>

24.71 4700 Sel Alarme digit 1

Configuration de la signalisation d’alarme à activer sur la sortie numérique. La sélection de la sortie numérique s’effectue à l’aide des paramètres Visu alarme digit 1+4, pouvant être activés dans la liste de sélection L_DIGSEL1.

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Pas d’alarme</td>
</tr>
<tr>
<td>1</td>
<td>Surtension</td>
</tr>
<tr>
<td>2</td>
<td>Sous tension</td>
</tr>
<tr>
<td>3</td>
<td>Défaut terre</td>
</tr>
<tr>
<td>4</td>
<td>Surintensité</td>
</tr>
<tr>
<td>5</td>
<td>Désaturation</td>
</tr>
<tr>
<td>6</td>
<td>Multi sousTens</td>
</tr>
<tr>
<td>7</td>
<td>Multi Surinten</td>
</tr>
<tr>
<td>8</td>
<td>Multi désatur</td>
</tr>
<tr>
<td>9</td>
<td>Var trop chaud</td>
</tr>
<tr>
<td>10</td>
<td>HeatsinkS OTUT</td>
</tr>
<tr>
<td>11</td>
<td>Air trop chaud</td>
</tr>
</tbody>
</table>
12 Mot trop chaud
13 Surcharge Var
14 Surcharge Mot
15 ResFrein schar
16 Manque Phase
17 Alarm BusOptio
18 Alarme Opt 1ES
19 Alarme Opt 2ES
20 Alarm Opt Cod
21 Alarme Externe
22 Alar RetVitess
23 Survitesses
24 Pert Csige Vit
25 Alarm Arr Urg
26 Coupure Puiiss
27 Déf.EntSortExt
28 Déf FastLink
29 Défaut frein
30 Motor pre OT
31 Mot phase loss
32 Condensation
33 Alarme PLC1
34 Alarme PLC2
35 Alarme PLC3
36 Alarme PLC4
37 Alarme PLC5
38 Alarme PLC6
39 Alarme PLC7
40 Alarme PLC8
41 Watchdog
42 Erreur Trapp
43 Erreur système
44 Err Utilisat
45 Err Paramétrage
46 Ret CFG Usine
47 Err config plc
48 Charg CFG usin
49 Key failed
50 Erreur codeur
51 Opt chg config
52 Capt.Humid.Err
53 Alarme PLC9
54 Alarme PLC10
55 Alarme PLC11
56 Alarme PLC12
57 Alarme PLC13
58 Alarme PLC14
59 Alarme PLC15
60 Alarme PLC16
61 Not used1
62 Ala.PerEnt.Anal

Menu PAR Description UM Type FB BIT Def Min Maxi Acc Mod
24.75 4720 Temps auto aquit Alm s FLOAT 0.0 0.0 60.0 ERW FVS

Configuration de l’intervalle de temps qui doit s’écouler avant d’effectuer une réinitialisation automatique.
Si aucune alarme n’est activée, le drive se prépare à redémarrer.
Si des alarmes sont encore activées, le drive se prépare pour effectuer une nouvelle tentative de réinitialisation automatique.
A chaque tentative de réinitialisation, on augmente un compteur. Si l’on atteint le seuil configuré avec le paramètre Nb auto aquit Alm, le drive se prépare à ne plus effectuer de tentatives de réinitialisation et reste en attente de la réinitialisation de la part de l’utilisateur.
Le compteur est remis à zéro lorsqu’une réinitialisation automatique ou une réinitialisation de la part de l’utilisateur est effectuée et aucune alarme n’est activée.
Si le paramètre est 0 la fonction est désactivée.

Menu PAR Description UM Type FB BIT Def Min Maxi Acc Mod
24.76 4722 Nb auto aquit Alm UINT16 20 0 100 ERW FVS

Configuration du nombre maximum de tentatives de réinitialisation automatique effectuées.
Dans ce menu, l'historique des alarmes intervenues est mémorisé avec l'indication de l'heure à laquelle l'alarme s'est déclenchée (par rapport au paramètre Heures alimentées). Les alarmes sont affichées à partir de la plus récente (n° 1) jusqu'à la plus ancienne (n° 30). Jusqu'à 30 signalisations d'alarme peuvent être affichées. Le sous-code sert au service assistance technique pour identifier plus spécifiquement le type d'alarme qui s'est déclenchée. En appuyant sur les flèches ▲ et ▼ on peut se déplacer dans les pages écran de l'historique alarmes. Il est impossible d'effacer l'historique alarmes.
Ce menu a été conçu pour héberger deux applications réalisées avec le programme MDPlc.
L’application PID est installée par défaut dans le menu APPLICATION / APPLICATION 1. Suivre la procédure indiquée ci-dessous pour pouvoir activer l’application PID.
Le menu APPLICATION / APPLICATION 2 est disponible pour les applications personnalisées.
La sélection entre les deux applications possibles doit être effectuée avec le paramètre 558 Application select, dans le menu CONFIGURATION.

Arrêter et remettre en marche le drive.
Le menu PID sera disponible sur clavier :

** ADV200 • Description des fonctions et liste des paramètres **
28 - RECETTE CONFIG

Permet de créer un menu personnalisé à l'aide du clavier (ou via GF_eXpress), avec un maximum de 20 paramètres (menu 29 - RECETTE).

<p>| | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>28.1</td>
<td>6300 Config.recette 1</td>
<td>UINT16</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>RW</td>
<td>FVS</td>
</tr>
<tr>
<td>28.2</td>
<td>6302 Config.recette 2</td>
<td>UINT16</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>RW</td>
<td>FVS</td>
</tr>
<tr>
<td>28.3</td>
<td>6304 Config.recette 3</td>
<td>UINT16</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>RW</td>
<td>FVS</td>
</tr>
<tr>
<td>28.4</td>
<td>6306 Config.recette 4</td>
<td>UINT16</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>RW</td>
<td>FVS</td>
</tr>
<tr>
<td>28.5</td>
<td>6308 Config.recette 5</td>
<td>UINT16</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>RW</td>
<td>FVS</td>
</tr>
<tr>
<td>28.6</td>
<td>6310 Config.recette 6</td>
<td>UINT16</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>RW</td>
<td>FVS</td>
</tr>
<tr>
<td>28.7</td>
<td>6312 Config.recette 7</td>
<td>UINT16</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>RW</td>
<td>FVS</td>
</tr>
<tr>
<td>28.8</td>
<td>6314 Config.recette 8</td>
<td>UINT16</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>RW</td>
<td>FVS</td>
</tr>
<tr>
<td>28.9</td>
<td>6316 Config.recette 9</td>
<td>UINT16</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>RW</td>
<td>FVS</td>
</tr>
<tr>
<td>28.10</td>
<td>6318 Config.recette 10</td>
<td>UINT16</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>RW</td>
<td>FVS</td>
</tr>
<tr>
<td>28.11</td>
<td>6320 Config.recette 11</td>
<td>UINT16</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>RW</td>
<td>FVS</td>
</tr>
<tr>
<td>28.12</td>
<td>6322 Config.recette 12</td>
<td>UINT16</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>RW</td>
<td>FVS</td>
</tr>
<tr>
<td>28.13</td>
<td>6324 Config.recette 13</td>
<td>UINT16</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>RW</td>
<td>FVS</td>
</tr>
<tr>
<td>28.14</td>
<td>6326 Config.recette 14</td>
<td>UINT16</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>RW</td>
<td>FVS</td>
</tr>
<tr>
<td>28.15</td>
<td>6328 Config.recette 15</td>
<td>UINT16</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>RW</td>
<td>FVS</td>
</tr>
<tr>
<td>28.16</td>
<td>6330 Config.recette 16</td>
<td>UINT16</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>RW</td>
<td>FVS</td>
</tr>
<tr>
<td>28.17</td>
<td>6332 Config.recette 17</td>
<td>UINT16</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>RW</td>
<td>FVS</td>
</tr>
<tr>
<td>28.18</td>
<td>6334 Config.recette 18</td>
<td>UINT16</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>RW</td>
<td>FVS</td>
</tr>
<tr>
<td>28.19</td>
<td>6336 Config.recette 19</td>
<td>UINT16</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>RW</td>
<td>FVS</td>
</tr>
<tr>
<td>28.20</td>
<td>6338 Config.recette 20</td>
<td>UINT16</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>RW</td>
<td>FVS</td>
</tr>
</tbody>
</table>

Paramètres de configuration pour la création du menu personnalisé.
Sélectionner un paramètre Config.recette X ; appuyer sur Enter et entrer le IPA du paramètre à inclure dans la liste personnalisée (il sera disponible dans le menu 29 - RECETTE).
Pour éliminer un IPA de la liste de menus personnalisée, configurer le paramètre Config.recette X = 0.
Une fois la configuration terminée, utiliser la commande "Sauvegarde paramètre" du menu CONFIGURATION pour l’enregistrer dans la mémoire permanente.

29 - RECETTE

Dans le menu RECETTE (initiallement vide), sont écrits les paramètres configurés dans le menu 28 - RECETTE CONF.
PARAMETRES SAISIS DANS LES LISTES DE SELECTION NON VISIBLES SUR LE CLAVIER

<table>
<thead>
<tr>
<th>Menu</th>
<th>PAR</th>
<th>Description</th>
<th>UM</th>
<th>Type</th>
<th>FB</th>
<th>BIT</th>
<th>Def</th>
<th>Min</th>
<th>Maxi</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>262</td>
<td></td>
<td>Vitesse mot ss filtre</td>
<td>FF</td>
<td>INT16</td>
<td>16</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>ER</td>
<td></td>
</tr>
</tbody>
</table>

Ce paramètre indique la vitesse du moteur non filtrée.

<table>
<thead>
<tr>
<th>Menu</th>
<th>PAR</th>
<th>Description</th>
<th>UM</th>
<th>Type</th>
<th>FB</th>
<th>BIT</th>
<th>Def</th>
<th>Min</th>
<th>Maxi</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>362</td>
<td></td>
<td>Alarm surcharge drv</td>
<td>BIT</td>
<td>16</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>ER</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Ce signal indique que le drive est en surcharge. Dans la condition par défaut l'alarme ne se déclenche pas car l'activité relative est paramétrée sur Ignorer.

<table>
<thead>
<tr>
<th>Menu</th>
<th>PAR</th>
<th>Description</th>
<th>UM</th>
<th>Type</th>
<th>FB</th>
<th>BIT</th>
<th>Def</th>
<th>Min</th>
<th>Maxi</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>366</td>
<td></td>
<td>Surcharge drive 80%</td>
<td>BIT</td>
<td>16</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>ER</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Ce signal indique que le drive a atteint le 80% de l'accumulateur de l'image thermique (surcharge drive).

<table>
<thead>
<tr>
<th>Menu</th>
<th>PAR</th>
<th>Description</th>
<th>UM</th>
<th>Type</th>
<th>FB</th>
<th>BIT</th>
<th>Def</th>
<th>Min</th>
<th>Maxi</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>626</td>
<td></td>
<td>Ramp ref total visu</td>
<td>FF</td>
<td>INT16</td>
<td>16</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>ER</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Ce paramètre affiche la valeur de référence à la sortie du bloc fonction de référence de rampe.

<table>
<thead>
<tr>
<th>Menu</th>
<th>PAR</th>
<th>Description</th>
<th>UM</th>
<th>Type</th>
<th>FB</th>
<th>BIT</th>
<th>Def</th>
<th>Min</th>
<th>Maxi</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>760</td>
<td></td>
<td>Sortie Ramp Visu</td>
<td>FF</td>
<td>INT16</td>
<td>16</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>ER</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Ce paramètre affiche la valeur de référence à la sortie du bloc fonction des rampes.

<table>
<thead>
<tr>
<th>Menu</th>
<th>PAR</th>
<th>Description</th>
<th>UM</th>
<th>Type</th>
<th>FB</th>
<th>BIT</th>
<th>Def</th>
<th>Min</th>
<th>Maxi</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>764</td>
<td></td>
<td>Accélérat° en cours</td>
<td>BIT</td>
<td>16</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>ER</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Ce signal indique si la rampe d'accélération est en cours.

<table>
<thead>
<tr>
<th>Menu</th>
<th>PAR</th>
<th>Description</th>
<th>UM</th>
<th>Type</th>
<th>FB</th>
<th>BIT</th>
<th>Def</th>
<th>Min</th>
<th>Maxi</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>766</td>
<td></td>
<td>Décélérat° en cours</td>
<td>BIT</td>
<td>16</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>ER</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Ce signal indique si la rampe de décélération est en cours.

<table>
<thead>
<tr>
<th>Menu</th>
<th>PAR</th>
<th>Description</th>
<th>UM</th>
<th>Type</th>
<th>FB</th>
<th>BIT</th>
<th>Def</th>
<th>Min</th>
<th>Maxi</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>934</td>
<td></td>
<td>Consigne=0</td>
<td>BIT</td>
<td>16</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>ER</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Ce signal s'active lorsque la consigne est inférieure au seuil configuré avec le paramètre 930 Consigne>0 seuil.

<table>
<thead>
<tr>
<th>Menu</th>
<th>PAR</th>
<th>Description</th>
<th>UM</th>
<th>Type</th>
<th>FB</th>
<th>BIT</th>
<th>Def</th>
<th>Min</th>
<th>Maxi</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>936</td>
<td></td>
<td>Consigne=0 retard</td>
<td>BIT</td>
<td>16</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>ER</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Ce paramètre s'active lorsque la consigne est inférieure au seuil configuré avec le paramètre 930 Consigne>0 seuil. La signalisation s'active avec le retard configuré avec le paramètre 932 Consigne>0 retard.

<table>
<thead>
<tr>
<th>Menu</th>
<th>PAR</th>
<th>Description</th>
<th>UM</th>
<th>Type</th>
<th>FB</th>
<th>BIT</th>
<th>Def</th>
<th>Min</th>
<th>Maxi</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>944</td>
<td></td>
<td>Vitesse=0</td>
<td>BIT</td>
<td>16</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>ER</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Ce paramètre s'active lorsque la vitesse est inférieure au seuil configuré avec le paramètre 940 Vitesse >0 seuil.

<table>
<thead>
<tr>
<th>Menu</th>
<th>PAR</th>
<th>Description</th>
<th>UM</th>
<th>Type</th>
<th>FB</th>
<th>BIT</th>
<th>Def</th>
<th>Min</th>
<th>Maxi</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>946</td>
<td></td>
<td>Vitesse=0 retard</td>
<td>BIT</td>
<td>16</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>ER</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Ce signal s'active lorsque la consigne est inférieure au seuil configuré avec le paramètre 940 Vitesse >0 seuil. La signalisation s'active avec le retard configuré avec le paramètre 942 Vitesse >0 retard.
Affichage de la condition du seuil de vitesse : si la vitesse du moteur est supérieure à la valeur paramétrée dans le paramètre 950 Vitesse seuil 1 ou inférieure à la valeur paramétrée dans le paramètre 952 Vitesse seuil 2, ce paramètre prend la valeur 0.

Si la vitesse du moteur est comprise entre la valeur de 950 Vitesse seuil 1 et la valeur de 952 Seuil vitesse 2, ce paramètre prend la valeur 1.

Avec le paramètre 954 Vitesse seuil retard il est possible de paramétrer un temps de retard sur la transition de 0 à 1 du paramètre 956 Seuil vit.1_2 mon; la transition de 1 à 0 est toujours immédiate.

Si l’on paramètre 950 Vitesse seuil 1 supérieur à 952 Vitesse seuil 2 et si la vitesse du moteur est comprise entre les seuils, ce paramètre prend la valeur 1.

Si l’on paramètre 950 Vitesse seuil 1 inférieur à 952 Vitesse seuil 2, la condition du seuil n’est pas significative.

Ce signal s’active lorsque l’erreur entre la consigne de vitesse et la vitesse actuelle du moteur est supérieure à la tolérance configurée avec le paramètre 962 Vit atteinte erreur.

Visualisation de la condition du blocage qui détecte le dépassement du seuil de vitesse 3.

0 Vitesse en cours inférieure au seuil
1 Vitesse en cours supérieure au seuil

Visualisation de la condition du blocage qui détecte le dépassement du seuil du courant.

0 Courant de sortie en cours inférieur au seuil
1 Courant de sortie en cours supérieur au seuil.

Ce signal s’active lorsque le drive est en mode de fonctionnement Distance.

Ce signal indique l’état de la “machine à états” qui contrôle le fonctionnement du drive.

STS_INIT 0
STS_MAGN 1
STS_STOP 2
STS_START 3
STS_FS_STOP 4
STS_FS_START 5
STS_QSTOP 6
STS_FS_MAGN 7
STS_W_QSTOP 8
STS_READY 9
STS_MAGN_START 10
STS_ALM_DISABLED 11
STS_ALM_END_ACTION 12
STS_ALM_STOP 13
STS_ALM_FSTOP 14
STS_ALM_R_TO_NORMAL 15
STS_READY_START 16
STS_READY_FSTOP 17
STS_ALM_NO_RESTART 18
STS_FS_MAGN_START 19

Menu PAR Description UM Type FB BIT Def Min Maxi Acc Mod
1062 Drive OK BIT 16 0 0 1 ER

Ce signal s'active lorsque le drive est en condition “OK” et qu'aucune alarme n'est présente.
Associé à la sortie à relai, le contact normalement ouvert du relai se ferme quand :
- le drive est alimenté
- aucune condition d’alarme n’est active.

Remarque : Si P4640 Redem soutension est réglé sur “Validé”, le signal demeure au niveau 1 si la condition de Sous-tension disparaît dans le délai indiqué dans P4642.

Menu PAR Description UM Type FB BIT Def Min Maxi Acc Mod
1064 Variateur prêt BIT 16 0 0 1 ER

Ce signal s'active lorsque la consigne drive set en condition “Prêt” pour le fonctionnement.
Associé à la sortie à relai, le contact normalement ouvert du relai se ferme quand :
- le drive est alimenté
- phase de précharge terminée
- aucune condition d’alarme n’est active
- le drive est activé
- phase de magnétisation moteur terminée.

Menu PAR Description UM Type FB BIT Def Min Maxi Acc Mod
1110 Visu entré dig E BIT 16 0 0 1 ER
1112 Visu entré dig 1 BIT 16 0 0 1 ER
1114 Visu entré dig 2 BIT 16 0 0 1 ER
1116 Visu entré dig 3 BIT 16 0 0 1 ER
1118 Visu entré dig 4 BIT 16 0 0 1 ER
1120 Visu entré dig 5 BIT 16 0 0 1 ER

Ces signaux représentent l’état de l’entrée numérique correspondante.

Menu PAR Description UM Type FB BIT Def Min Maxi Acc Mod
1210 Visu entrée dig 1X BIT 16 0 0 1 ER
1212 Visu entrée dig 2X BIT 16 0 0 1 ER
1214 Visu entrée dig 3X BIT 16 0 0 1 ER
1216 Visu entrée dig 4X BIT 16 0 0 1 ER
1218 Visu entrée dig 5X BIT 16 0 0 1 ER
1220 Visu entrée dig 6X BIT 16 0 0 1 ER
1222 Visu entrée dig 7X BIT 16 0 0 1 ER
1224 Visu entrée dig 8X BIT 16 0 0 1 ER
5510 Visu entrée dig 9X BIT 16 0 0 1 ER
5512 Visu entrée dig10X BIT 16 0 0 1 ER
5514 Visu entrée dig11X BIT 16 0 0 1 ER
5516 Visu entrée dig12X BIT 16 0 0 1 ER
5518 Visu entrée dig13X BIT 16 0 0 1 ER
5520 Visu entrée dig14X BIT 16 0 0 1 ER
5522 Visu entrée dig15X BIT 16 0 0 1 ER
5524 Visu entrée dig16X BIT 16 0 0 1 ER

Ces signaux représentent l’état de l’entrée numérique correspondante de la carte d’expansion.
<table>
<thead>
<tr>
<th>Menu</th>
<th>PAR</th>
<th>Description</th>
<th>UM</th>
<th>Type</th>
<th>FB BIT</th>
<th>Def</th>
<th>Min</th>
<th>Maxi</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>1530</td>
<td>E ana 1 < seuil</td>
<td>BIT</td>
<td>16</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>ER</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1540</td>
<td>Visu.Err.Ent.Ana1</td>
<td>BIT</td>
<td>16BIT</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>ER</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1542</td>
<td>E ana 1 > seuil</td>
<td>BIT</td>
<td>16BIT</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>ER</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1580</td>
<td>E ana 2 < seuil</td>
<td>BIT</td>
<td>16</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>ER</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1590</td>
<td>Visu.Err.Ent.Ana2</td>
<td>BIT</td>
<td>16BIT</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>ER</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1592</td>
<td>E ana 2 > seuil</td>
<td>BIT</td>
<td>16BIT</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>ER</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1640</td>
<td>Visu.Err.Ent.Ana1X</td>
<td>BIT</td>
<td>16BIT</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>ER</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1690</td>
<td>Visu.Err.Ent.Ana2X</td>
<td>BIT</td>
<td>16BIT</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>ER</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2038</td>
<td>Etat autophase</td>
<td>UINT32</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>ERW</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2040</td>
<td>Autophase OK</td>
<td>UINT32</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>ER</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2388</td>
<td>Cons couple ssFiltre</td>
<td>perc</td>
<td>FLOAT</td>
<td>16</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>ER</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2396</td>
<td>Couple sans filtre</td>
<td>perc</td>
<td>FLOAT</td>
<td>16</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>ER</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Ce signal s’active lorsque la valeur de l’entrée analogique est inférieure au seuil configuré avec le paramètre 1520 Entrée ana 1 seuil.

Ce paramètre signale une éventuelle déconnexion de l’entrée correspondante.

Ce signal est activé lorsque la valeur de l’entrée analogique dépasse le seuil défini par le paramètre 1520 Soglia ingresso an 1.

Ce signal s’active lorsque la valeur de l’entrée analogique est inférieure au seuil configuré avec le paramètre 1570 Entrée ana 2 seuil.

Ce paramètre signale une éventuelle déconnexion de l’entrée correspondante.

Ce signal est activé lorsque la valeur de l’entrée analogique dépasse le seuil défini par le paramètre 1570 Soglia ingresso an 2.

Ce paramètre signale une éventuelle déconnexion de l’entrée correspondante de la carte optionnelle.

Il indique que la procédure de mise en phase (avec ou sans erreur) est terminée.

Il indique que la procédure de mise en phase est terminée sans erreur.

Visualisation sans filtre de la consigne de courant utilisé pour le contrôle de couple (en mode Flux Vect B.O. et Flux Vect B.F.).

Affichage nn filtré en % de la valeur de couple.
Menu PAR Description UM Type FB BIT Def Min Maxi Acc Mod

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
<th>UM</th>
<th>Type</th>
<th>FB</th>
<th>BIT</th>
<th>Def</th>
<th>Min</th>
<th>Maxi</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>2392</td>
<td>Visu cons couple 1</td>
<td>perc</td>
<td>FLOAT</td>
<td>16/32</td>
<td>0.0</td>
<td>-300.0</td>
<td>300.0</td>
<td>ERW</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
<td>Visualisation de la valeur totale de la référence 1 du couple.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
<th>UM</th>
<th>Type</th>
<th>FB</th>
<th>BIT</th>
<th>Def</th>
<th>Min</th>
<th>Maxi</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>3006</td>
<td>Sortie Rap vitesse</td>
<td>rpm</td>
<td>INT16</td>
<td>16</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>ER</td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
<td>Ce paramètre affiche la valeur du rapport de vitesse utilisé par la fonction “Speed draw” (rapport de vitesse).</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
<th>UM</th>
<th>Type</th>
<th>FB</th>
<th>BIT</th>
<th>Def</th>
<th>Min</th>
<th>Maxi</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>3180</td>
<td>Contr.frein mon</td>
<td>rpm</td>
<td>INT16</td>
<td>16</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>ER</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
<td>Ce paramètre visualise la condition de la commande du frein.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0 Frein fermé</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1 Frein ouvert</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
<th>UM</th>
<th>Type</th>
<th>FB</th>
<th>BIT</th>
<th>Def</th>
<th>Min</th>
<th>Maxi</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>3512</td>
<td>Seuil surtp.var visu</td>
<td>UINT32</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>ER</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
<td>Signalisation du dépassement du seuil configuré dans le PAR 3504 Seuil temp variateur.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0 Seuil non dépassé</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1 Seuil dépassé</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
<th>UM</th>
<th>Type</th>
<th>FB</th>
<th>BIT</th>
<th>Def</th>
<th>Min</th>
<th>Maxi</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>3514</td>
<td>Seuil surtp.mot visu</td>
<td>UINT32</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>ER</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
<td>Signalisation du dépassement du seuil configuré dans le PAR 3506 Seuil temp moteur.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0 Seuil non dépassé</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1 Seuil dépassé</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
<th>UM</th>
<th>Type</th>
<th>FB</th>
<th>BIT</th>
<th>Def</th>
<th>Min</th>
<th>Maxi</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>3192</td>
<td>Visu.Seuil.Ouv.Frein</td>
<td>perc</td>
<td>FLOAT</td>
<td>0.0</td>
<td>0.0</td>
<td>0</td>
<td>ERS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
<td>Valeur seuil ouverture frein. Uniquement avec sélection Hoist mode 2.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
<th>UM</th>
<th>Type</th>
<th>FB</th>
<th>BIT</th>
<th>Def</th>
<th>Min</th>
<th>Maxi</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>3214</td>
<td>Alarme surcharge mot</td>
<td>BIT</td>
<td>16</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>ER</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
<td>Ce signal s’active lorsque le drive est en état d’alarme à cause d’une surcharge du moteur.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
<th>UM</th>
<th>Type</th>
<th>FB</th>
<th>BIT</th>
<th>Def</th>
<th>Min</th>
<th>Maxi</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>3262</td>
<td>Alarme surch R frein</td>
<td>BIT</td>
<td>16</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>ER</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
<td>Ce signal s’active lorsque le drive est en état d’alarme à cause d’une surcharge de la résistance de freinage.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
<th>UM</th>
<th>Type</th>
<th>FB</th>
<th>BIT</th>
<th>Def</th>
<th>Min</th>
<th>Maxi</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>3442</td>
<td>Perte Alim Fin ramp</td>
<td>BIT</td>
<td>16</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>ER</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
<td>Ce paramètre indique la condition de la rampe de décélération de la fonction Powerloss</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0 Rampe de décélération de la fonction Powerloss pas terminée</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1 Rampe de décélération de la fonction Powerloss terminée</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>La signalisation s’active à la fin de la Rampe de décélération de la fonction Powerloss.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>La signalisation se désactive à des moments différents, en fonction du Perte Alim mode configuré.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
<th>UM</th>
<th>Type</th>
<th>FB</th>
<th>BIT</th>
<th>Def</th>
<th>Min</th>
<th>Maxi</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>3446</td>
<td>Perte Alim Ratio</td>
<td>INT32</td>
<td>32</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>ER</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
<td>Ce paramètre fournit le rapport entre la vitesse du moteur et la consigne de vitesse.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dans le cas de machines ayant plusieurs drives, en connectant la sortie Perte Alim Ratio du master à l’entrée Rapport vitesse src des drives slaves, il est possible d’obtenir la synchronisation de la ligne. La connexion</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
master => slave peut être réalisé à l'aide des signaux analogiques ou du bus de terrain.
La valeur 2^{30} correspond au rapport 1.

Menu PAR Description UM Type FB BIT Def Min Maxi Acc Mod

3448 P Alim activ suivant BIT 16 0 0 1 ER

Ce paramètre inique la condition de la fonction Powerloss
0 Powerloss désactivée
1 Powerloss activée

La fonction s'active lorsque le courant est coupé sur le réseau.
La fonction se désactive à différents moments, en fonction du Perte Alim mode configuré.

Menu PAR Description UM Type FB BIT Def Min Maxi Acc Mod

3480 Contr.bloc.rampe Vdc BIT 16 0 0 1 ER

Ce paramètre visualise quand est demandé le blocage de la rampe de décélération pendant la Contrôle fonct.Vdc.
0 Fonction VccCtrl désactivée
1 Fonction VccCtrl activée

Menu PAR Description UM Type FB BIT Def Min Maxi Acc Mod

4372 Mot d'état DS402 UINT16 16 0 0 65535 ER

Ce paramètre affiche le mot d'état conformément au profil DS402. Pour toute information supplémentaire, consulter le manuel bus de terrain.

Menu PAR Description UM Type FB BIT Def Min Maxi Acc Mod

4394 PFdrv Mot d'état 1 UINT16 16 0 0 65535 ER

Ce paramètre affiche le mot d'état 1 conformément au profil Profidrives. Pour toute information supplémentaire, consulter le manuel bus de terrain.

Menu PAR Description UM Type FB BIT Def Min Maxi Acc Mod

4396 PFdrv Mot d'état 2 UINT16 16 0 0 65535 ER

Ce paramètre affiche le mot d'état 2 conformément au profil Profidrives. Pour toute information supplémentaire, consulter le manuel bus de terrain.

Menu PAR Description UM Type FB BIT Def Min Maxi Acc Mod

4538 Courant KTY/PTC mA UINT32 2 1 10 ERWS

Valeur du courant qui circule dans la sonde de température KTY84 raccordée.

Menu PAR Description UM Type FB BIT Def Min Maxi Acc Mod

4708 Visu alarme digit 1 BIT 16 0 0 1 ER

Ce signal s'active lorsque l'alarme configurée sur le paramètre 4700 Sel Alarme digit 1 est activée.

Menu PAR Description UM Type FB BIT Def Min Maxi Acc Mod

4710 Visu alarme digit 2 BIT 16 0 0 1 ER

Ce signal s'active lorsque l'alarme configurée sur le paramètre 4702 Sel Alarme digit 2 est activée.

Menu PAR Description UM Type FB BIT Def Min Maxi Acc Mod

4712 Visu alarme digit 3 BIT 16 0 0 1 ER

Ce signal s'active lorsque l'alarme configurée sur le paramètre 4704 Sel Alarme digit 3 est activée.

Menu PAR Description UM Type FB BIT Def Min Maxi Acc Mod

4714 Visu alarme digit 4 BIT 16 0 0 1 ER

Ce signal s'active lorsque l'alarme configurée sur le paramètre 4706 Sel Alarme digit 4 est activée.
<table>
<thead>
<tr>
<th>Menu</th>
<th>PAR</th>
<th>Description</th>
<th>UM</th>
<th>Type</th>
<th>FB BIT</th>
<th>Def</th>
<th>Min</th>
<th>Maxi</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>4770</td>
<td>Première Alarme</td>
<td>UINT32</td>
<td>16</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>ERW</td>
<td></td>
</tr>
</tbody>
</table>

Ce paramètre indique la première alarme qui s’est déclenchée.

0 Pas d’alarme
1 Surtension
2 Sous tension
3 Défaut terre
4 Surintensité
5 Désaturation
6 Multi sousTens
7 Multi SurInten
8 Multi désatur
9 Var trop chaud
10 HeatsinkS OTUT
11 Air trop chaud
12 Mot trop chaud
13 Surcharge Var
14 Surcharge Mot
15 ResFrein schar
16 Manque Phase
17 Alarm BusOptio
18 Alarme Opt 1ES
19 Alarme Opt 2ES
20 Alarm Opt Cod
21 Alarme Externe
22 Alar RetVitess
23 Survitesse
24 Pert Csignment Vit
25 Alarm Arr Urg
26 Coupure Puiss
27 Déf.EntSortExt
28 Déf FastLink
29 Défaut frein
30 Motor pre OT
31 Mot phase loss
32 Pas utilisé 2
33 Alarme PLC1
34 Alarme PLC2
35 Alarme PLC3
36 Alarme PLC4
37 Alarme PLC5
38 Alarme PLC6
39 Alarme PLC7
40 Alarme PLC8
41 Watchdog
42 Erreur Trapp
43 Erreur système
44 Err Utilisat
45 Err Paramétrage
46 Ret CFG Usine
47 Err config plc
48 Charg CFG usin
49 Key failed
50 Erreur codeur
51 Opt chg config
52 Capt.Humid Err
53 Alarme PLC9
54 Alarme PLC10
55 Alarme PLC11
56 Alarme PLC12
57 Alarme PLC13
58 Alarme PLC14
59 Alarme PLC15
60 Alarme PLC16
61 Not used1
4780 Alarme PLC

Ce paramètre indique l’état des alarmes générées par une application écrite avec le MDPlc interne.

<table>
<thead>
<tr>
<th>Bit</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>= Panne Plc 1 activée</td>
</tr>
<tr>
<td>1</td>
<td>= Panne Plc 2 activée</td>
</tr>
<tr>
<td>2</td>
<td>= Panne Plc 3 activée</td>
</tr>
<tr>
<td>3</td>
<td>= Panne Plc 4 activée</td>
</tr>
<tr>
<td>4</td>
<td>= Panne Plc 5 activée</td>
</tr>
<tr>
<td>5</td>
<td>= Panne Plc 6 activée</td>
</tr>
<tr>
<td>6</td>
<td>= Panne Plc 7 activée</td>
</tr>
<tr>
<td>7</td>
<td>= Panne Plc 8 activée</td>
</tr>
</tbody>
</table>

4840 État d’alarme basse

Ce paramètre indique l’état des alarmes 1..32 du drive.

<table>
<thead>
<tr>
<th>Bit</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>= Sous tension activée</td>
</tr>
<tr>
<td>1</td>
<td>= Sous tension activée</td>
</tr>
<tr>
<td>2</td>
<td>= Défaut terre activée</td>
</tr>
<tr>
<td>3</td>
<td>= Surintensité activée</td>
</tr>
<tr>
<td>4</td>
<td>= Desaturation activée</td>
</tr>
<tr>
<td>5</td>
<td>= Multi sousTens activée</td>
</tr>
<tr>
<td>6</td>
<td>= Multi SurInten activée</td>
</tr>
<tr>
<td>7</td>
<td>= Multi désatur activée</td>
</tr>
<tr>
<td>8</td>
<td>= Var trop chaud activé</td>
</tr>
<tr>
<td>9</td>
<td>= HeatsinkS OTUT activé</td>
</tr>
<tr>
<td>10</td>
<td>= Air trop chaud activé</td>
</tr>
<tr>
<td>11</td>
<td>= Mot trop chaud activé</td>
</tr>
<tr>
<td>12</td>
<td>= Surcharge Var activée</td>
</tr>
<tr>
<td>13</td>
<td>= Surcharge Mot activée</td>
</tr>
<tr>
<td>14</td>
<td>= ResFrein schar activé</td>
</tr>
<tr>
<td>15</td>
<td>= Manque Phase activé</td>
</tr>
<tr>
<td>16</td>
<td>= Alarm BusOptio activée</td>
</tr>
<tr>
<td>17</td>
<td>= Alarme Opt 1ES activée</td>
</tr>
<tr>
<td>18</td>
<td>= Alarme Opt 2ES activée</td>
</tr>
<tr>
<td>19</td>
<td>= Alarme Opt Cod activée</td>
</tr>
<tr>
<td>20</td>
<td>= Alarme Externe activée</td>
</tr>
<tr>
<td>21</td>
<td>= Alar RetVitess activée</td>
</tr>
<tr>
<td>22</td>
<td>= Survitesse activée</td>
</tr>
<tr>
<td>23</td>
<td>= Pert Csign Vit activée</td>
</tr>
<tr>
<td>24</td>
<td>= Alarm Arr Urg activée</td>
</tr>
<tr>
<td>25</td>
<td>= Coupure Puiss activée</td>
</tr>
<tr>
<td>26</td>
<td>= Pas utilisé</td>
</tr>
<tr>
<td>27</td>
<td>= Pas utilisé</td>
</tr>
<tr>
<td>28</td>
<td>= Pas utilisé</td>
</tr>
<tr>
<td>29</td>
<td>= Pas utilisé</td>
</tr>
<tr>
<td>30</td>
<td>= Pas utilisé</td>
</tr>
<tr>
<td>31</td>
<td>= Pas utilisé</td>
</tr>
</tbody>
</table>

4842 État d’alarme haute

Ce paramètre indique l’état des alarmes 33..64 du drive.

<table>
<thead>
<tr>
<th>Bit</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>= Pas utilisé</td>
</tr>
<tr>
<td>1</td>
<td>= Pas utilisé</td>
</tr>
<tr>
<td>2</td>
<td>= Pas utilisé</td>
</tr>
<tr>
<td>3</td>
<td>= Pas utilisé</td>
</tr>
<tr>
<td>4</td>
<td>= Pas utilisé</td>
</tr>
<tr>
<td>5</td>
<td>= Pas utilisé</td>
</tr>
<tr>
<td>6</td>
<td>= Pas utilisé</td>
</tr>
<tr>
<td>7</td>
<td>= Pas utilisé</td>
</tr>
<tr>
<td>8</td>
<td>= Pas utilisé</td>
</tr>
<tr>
<td>9</td>
<td>= Pas utilisé</td>
</tr>
<tr>
<td>10</td>
<td>= Pas utilisé</td>
</tr>
<tr>
<td>11</td>
<td>= Pas utilisé</td>
</tr>
<tr>
<td>12</td>
<td>= Pas utilisé</td>
</tr>
<tr>
<td>13</td>
<td>= Pas utilisé</td>
</tr>
<tr>
<td>14</td>
<td>= Pas utilisé</td>
</tr>
<tr>
<td>15</td>
<td>= Pas utilisé</td>
</tr>
<tr>
<td>16</td>
<td>= Pas utilisé</td>
</tr>
<tr>
<td>17</td>
<td>= Pas utilisé</td>
</tr>
<tr>
<td>18</td>
<td>= Pas utilisé</td>
</tr>
<tr>
<td>19</td>
<td>= Pas utilisé</td>
</tr>
<tr>
<td>20</td>
<td>= Pas utilisé</td>
</tr>
<tr>
<td>21</td>
<td>= Pas utilisé</td>
</tr>
<tr>
<td>22</td>
<td>= Pas utilisé</td>
</tr>
<tr>
<td>23</td>
<td>= Pas utilisé</td>
</tr>
<tr>
<td>24</td>
<td>= Pas utilisé</td>
</tr>
<tr>
<td>25</td>
<td>= Pas utilisé</td>
</tr>
<tr>
<td>26</td>
<td>= Pas utilisé</td>
</tr>
<tr>
<td>27</td>
<td>= Pas utilisé</td>
</tr>
<tr>
<td>28</td>
<td>= Pas utilisé</td>
</tr>
<tr>
<td>29</td>
<td>= Pas utilisé</td>
</tr>
<tr>
<td>30</td>
<td>= Pas utilisé</td>
</tr>
<tr>
<td>31</td>
<td>= Pas utilisé</td>
</tr>
<tr>
<td>Bit</td>
<td>Description</td>
</tr>
<tr>
<td>-----</td>
<td>-------------</td>
</tr>
<tr>
<td>0</td>
<td>1 = Alarme PLC1 activée</td>
</tr>
<tr>
<td>1</td>
<td>1 = Alarme PLC2 activée</td>
</tr>
<tr>
<td>2</td>
<td>1 = Alarme PLC3 activée</td>
</tr>
<tr>
<td>3</td>
<td>1 = Alarme PLC4 activée</td>
</tr>
<tr>
<td>4</td>
<td>1 = Alarme PLC5 activée</td>
</tr>
<tr>
<td>5</td>
<td>1 = Alarme PLC6 activée</td>
</tr>
<tr>
<td>6</td>
<td>1 = Alarme PLC7 activée</td>
</tr>
<tr>
<td>7</td>
<td>1 = Alarme PLC8 activée</td>
</tr>
</tbody>
</table>

Sur le drive master, ces paramètres ne sont pas utilisés.
Sur le drive slave ces paramètres indiquent la valeur reçue du drive précédent. En utilisant les paramètres "Inv", il est possible d’utiliser la valeur reçue de signe opposé, sans modifier les données envoyées aux slave suivants.
Ces paramètres sont disponibles dans les listes de sélection des paramètres “sources” analogiques.

<table>
<thead>
<tr>
<th>Menu</th>
<th>PAR</th>
<th>Description</th>
<th>UM</th>
<th>Type</th>
<th>FB BIT</th>
<th>Def</th>
<th>Min</th>
<th>Maxi</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>5800</td>
<td>Visu Inv FL Fwd 1</td>
<td>INT32 32 0 0 0 ER</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5802</td>
<td>Visu Inv FL Fwd 2</td>
<td>INT32 32 0 0 0 ER</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5804</td>
<td>Visu Inv FL Fwd 3</td>
<td>INT32 32 0 0 0 ER</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5806</td>
<td>Visu Inv FL Fwd 4</td>
<td>INT32 32 0 0 0 ER</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5808</td>
<td>Visu Inv FL Fwd 5</td>
<td>INT32 32 0 0 0 ER</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5810</td>
<td>Visu Inv FL Fwd 6</td>
<td>INT32 32 0 0 0 ER</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5812</td>
<td>Visu Inv FL Fwd 7</td>
<td>INT32 32 0 0 0 ER</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5814</td>
<td>Visu Inv FL Fwd 8</td>
<td>INT32 32 0 0 0 ER</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Ce signal force la variable au niveau zéro (toujours désactivée).

<table>
<thead>
<tr>
<th>Menu</th>
<th>PAR</th>
<th>Description</th>
<th>UM</th>
<th>Type</th>
<th>FB BIT</th>
<th>Def</th>
<th>Min</th>
<th>Maxi</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>6002</td>
<td>ON</td>
<td>UINT32 32 1 1 1 ER</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Ce signal force la variable au niveau un (toujours activée).

<table>
<thead>
<tr>
<th>Menu</th>
<th>PAR</th>
<th>Description</th>
<th>UM</th>
<th>Type</th>
<th>FB BIT</th>
<th>Def</th>
<th>Min</th>
<th>Maxi</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>6004</td>
<td>Vitesse limitée</td>
<td>BIT 16 0 0 1 ER</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Ce signal s’active lorsque le drive est condition de limite de vitesse.

<table>
<thead>
<tr>
<th>Menu</th>
<th>PAR</th>
<th>Description</th>
<th>UM</th>
<th>Type</th>
<th>FB BIT</th>
<th>Def</th>
<th>Min</th>
<th>Maxi</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>6006</td>
<td>Courant limité</td>
<td>BIT 16 0 0 1 ER</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Ce signal s’active lorsque le drive est condition de limite de courant.

<table>
<thead>
<tr>
<th>Menu</th>
<th>PAR</th>
<th>Description</th>
<th>UM</th>
<th>Type</th>
<th>FB BIT</th>
<th>Def</th>
<th>Min</th>
<th>Maxi</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>6044</td>
<td>Etat condensation</td>
<td>UINT32 0 0 0 ER</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Ce signal est activé lorsque l’entraînement se trouve en condition d’alarme de condensation (série ADV200-LC).

<table>
<thead>
<tr>
<th>Menu</th>
<th>PAR</th>
<th>Description</th>
<th>UM</th>
<th>Type</th>
<th>FB BIT</th>
<th>Def</th>
<th>Min</th>
<th>Maxi</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>-</td>
<td>6046</td>
<td>Etat plus d’humidité</td>
<td>UINT32 0 0 0 ER</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Ce signal est activé lorsque l’entraînement se trouve en condition d’alarme de niveau d’humidité élevé (série ADV200-LC).
C - RECHERCHE DES PANNES

C.1 ALARMES

Dans le tableau suivant, le Code est visible seulement par la ligne port série.

<table>
<thead>
<tr>
<th>Code</th>
<th>Message d’erreur visualisé sur l’afficheur</th>
<th>Sous-code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Pas d’alarme</td>
<td>Condition : Aucune alarme présente</td>
<td></td>
</tr>
</tbody>
</table>
| 1 | Surtension | Condition : Alarme de surtension dans le DC link due à l’énergie récupérée par le moteur. La tension qui arrive à la partie de puissance du drive est trop élevée par rapport au seuil maximum correspondant à la programmation du paramètre PAR 560 Tension réseau. | Solution :
- Allonger la rampe de décelération.
- Utiliser une résistance de freinage entre les bornes BR1 et BR2 pour dissiper l’énergie de récupération
- Utiliser la fonction Contrôle VCC |
| 2 | Sous tension | Condition : Alarme de sous-tension dans le DC link. La tension qui arrive à la partie de puissance du drive est trop basse par rapport au seuil minimum correspondant à la programmation du paramètre PAR 560 Tension réseau due à :
- tension du réseau trop basse ou chutes de tension trop prolongées.
- mauvais raccordement des conducteurs (par exemple bornes de contacteur, d’inductance, de filtre etc, mal serrées). | Solution : Vérifier les raccordements d’alimentation de l’ entraînement et la valeur de la tension secteur. |
| 3 | Défaut terre | Condition : Alarme de court-circuit vers la masse | Solution :
- Contrôler les câblages du drive et du moteur.
- Contrôler que le moteur n’est pas à la masse. |
| 4 | Surintensité | Condition : Alarme d’intervention instantanée de la protection surcourant. La cause peut être la programmation incorrect des paramètres du régulateur de courant ou un court-circuit entre les phases ou vers la terre sur la sortie du drive. | Solution :
- Contrôler les paramètres du régulateur de courant
- Contrôler les câblages vers le moteur |
| 5 | Desaturation | Condition : Alarme instantanée de surcourant à l’intérieur du pont IGBT. | Solution : Arrêter et remettre en marche le drive. Si l’alarme persiste, il faut contacter le service d’assistance technique |
| 6 | Multi sousTens | Condition : On a effectué un nombre de tentatives de redémarrage automatique après l’alarme de sous-tension supérieure à la valeur paramétrée PAR 4650 Tentat redem stens dans l’intervalle de temps PAR 4652 Attente tentat sten. | Solution: Trop d’alarmes de Sous-tension se sont produites.
Appliquer les solutions suggérées pour l’alarme Sous-tension. |
| 7 | Multi SurInten | Condition : Deux tentatives de redémarrage automatique ont été effectuées après l’alarme de Surintensité dans l’intervalle de temps de 30 secondes. S’il se passe plus de 30 secondes après l’intervention de l’alarme Surintensité le comptage des tentatives déjà effectuées est remis à zéro | Solution : Trop d’alarmes de Surintensité se sont produites.
Appliquer les solutions suggérées pour l’alarme Surintensité. |
| 8 | Multi désatur | Condition : Deux tentatives de redémarrage automatique ont été effectuées après l’alarme de Désaturation dans l’intervalle de temps de 30 secondes. S’il se passe plus de 30 secondes après l’intervention de l’alarme Désaturation le comptage des tentatives déjà effectuées est remis à zéro | Solution: Trop d’alarmes de Désaturation se sont produites.
Appliquer les solutions suggérées pour l’alarme Désaturation. |
| 9 | Var trop chaud | Condition : Alarme température dissipateur trop élevée | Solution :
- Contrôler que le ventilateur de refroidissement fonctionne normalement.
- Contrôler que les dissipateurs ne sont pas colmatés
- Contrôler que les ouvertures pour l’air de refroidissement de l’armoire ne sont pas bouchées. |
<p>| 10 | HeatsinkS OTUT | Condition : Alarme température modules IGBT trop élevée ou trop basse. |</p>
<table>
<thead>
<tr>
<th>Code</th>
<th>Message d’erreur visualisé sur l’afficheur</th>
<th>Sous-code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Solution :</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Contrôler le fonctionnement du ventilateur.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Contrôler que l’air de refroidissement de l’armoire ne sont pas bouchées.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Air trop chaud</td>
<td>Condition : Alarme température de l’air du drive à l’entrée trop élevée.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Solution :</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Contrôler que le ventilateur de refroidissement fonctionne normalement.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Contrôler que les dissipateurs ne sont pas colmatés.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Contrôler que les ouvertures pour l’air de refroidissement de l’armoire ne sont pas bouchées.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Check temperature in electrical panel.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>Mot trop chaud</td>
<td>Condition : Alarme d’échauffement du moteur. Les causes possibles peuvent être :</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Solution :</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Cycle de charge appliqué trop lourd</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Si le moteur est équipé d’une ventilation forçée : Le ventilateur ne fonctionne pas</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Si le moteur n’est pas équipé d’une ventilation forçée : charge trop élevée à petite vitesse.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Le moteur est utilisé à une fréquence inférieure à la fréquence nominale, causant ainsi des pertes magnétiques supplémentaires.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Solution :</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Contrôler que la grandeur du drive est appropriée à l’application.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>Surcharge Mot</td>
<td>Condition : Alarme surcharge moteur. Le courant absorbé pendant le fonctionnement est supérieur à la valeur de la plaque du moteur. Cela est dû au dépassement du seuil de surcharge de l’accumulateur de l’image thermique Pt du moteur.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Solution :</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Réduire la charge du moteur.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Augmenter la grandeur du moteur.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>ResFrein schar</td>
<td>Condition : Alarme surcharge résistance de freinage .</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Solution :</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Le courant absorbé par la résistance est supérieur au courant nominal. Cela est dû au dépassement du seuil de surcharge de l’accumulateur de l’image thermique Pt de la résistance de freinage.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>Manque Phase</td>
<td>Condition : Alarme absence de phase d’alimentation.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Solution :</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Contrôler la tension de la ligne d’alimentation et l’éventuelle intervention des protections en amont du drive.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>Alarm BusOptio</td>
<td>Condition : Erreur pendant la configuration ou erreur de communication.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Solution :</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Si le premier chiffre à gauche de “H” du sous-code d’alarme est 0, l’erreur est due à un problème de communication.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Si le premier chiffre à gauche de “H” du sous-code d’alarme est autre que 0, l’erreur est due à un problème de configuration.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Pour les erreurs de configuration, contrôler la configuration de la communication avec Bus, type de Bus, Baudrate, address, programmation des paramètres.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Pour les erreurs de communication contrôler les câblages, les résistances de terminaison, la protection contre les parasites, les programmations des temps des timeout.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Pour de plus amples informations, consulter le Manuel de la carte de bus utilisée.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>Alarme Opt 1ES</td>
<td>Condition : Erreur lors de la communication entre Régulation et carte d’expansion E/S dans le slot 1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Solution :</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Contrôler la bonne insertion, voir chapitre 10.5 manuel ADV200 QS.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>Alarme Opt 2ES</td>
<td>Condition : Erreur lors de la communication entre Régulation et carte d’expansion E/S dans le slot 2 ou 3.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Solution :</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Contrôler la bonne insertion, voir chapitre 10.5 manuel ADV200 QS.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>Alarm Opt Cod</td>
<td>Condition : Erreur lors de la communication entre Régulation et carte rétroaction Codeur.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Solution :</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Contrôler la bonne insertion, voir chapitre 10.5 manuel ADV200 QS.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>Alarne Externe</td>
<td>Condition : Alarme externe présente. Une entrée numérique a été programmée comme alarme externe, mais la tension +24V n’est pas disponible sur la borne.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Solution :</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Contrôler le serrage des vis des bornes.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Condition : Alarme perte de la rétroaction de vitesse.
Le codeur n’est pas connecté, mal connecté ou il n’est pas sous tension : contrôler le fonctionnement du codeur en sélectionnant le paramètre PAR 260 Vitesse moteur dans le menu AFFICHAGE.

Solution :
- contrôler le bon état du câblage du codeur.
- Contrôler que le codeur est sous tension.
- Avec le drive désactivé, faire tourner le moteur dans le sens horaire (vue côté bout d’arbre moteur). La valeur indiquée doit être positive.
- Si la valeur indiquée ne change pas ou des valeurs sont indiquées au hasard, contrôler l’alimentation et le système des câbles du codeur.
- Si la valeur indiquée est négative, intervenir sur les connexions du codeur. Changer le canal A+ et A- ou B+ et B-.
- Contrôler le type exact d’électronique du codeur avec celui concernant la carte d’expansion.
- Elle est activée en cas d’anomalie du codeur. Chaque type de codeur active une alarme “Perte rétroaction” en mode différent. Voir le paramètre 2172 Code défaut codeur pour l’information sur la cause de l’alarme et le chapitre C.1 Alarme perte rétroaction.

Condition : Alarme survitesse moteur.
La vitesse du moteur dépasse les limites paramétrées sur les paramètres PAR 4540 Seuil Survitesse.

Solution :
- Limiter la référence de vitesse.
- Contrôler que le moteur n’est pas entraîner en survitesse pendant la rotation.

Condition : Alarme perte de la référence de vitesse ; elle intervient si la différence entre la référence du régulateur de vitesse et la référence actuelle du moteur est supérieure à 100rpm. La condition se produit parce que le drive est passé en limite de courant. N’est disponible qu’en mode Flux Vect B.O. et Flux Vect B.F.

Solution :
- Contrôler le câblage de la consigne de vitesse.
- Contrôler le nombre de points du codeur.

Condition : Alarme arrêt d’urgence.
Le bouton d’Arrêt du pavé a été enfoncé alors que le paramètre PAR 1008 Boutton Stop mode était configuré sur Arr UrgAlarme. Actif en mode commande à distance (PAR 1012 =1), avec les commandes aussi bien par bornier que par voie “Numérique”, ainsi qu’en mode commande locale (PAR 1012 = 0) avec les commandes par “Bornier”.

Solution :
- Eliminer la cause pour laquelle il a fallu appuyer sur la touche Arrêt sur le clavier et réinitialiser le drive.

Condition : Le drive a été activé sans être sous tension pour la partie puissance.

Solution :
- Contrôler l’alimentation du drive.

Condition : Problème de communication avec le module externe.

Solution :
- Voir chapitre C.1.4 Alarme “Déf.EntSortExt” page 193

Condition : Problème de communication FastLink

Solution :
- Voir chapitre C.1.5 Alarme “Fastlink” page 196.

Condition : Mauvais réglage des paramètres de la fonction de contrôle frein.

Solution :
- Consultare il menu 22.12 - FONCTIONS/CONTROLE FREIN.

Condition : Préalarme de sur-température moteur. Il s’agit d’une valeur de seuil en % par rapport à PAR 4532 Seuil res.sonde mot.

Solution :
- Valeur configurée insuffisante par rapport au cycle de chargement
- Cycle de chargement sévère,

Condition : Absence d’une phase de sortie.

Solution :
- Vérifier le raccordement entraînement/moteur.

Condition : De la condensation peut être présente à l’intérieur du produit série ADV200-LC. Les conditions d’exploitation (température ambiante, humidité et température du liquide de refroidissement) ne sont pas sécurisées.

Solution :
- Les conditions de sécurité sont obtenues lorsque le point de travail se trouve au-dessous de la courbe correspondante, indiquée dans le graphique au chapitre 22.18 - FONCTIONS/CONTROLE LC. Le cas échéant, il est nécessaire d’adopter les mesures nécessaires pour réduire la température ambiante et/ou l’humidité relative ou augmenter la température du liquide de refroidissement.

Condition : L’application active développée en milieu IEC 61131-3 a trouvé les conditions réelles pour activer cette alarme spécifique. La signification de l’alarme dépend du type d’application. Pour plus de fonctions voir la documentation concernant l’application spécifique.
<table>
<thead>
<tr>
<th>Code</th>
<th>Message d’erreur visualisé sur l’afficheur</th>
<th>Sous-code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>XXXH-X</td>
<td>Le code XXXH-X indique la cause de l’erreur : prendre note pour approfondir avec le service assistance.</td>
<td>Solution: Voir la documentation concernant l’application activée.</td>
<td></td>
</tr>
<tr>
<td>41</td>
<td>Watchdog</td>
<td>Condition : peut se produire pendant le fonctionnement lorsqu’on active la protection watchdog du micro; l’alarme est insérée dans la liste des alarmes et l’historique des alarmes. Après cette alarme: - le drive effectue automatiquement une réinitialisation - le contrôle du moteur n’est pas disponible.</td>
<td>XXXH-X Le code XXXH-X indique la cause de l’erreur : prendre note pour approfondir avec le service assistance.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Solution: Si l’alarme est la conséquence d’une variation de configuration du drive (programmation paramètre, installation option, téléchargement d’une application PLC) il faut l’éliminer. Arrêter et remettre en marche le drive.</td>
<td></td>
</tr>
<tr>
<td>42</td>
<td>Erreur Trapp</td>
<td>Condition : peut se produire pendant le fonctionnement lorsqu’on active la protection trap du micro ; l’alarme est insérée dans la liste des alarmes et alarm log. Après cette alarme : - le drive effectue automatiquement une réinitialisation - le contrôle du moteur n’est pas disponible.</td>
<td>XXXH-X Le code XXXH-X (SubHandler-Class) indique la cause de l’erreur: prendre note pour approfondir avec le service assistance.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Solution: Si l’alarme est la conséquence d’une variation de configuration du drive (programmation paramètre, installation option, téléchargement d’une application PLC), il faut l’éliminer. Arrêter et remettre en marche le drive.</td>
<td></td>
</tr>
<tr>
<td>43</td>
<td>Erreur système</td>
<td>Condition : peut se produire pendant le fonctionnement lorsqu’on active la protection du système d’exploitation ; l’alarme est insérée dans la liste des alarmes et alarm log. Après cette alarme: - le drive effectue automatiquement une réinitialisation - le contrôle du moteur n’est pas disponible.</td>
<td>XXXH-X Le code XXXH-X (Error-Pid) indique le type d’erreur : prendre note pour approfondir avec le service assistance.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Solution : Si l’alarme est la conséquence d’une variation de configuration du drive (programmation paramètre, installation option, téléchargement d’une application PLC) il faut l’éliminer. Arrêter et remettre en marche le drive.</td>
<td></td>
</tr>
<tr>
<td>44</td>
<td>Err Utilisat</td>
<td>Condition : peut se produire pendant le fonctionnement lorsqu’on active la protection du logiciel ; l’alarme est insérée dans la liste des alarmes et alarm log. Après cette alarme: - le drive effectue automatiquement une réinitialisation - le contrôle du moteur n’est pas disponible.</td>
<td>XXXH-X Le code XXXH-X (Error-Pid) indique la cause de l’erreur : prendre note pour approfondir avec le service assistance.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Solution : Si l’alarme est la conséquence d’une variation de configuration du drive (programmation paramètre, installation option, téléchargement d’une application PLC) il faut l’éliminer. Arrêter et remettre en marche le drive.</td>
<td></td>
</tr>
<tr>
<td>45</td>
<td>Err Paramétrage</td>
<td>Condition : si une erreur se produit pendant l’activation de la base de données des paramètres sauvegardée en flash ; l’alarme est insérée dans la liste des alarmes et l’historique des alarmes.</td>
<td>XXXH-X Le code XXXH-X indique l’IPA du paramètre qui est paramtré hors des limites consenties pour l’activation de la base de données.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Solution : Paramétrer le paramètre qui provoque l’erreur à une valeur, dans les limites de paramétrage, et effectuer une commande Sauvegarde paramètre, puis arrêter et remettre en marche le drive. Si l’IPA du paramètre n’est pas indiqué sur le Manuel, il faut contacter le service après vente.</td>
<td></td>
</tr>
<tr>
<td>46</td>
<td>Ret CFG Usine</td>
<td>Condition : peut se produire pendant le téléchargement de la base de données des paramètres sauvegardée en flash. C’est normal si elle se produit dans les conditions suivantes : lors du premier démarrage, lorsqu’on télécharge une nouvelle version de firmware, quand on installe la régulation sur une nouvelle grandeur, quand on change la région. Si ce message s’affiche lorsque le drive est déjà en service, cela signifie qu’un problème s’est produit dans la base de données des paramètres sauvegardés dans Flash. Si ce message s’affiche le drive rétablir la base de données par défaut, c’est-à-dire téléchargée lors du download.</td>
<td>0001H-1 La base de données sauvegardée n’est pas valable 0002H-2 La base de données sauvegardée n’est pas compatible 0003H-3 La base de données sauvegardée correspond à une grandeur différente de la grandeur actuelle 0004H-4 La base de données sauvegardée correspond à une région différente de la région actuelle</td>
</tr>
<tr>
<td>Code</td>
<td>Message d’erreur visualisé sur l’afficheur</td>
<td>Sous-code</td>
<td>Description</td>
</tr>
<tr>
<td>-------</td>
<td>--</td>
<td>-----------</td>
<td>-------------</td>
</tr>
<tr>
<td>47</td>
<td>Err config plc</td>
<td></td>
<td>Solution: Paramétrer les paramètres à la valeur désirée et exécuter Sauver les paramètres</td>
</tr>
<tr>
<td></td>
<td>Condition: peut se produire pendant le téléchargement de l’application Mdplc L’application Mdplc se trouvant sur le drive n’est pas exécutée.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0004H-4 L’application téléchargée a le Crc sur DataBlock et Function table différente</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0065H-101 L’application téléchargée a un identificateur non valable (Info)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0066H-102 L’application téléchargée utilise un numéro erroné de task (Info)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0067H-103 L’application téléchargée a une configuration erronée de logiciel</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0068H-104 L’application téléchargée a le Crc sur DataBlock et Function table différente</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0069H-105 Une Erreur Trapp ou une Erreur système s’est produite. Le drive a effectué automatiquement une opération de Power-up. Application pas exécutée. Voir dans Alarm List d’autres informations concernant l’erreur qui s’est produite.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>006AH-106 L’application téléchargée a un identificateur non valable (Task)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>006BH-107 L’application téléchargée utilise un numéro erroné de task (Task)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>006CH-108 L’application téléchargée a le Crc erroné (Tableaux + Code)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Solution: Eliminer l’application Mdplc ou télécharger une application Mdplc correcte.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>48</td>
<td>Charg CFG usin</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Condition: peut se produire pendant le téléchargement de la base de données des paramètres sauvegardée dans la Flash de l’application Mdplc. C’est normal si elle se produit lors du premier démarrage, après avoir téléchargé une nouvelle application. Si ce message s’affiche lorsque le drive est déjà en service, cela signifie qu’un problème s’est produit dans la base de données des paramètres sauvegardés dans Flash. Si ce message s’affiche, le drive effectue automatiquement la commande Chgt param d’usine PAR 580.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0001H-1 La base de données sauvegardée n’est pas valable</td>
<td></td>
<td></td>
</tr>
<tr>
<td>49</td>
<td>Key failed</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Condition: peu se produire pendant la phase d’alimentation du drive si la clé d’activation erronée est insérée pour une fonction firmware.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0001H-1 Clé pour PLC erronée. Application PLC non disponible.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Solution: Contacter le personnel Gefran pour la demande de la clé d’activation de la fonction firmware désirée.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>Erreur codeur</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Condition: Une erreur peut se présenter à l’alimentation du drive, pendant la phase de configuration du codeur exécutée pour chaque configuration du paramètre 552 Mode de régulation.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>100H-256 Cause: Une erreur s’est produite pendant la phase de configuration : les informations reçues par le codeur ne sont pas fiables. Si le codeur est utilisé pour la rétroaction, une alarme de Alar RetVitess [22] est générée.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Solution: Exécuter les mesures suggérées pour l’alarme de Alar RetVitess [22]</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>200H-512 Cause: Le firmware sur la carte en option du codeur n’est pas compatible avec celui sur la carte de régulation. Les informations reçues du codeur ne sont pas fiables.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Solution: Consulter le personnel Gefran pour actualiser le firmware de la carte en option du codeur.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>51</td>
<td>Opt chg config</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Condition: peut se produire en phase d’alimentation du drive si une carte d’expansion a été enlevée ou remplacée, si la clé d’activation erronée est insérée pour une fonction donnée du firmware</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0064H-100 Carte du slot 1 enlevée.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0014H-20 Carte du slot 2 enlevée.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0003H-3 Carte du slot 3 enlevée.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0078H-120 Carte du slot 1 et du slot 2 enlevée.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0067H-103 Carte du slot 1 et du slot 3 enlevée.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0017H-23 Carte du slot 2 et du slot 3 enlevée.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0078H-123 Carte du slot 1, du slot 2 et du slot 3 enlevée.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Solution: Contrôler la configuration hardware, puis appuyer sur la touche ESC. Pour enregistrer la nouvelle configuration hardware effectuer un enregistrement des paramètres (Sauvegarde paramètre, menu 04.01 par. 550).</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Code</td>
<td>Message d’erreur visualisé sur l’afficheur</td>
<td>Sous-code</td>
<td>Description</td>
</tr>
<tr>
<td>------</td>
<td>--</td>
<td>-----------</td>
<td>-------------</td>
</tr>
<tr>
<td>52</td>
<td>Capt.Humid.Err</td>
<td></td>
<td>Condition : Déconnexion ou court-circuit de la sonde d’humidité intégrée dans l’entraînement ADV200-LC.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0x0</td>
<td>Pas d’erreur.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0x1</td>
<td>Erreur de communication sonde d’humidité/température.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0x2</td>
<td>Erreur de température NTC (liquide à l’entrée du dissipateur).</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0x3</td>
<td>Erreur de communication et sonde de température NTC.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Solution : Effectuer la RAZ de l’entraînement. Réinitialiser l’entraînement. Si le problème persiste, contacter le Service Après-vente Gefran.</td>
<td></td>
</tr>
<tr>
<td>53</td>
<td>Alarne PLC 9</td>
<td></td>
<td>Condition : L’application active développée dans l’environnement IEC 61131-3 a vérifié les conditions nécessaires pour déclencher cette alarme spécifique. La signification de l’alarme dépend du type d’application. Pour d’autres fonctions, se reporter à la documentation relative à l’application spécifique.</td>
</tr>
<tr>
<td>54</td>
<td>Alarne PLC 9</td>
<td></td>
<td>Condition : Le paramètre 4640 Redem soustension est réglé sur “Validé”. Détection d’une condition de Sous-tension avec exclusion de l’entraînement et émission du signal d’alarme UV Wng&Restart.</td>
</tr>
<tr>
<td>55</td>
<td>Alarne PLC 16</td>
<td></td>
<td>Solution : Se reporter à la documentation relative à l’application active.</td>
</tr>
<tr>
<td>61</td>
<td>UV Wng&Restart</td>
<td></td>
<td>Condition : Le paramètre 3280 Valid.Maint.ST est set = 1. Due to a mains voltage dip (Mains loss) the DC link voltage value is lower than the threshold PAR 3282 Maint.ST on.</td>
</tr>
<tr>
<td>62</td>
<td>Alarne PLC 9</td>
<td></td>
<td>Solution : Vérifier les câblages.</td>
</tr>
<tr>
<td>63</td>
<td>Seuil.Maint.ST</td>
<td></td>
<td>Condition : Parameter 3280 Valid.Maint.ST is set = 1. Due to a mains voltage dip (Mains loss) the DC link voltage value is lower than the threshold PAR 3282 Maint.ST on.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Solution : Check drive power supply wirings and its correct range.</td>
<td></td>
</tr>
</tbody>
</table>

C.1.1 Alarme Alar RetVitess en fonction du type de retour

Pour la bonne interprétation des causes qui ont déclenché l’alarme, il est nécessaire de lire le paramètre 17.30 Défaut rétroaction, PAR. 2172, dans les modalités indiquées ci-après.

Prendre les chiffres du nombre au format hexadécimal et le saisir du tableau suivant :

<table>
<thead>
<tr>
<th>D7..D4</th>
<th>D3</th>
<th>D2</th>
<th>D1</th>
<th>D0</th>
</tr>
</thead>
</table>

Pour chaque valeur de D0, D1, D2, D3 différente de 0x0 (0x0 = aucune alarme active), chercher dans le tableau suivant en quelles sous-valeurs, elle peut être décomposée :

<table>
<thead>
<tr>
<th>D0 D1 D2 D3</th>
</tr>
</thead>
<tbody>
<tr>
<td>0x0 0x0 0x0 0x0 0x0</td>
</tr>
<tr>
<td>0x1 0x0 0x0 0x0 0x1</td>
</tr>
<tr>
<td>0x2 0x0 0x0 0x2 0x0</td>
</tr>
<tr>
<td>0x3 0x0 0x0 0x2 0x1</td>
</tr>
<tr>
<td>0x4 0x0 0x4 0x0 0x0</td>
</tr>
<tr>
<td>0x5 0x0 0x4 0x0 0x1</td>
</tr>
<tr>
<td>0x6 0x0 0x4 0x2 0x0</td>
</tr>
<tr>
<td>0x7 0x0 0x4 0x2 0x1</td>
</tr>
<tr>
<td>0x8 0x8 0x0 0x0 0x0</td>
</tr>
<tr>
<td>0x9 0x8 0x0 0x0 0x1</td>
</tr>
<tr>
<td>0xA 0x8 0x0 0x2 0x0</td>
</tr>
<tr>
<td>0xB 0x8 0x0 0x2 0x1</td>
</tr>
<tr>
<td>0xC 0x8 0x4 0x0 0x0</td>
</tr>
<tr>
<td>0xD 0x8 0x4 0x0 0x1</td>
</tr>
<tr>
<td>0xE 0x8 0x4 0x2 0x0</td>
</tr>
<tr>
<td>0xF 0x8 0x4 0x2 0x1</td>
</tr>
</tbody>
</table>

Dans le tableau relatif au type de codeur utilisé, charger les sous-valeurs obtenues par chaque chiffre D0, D1,

Exemple avec codeur Endat :

PAR 2172 = A0H
Prendre les chiffres du nombre au format hexadécimal et le saisir du tableau suivant :

<table>
<thead>
<tr>
<th>Valeur</th>
<th>D7..D4</th>
<th>D3</th>
<th>D2</th>
<th>D1</th>
<th>D0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0xA</td>
<td>0x0</td>
<td></td>
<td></td>
<td></td>
<td>0x0</td>
</tr>
</tbody>
</table>

Pour chaque valeur de D0, D1, D2, D3 différente de 0x0, chercher dans le tableau 1 en quelles sous-valeurs, elle peut être décomposée

<table>
<thead>
<tr>
<th>D0</th>
<th>D1</th>
<th>D2</th>
<th>D3</th>
</tr>
</thead>
<tbody>
<tr>
<td>0x0</td>
<td>0x0</td>
<td>0x0</td>
<td>0x0</td>
</tr>
<tr>
<td>0x1</td>
<td>0x0</td>
<td>0x0</td>
<td>0x1</td>
</tr>
<tr>
<td>0x2</td>
<td>0x0</td>
<td>0x0</td>
<td>0x2</td>
</tr>
<tr>
<td>0x3</td>
<td>0x0</td>
<td>0x0</td>
<td>0x2</td>
</tr>
<tr>
<td>0x4</td>
<td>0x0</td>
<td>0x4</td>
<td>0x0</td>
</tr>
<tr>
<td>0x5</td>
<td>0x0</td>
<td>0x4</td>
<td>0x0</td>
</tr>
<tr>
<td>0x6</td>
<td>0x0</td>
<td>0x4</td>
<td>0x2</td>
</tr>
<tr>
<td>0x7</td>
<td>0x0</td>
<td>0x4</td>
<td>0x2</td>
</tr>
<tr>
<td>0x8</td>
<td>0x8</td>
<td>0x0</td>
<td>0x0</td>
</tr>
<tr>
<td>0x9</td>
<td>0x8</td>
<td>0x0</td>
<td>0x0</td>
</tr>
<tr>
<td>0xA</td>
<td>0x8</td>
<td>0x0</td>
<td>0x2</td>
</tr>
<tr>
<td>0xB</td>
<td>0x8</td>
<td>0x0</td>
<td>0x2</td>
</tr>
<tr>
<td>0xC</td>
<td>0x8</td>
<td>0x4</td>
<td>0x0</td>
</tr>
<tr>
<td>0xD</td>
<td>0x8</td>
<td>0x4</td>
<td>0x0</td>
</tr>
<tr>
<td>0xE</td>
<td>0x8</td>
<td>0x4</td>
<td>0x2</td>
</tr>
<tr>
<td>0xF</td>
<td>0x8</td>
<td>0x4</td>
<td>0x2</td>
</tr>
</tbody>
</table>

Exemple : le chiffre D1 avec la valeur 0xA est constitué des sous-valeurs 0x2 et 0x8.

Dans le tableau relatif au type de codeur utilisé, charger les sous-valeurs obtenues par chaque chiffre D0, D1, D2 et D3 dans les colonnes correspondantes Valeur.D0, Valeur.D1, Valeur.D2, Valeur.D3

Valeur.D1 = 2H
Cause : (CRC_CKS_P) des signaux SSI perturbés sont la cause d’une erreur CKS ou de Parité.

Valeur.D1 = 8H
Cause : (DT1_ERR) Le codeur a relevé une anomalie dans son propre fonctionnement et le signale au Drive par Error bit. Dans les bits 16..31, est présent le type de dysfonctionnement relevé par le codeur.

- **Alarme Alar RetVitess [22] avec codeur incrémentiel numérique**

<table>
<thead>
<tr>
<th>Bit</th>
<th>Valeur</th>
<th>Nom</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0x1</td>
<td>CHA</td>
<td>Cause: Impulsions absentes ou perturbations sur le canal A incrémentiel.</td>
</tr>
<tr>
<td>Solution: Vérifier le raccord du canal A codeur-drive, vérifier le branchement de l’écran, contrôler la tension d’alimentation du codeur.\nContrôler les paramètres 2102 Alim. codeur 1 et 2104 Config.entr.codeur 1 (si le codeur 1 est utilisé).\nContrôler les paramètres 5102 Alim. codeur 2 et 5104 Config.entr.codeur 2 (si le codeur 2 est utilisé).</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0x2</td>
<td>CHB</td>
<td>Cause: Impulsions absentes ou perturbations sur le canal B incrémentiel.</td>
</tr>
</tbody>
</table>
Solution
Vérifier le raccord du canal B codeur-drive, vérifier le branchement de l’écran, contrôler la tension d’alimentation du codeur.
Contrôler les paramètres 2102 **Alim. codeur 1** et 2104 **Config.entr.codeur 1** (si le codeur 1 est utilisé).
Contrôler les paramètres 5102 **Alim. codeur 2** et 5104 **Config.entr.codeur 2** (si le codeur 2 est utilisé).

Cause: Impulsions absentes ou perturbations sur le canal Z incrémentiel.

Alarme Alar RetVitesse [22] avec codeur incrémentiel Sinus

<table>
<thead>
<tr>
<th>Bit D7..D4</th>
<th>D3</th>
<th>D2</th>
<th>D1</th>
<th>D0</th>
<th>Nom</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>0x4</td>
<td>CHZ</td>
<td></td>
<td></td>
<td>Solution: Vérifier le raccord du canal Z codeur-drive, vérifier le branchement de l’écran, contrôler la tension d’alimentation du codeur. Contrôler les paramètres 2102 Alim. codeur 1 et 2104 Config.entr.codeur 1 (si le codeur 1 est utilisé). Contrôler les paramètres 5102 Alim. codeur 2 et 5104 Config.entr.codeur 2 (si le codeur 2 est utilisé).</td>
<td></td>
</tr>
</tbody>
</table>
Alarme Alar RetVitess avec codeur absolu EnDat

<table>
<thead>
<tr>
<th>Bit</th>
<th>Valeur</th>
<th>Nom</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>D7..D4</td>
<td>D3 D2 D1 D0</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>0x8 MOD_INCR</td>
<td>Cause: Niveau de tension incorrect des canaux ou perturbations sur les signaux des canaux A-B incrémentiels.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Solution: Vérifier le raccord des canaux A-B codeur-drive, vérifier le branchement de l'écran, contrôler la tension d'alimentation du codeur et le paramètre 2102 Alim. codeur 1 ; vérifier le paramètre 2108 Signal codeur 1 Vpp.</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>0x2 0x0 CRC_CKS_P</td>
<td>Cause: des signaux SSI absents ou perturbés provoquent une erreur sur CRC.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Solution: Vérifier le raccord d'horloge et de codeur données-drive, vérifier le branchement de l'écran, contrôler la tension d'alimentation du codeur et le paramètre 2102 Alim. codeur 1.</td>
</tr>
</tbody>
</table>

Setup error

<table>
<thead>
<tr>
<th>Bit</th>
<th>Valeur</th>
<th>Nom</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>D7..D4</td>
<td>D3 D2 D1 D0</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td>0x1 0x0 0x0</td>
<td>Cause: Une erreur s’est produite pendant la phase de configuration.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Solution: Vérifier le raccord d’horloge et de codeur données-drive, vérifier le branchement de l’écran, contrôler la tension d’alimentation du codeur et le paramètre 2102 Alim. codeur 1.</td>
</tr>
</tbody>
</table>

Les situations suivantes se présentent en phase de réinitialisation du codeur, suite à l’activation de **Alarme Alar RetVitess** [22]

<table>
<thead>
<tr>
<th>Bit</th>
<th>Valeur</th>
<th>Nom</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>D7..D4</td>
<td>D3 D2 D1 D0</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td>0x4 0x0 ACK_TMO</td>
<td>Cause: des signaux SSI absents ou perturbés provoquent une erreur sur CRC.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Solution: Vérifier le raccord d’horloge et de codeur données-drive, vérifier le branchement de l’écran, contrôler la tension d’alimentation du codeur et le paramètre 2102 Alim. codeur 1.</td>
</tr>
<tr>
<td>7</td>
<td></td>
<td>0x8 0x0 DT1_ERR</td>
<td>Cause: Le codeur a relevé une anomalie dans son propre fonctionnement et le signal au drive par bit DT1. Dans les bits 16..31, on trouvera le type de dysfonctionnement relevé par le codeur.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Solution: Voir le manuel technique du fabricant du codeur.</td>
</tr>
</tbody>
</table>

16.31 xxxx Bit =0 =1

<table>
<thead>
<tr>
<th>Bit</th>
<th>Valeur</th>
<th>Nom</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
<td>Light source</td>
<td>OK Panne (1)</td>
</tr>
<tr>
<td>1</td>
<td></td>
<td>Amplitude signal</td>
<td>OK Erreur (1)</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>Valeur de position</td>
<td>OK Erreur (1)</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>Surtension</td>
<td>NON Oui (1)</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>Sous-tension</td>
<td>NON Alimentation sous-tension (1)</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>Sur-courant</td>
<td>NON Oui (1)</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td>Batterie</td>
<td>OK Changer la batterie (2)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7..15</td>
<td>xxxxx</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(1) Peut également être configuré après mise sous tension ou hors tension.

(2) Seulement pour les codeurs avec batterie-tampon.

Alarme Alar RetVitess [22] avec codeur absolu Hiperface

<table>
<thead>
<tr>
<th>Bit</th>
<th>Valeur</th>
<th>Nom</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>D7..D4</td>
<td>D3 D2 D1 D0</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>0x8 MOD_INCR</td>
<td>Cause: Niveau de tension incorrect des canaux ou perturbations sur les signaux des canaux A-B incrémentiels.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Solution: Vérifier le raccord des canaux A-B codeur-drive, vérifier le branchement de l’écran, contrôler la tension d’alimentation du codeur et le paramètre 2102 Alim. codeur 1 ; vérifier le paramètre 2108 Signal codeur 1 Vpp.</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>0x2 0x0</td>
<td>Cause: des signaux SSI perturbés provoquent une erreur CKS ou de Parité.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Solution: Vérifier le raccord d’horloge et de codeur données-drive, vérifier le branchement de l’écran, contrôler la tension d’alimentation du codeur et le paramètre 2102 Alim. codeur 1.</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td>0x4 0x0</td>
<td>Cause: Le codeur ne reconnaît pas la commande qui lui a été envoyée et répond par ACK. Les signaux SSI absents génèrent une erreur TMO.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Solution: Vérifier le raccord d’horloge et de codeur données-drive, vérifier le branchement de l’écran, contrôler la tension d’alimentation du codeur et le paramètre 2102 Alim. codeur 1.</td>
</tr>
</tbody>
</table>
Cause: Une erreur s’est produite pendant la phase de configuration.

Solution: Vérifier le raccord d’horloge et de codeur données-drive, vérifier le branchement de l’écran, contrôler la tension d’alimentation du codeur et le paramètre 2102 Alim.coeur 1.

Les situations suivantes se présentent en phase de réinitialisation du codeur, suite à l’activation de **Alar RetVitess** [22].

Cause: Le codeur a relevé une anomalie dans son propre fonctionnement et le signale au drive par Error bit. Dans les bits 16..31, on trouvera le type de dysfonctionnement relevé par le codeur.

Solution: Voir le manuel technique du fabricant du codeur.

Alarme Alar RetVitess [22] avec **Résolveur**

<table>
<thead>
<tr>
<th>Code</th>
<th>Nom</th>
<th>Description erreur</th>
<th>Eventuelle solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>0x00000001</td>
<td>D0 FAULT REGISTER</td>
<td>Erreur de parité configuration.</td>
<td>Réinitialiser la carte résolveur.</td>
</tr>
<tr>
<td>0x00000002</td>
<td>D1 FAULT REGISTER</td>
<td>L’erreur de phase dépasse l’intervalle de blocage phase.</td>
<td></td>
</tr>
<tr>
<td>0x00000004</td>
<td>D2 FAULT REGISTER</td>
<td>La vitesse dépasse la vitesse de tracking admise.</td>
<td></td>
</tr>
<tr>
<td>0x00000008</td>
<td>D3 FAULT REGISTER</td>
<td>L’erreur de tracking dépasse le seuil de perte du signal.</td>
<td></td>
</tr>
<tr>
<td>0x00000010</td>
<td>D4 FAULT REGISTER</td>
<td>Les entrées sinus/cosinus dépassent le seuil d’accouplement erroné de dégradation du signal.</td>
<td>Vérifier le raccordement des broches d’entrée du résolveur (SIN-,SIN+,COS-,COS+) ; vérifier PAR 2128.</td>
</tr>
<tr>
<td>0x00000020</td>
<td>D5 FAULT REGISTER</td>
<td>Les entrées sinus/cosinus dépassent le seuil limite supérieur de dégradation du signal.</td>
<td>Vérifier le raccordement des broches d’entrée du résolveur (SIN-,SIN+,COS-,COS+) ; vérifier PAR 2126.</td>
</tr>
<tr>
<td>0x00000040</td>
<td>D6 FAULT REGISTER</td>
<td>Entrées sinus/cosinus inférieures au seuil de perte du signal.</td>
<td>Vérifier le raccordement des broches d’entrée du résolveur (SIN-,SIN+,COS-,COS+) ; vérifier PAR 2124.</td>
</tr>
<tr>
<td>0x00000080</td>
<td>D7 FAULT REGISTER</td>
<td>Entrées sinus/cosinus court-circuitées.</td>
<td>Vérifier si des broches d’entrée du résolveur (SIN-,SIN+,COS-,COS+) sont court-circuitées avec l’entrée d’alimentation ou le raccordement de mise à la terre de la carte du résolveur.</td>
</tr>
</tbody>
</table>
C.1.2 Réinitialisation de l’alarme Alar RetVitesse

Si aucune carte n’est installée, l’alarme Alar RetVitesse [22] est déclenchée et le paramètre 2172 Code défaut codeur ne présente aucune cause. Plusieurs causes simultanées peuvent entrer en jeu.

Si aucune carte n’est reconnue, une routine est mise en action qui renvoie toujours Alar RetVitesse [22] actif sans spécifier de cause.

C.1.3 Alarme erreur de codeur

Chaque fois que le drive est allumé, indépendamment du mode de régulation sélectionné, une phase de configuration est exécutée. Si, pendant la phase de configuration on relève une erreur, alors l’alarme Erreur de codeur est déclenchée avec les codes suivants:

<table>
<thead>
<tr>
<th>Bit</th>
<th>Valeur</th>
<th>Nom</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>0x1, 0x0, 0x0</td>
<td>Setup error</td>
<td>Cause: Une erreur s’est produite pendant la phase de configuration. Après une telle signalisation, les informations reçues du codeur ne sont plus fiables.</td>
</tr>
<tr>
<td></td>
<td>0x2, 0x0, 0x0</td>
<td>Compatibility error</td>
<td>Cause: Firmware sur la carte en option incompatible avec celui de la carte de régulation. Après une telle signalisation, les informations reçues du codeur ne sont plus fiables.</td>
</tr>
</tbody>
</table>

C.1.4 Alarme “Déf.EntSortExt”

Durant la phase de Config l’alarme peut dépendre d’une erreur de communication SDO.

Durant la phase de Control, le protocole de HeartBeat ou le NodeGuarding peut échouer parce que la communication avec le slave a été interrompue. Un message de Emergency envoyé par le slave peut générer l’alarme "Déf.EntSortExt" [27].

Chaque cause d’alarme peut être identifiée en fonction du Subcode associé à l’alarme.

Dans le tableau figurent les informations relatives aux Subcodes et à leur lien aux causes d’alarme, pour obtenir le diagnostic nécessaire pour intervenir sur le système.

<table>
<thead>
<tr>
<th>Subcode</th>
<th>Description</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>BusLoss</td>
<td>Perte de communication dans l'état de Operational</td>
</tr>
<tr>
<td>1..51</td>
<td>SDO error</td>
<td>Erreur dans l'envoi du SDO. Consulter le tableau Configuration SDO en appendice pour identifier l'objet qui présente des problèmes</td>
</tr>
<tr>
<td>200</td>
<td>CAN error</td>
<td>Problème hardware interne, s'il ne peut être résolu, changer la carte de régulation.</td>
</tr>
<tr>
<td>202</td>
<td>Config error</td>
<td>Le nombre de IO dans le module slave a changé. Contrôler le paramètre 5482 Info IO esterni. Sauvegarder les paramètres pour mémoriser la configuration actuelle.</td>
</tr>
<tr>
<td>203</td>
<td>Lost Messages</td>
<td>TPDO arrivant du slave avec fréquence excessive. S'assurer que le slave respecte les spécifications CANopen sur les fréquences d'envoi des TPDO</td>
</tr>
<tr>
<td>204</td>
<td>Opt IO installed</td>
<td>Une carte d’expansion IO interne en option a été installée. Les fonctions de la carte EXP-XCAN-ADV ne sont pas disponibles.</td>
</tr>
<tr>
<td>255..65535</td>
<td>Slave Emergency</td>
<td>Message d'Emergency du slave.</td>
</tr>
</tbody>
</table>

Dans le cas où l’alarme serait causée par l’arrivée d’un message d’Emergency envoyé par le slave, le Subcode contient l’Error code (Error code low and Error code Hi) du message, alors que 4 des 5 byte supplémentaires du message sont montrés par le paramètre 5486 CodeDéf Ent/Sort.Ext.
Contenu du message de Emergency :

<table>
<thead>
<tr>
<th>Byte0</th>
<th>Byte1</th>
<th>Byte2</th>
<th>Byte3</th>
<th>Byte4</th>
<th>Byte5</th>
<th>Byte6</th>
<th>Byte7</th>
</tr>
</thead>
<tbody>
<tr>
<td>Error code Low</td>
<td>Error code Hi</td>
<td>Error register</td>
<td>Info 0</td>
<td>Info 1</td>
<td>Info 2</td>
<td>Info3</td>
<td>Info4</td>
</tr>
</tbody>
</table>

Subcode PAR 5486 Code Déf Ent/Sort.Ext

Pour les informations sur la signification du message de Emergency, consulter le manuel du slave.

C.1.5 Alarme “Fastlink”

Causes d’activation de l’alarme FastLink :

<table>
<thead>
<tr>
<th>Bit</th>
<th>Nom</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0x1 Cks</td>
<td>Cause : le drive a détecté une erreur de checksum</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Solution : adopter toutes les précautions pour rendre le drive plus robustes aux interférences</td>
</tr>
<tr>
<td>1</td>
<td>0x2 Non utilisé</td>
<td>Cause :</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Solution :</td>
</tr>
<tr>
<td>2</td>
<td>0x4 Non utilisé</td>
<td>Cause :</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Solution :</td>
</tr>
<tr>
<td>3</td>
<td>0x8 Non utilisé</td>
<td>Cause :</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Solution :</td>
</tr>
<tr>
<td>4</td>
<td>0x1 Non utilisé</td>
<td>Cause :</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Solution :</td>
</tr>
<tr>
<td>5</td>
<td>0x2 RX Timeout</td>
<td>Cause : pendant 2 cycles consécutifs, le drive slave n’a pas reçu de nouveau frame de données.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Solution : adopter toutes les précautions pour rendre le drive plus robustes aux interférences</td>
</tr>
<tr>
<td>6</td>
<td>0x4 Pwm sync slave</td>
<td>Cause : sur le drive slave, présence d’un problème sur la fonction qui permet de générer les signaux du Pwm synchronisés avec les signaux Pwm du Master et sur la fonction qui permet d’exécuter des Task de contrôle synchronisés avec exécution des Task de contrôle du Master. Pendant 4 cycles consécutifs, une erreur supérieure à l’erreur maximum admise a été détectée.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Solution : adopter toutes les précautions pour rendre le drive plus robustes aux interférences</td>
</tr>
<tr>
<td>7</td>
<td>0x8 Cable open</td>
<td>Cause : absence fibre optique détectée</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Solution : contrôler branchement de la fibre optique</td>
</tr>
<tr>
<td>8</td>
<td>0x1 Setup error</td>
<td>Cause : une erreur s’est produite pendant la phase de configuration : les informations reçues du FastLink ne sont pas fiables.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Solution : contrôler le réglage des paramètres pour FastLink.</td>
</tr>
<tr>
<td>9</td>
<td>0x2 Compatibility error</td>
<td>Cause : le firmware sur la carte en option du FastLink n’est pas compatible avec celui sur la carte de régulation.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Solution : consulter le personnel Gefran pour actualiser le firmware de la carte fastlink en option.</td>
</tr>
<tr>
<td>10</td>
<td>0x4 Slave answer NOK</td>
<td>Cause : situation dans laquelle un esclave interrogé ne répond pas</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Solution : vérifier la connexion FastLink</td>
</tr>
</tbody>
</table>
C.2 MESSAGES

Remarque : Pour de plus amples informations, voir le manuel "Guide rapide pour l’installation", chapitre 6.7.

<table>
<thead>
<tr>
<th>Index</th>
<th>Message d’erreur affiché à l’écran</th>
<th>Souscode</th>
<th>Description</th>
</tr>
</thead>
</table>
| 1 | Charger Param usine | | **Condition :** peut se produire pendant le téléchargement de la base de données des paramètres sauvegardée dans flash. C’est normal s’il s’affiche dans les conditions suivantes : lors du premier démarrage, lorsqu’on télécharge une nouvelle version de firmware, quand on installe la régulation sur une nouvelle grandeur, quand on change la région.
| | | | Si ce message s’affiche lorsque le drive est déjà en service, cela signifie qu’un problème s’est produit dans la base de données des paramètres sauvegardés dans Flash.
| | | | Si ce message s’affiche, le drive rétablit la base de données par défaut c’est-à-dire celle téléchargée en phase de download. |
| 2 | Detect Option1 | 0001H-1 | La base de données sauvegardée n’est pas valable |
| 3 | Detect Option2 | 0002H-2 | La base de données sauvegardée n’est pas compatible |
| 4 | Detect Option3 | 0003H-3 | La base de données correspond à une grandeur différente de la grandeur actuelle |
| 5 | Autoétalonnage | 0004H-4 | La base de données correspond à une région différente de la région actuelle |
| | | | **Solution :** Paramétrer les paramètres sur la valeur désirée et exécuter Sauvegarder paramètre |
| | | 0005H-5 | 0ffh |
| | | 0104H-260| Profibus |
| | | 0204H-516| Rte |
| | | 0208H-520| Enc 3 EXP-SESC-I1R1F2-ADV |
| | | 0301H-769| I0 1 |
| | | 0308H-776| Enc 4 EXP-EN/SSI-I1R1F2-ADV |
| | | 0408H-1032| Enc 5 EXP-HIP-I1R1F2-ADV |
| | | 0508H-1544| Enc 1 EXP-DE-I1R1F2-ADV |
| | | 0701H-1793| I0 2 |
| | | 0108H-1800| Enc 2 EXP-SE-I1R1F2-ADV |
| | | 0808H-2056| Enc 7 EXP-DE-I2R1F2-ADV |
| | | 0901H-2305| I0 3 |
| | | 0D01H-3329| I0 4 |
| | | 0508H-1288| Enc 6 EXP-RES-I1R1-ADV |
| | | 0908H-2312| Enc 8 EXP-ASC-I1-ADV |
| | | | **Solution :** |
| 5 | Autoétalonnage | 0A01H-728| I0 5 |
| | | 0A02H-732| I0 6 |
| | | 0A03H-736| I0 7 |
| | | 0A04H-740| I0 8 |
| | | 0A05H-744| I0 9 |
| | | 0A06H-748| I0 0 |
| | | | **Solution :** |

Remarque : Pour de plus amples informations, voir le manuel "Guide rapide pour l’installation", chapitre 6.7.

<table>
<thead>
<tr>
<th>Index</th>
<th>Message d’erreur affiché à l’écran</th>
<th>Souscode</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Charger Param usine</td>
<td>0001H-1</td>
<td>La base de données sauvegardée n’est pas valable</td>
</tr>
<tr>
<td>2</td>
<td>Detect Option1</td>
<td>0002H-2</td>
<td>La base de données sauvegardée n’est pas compatible</td>
</tr>
<tr>
<td>3</td>
<td>Detect Option2</td>
<td>0003H-3</td>
<td>La base de données correspond à une grandeur différente de la grandeur actuelle</td>
</tr>
<tr>
<td>4</td>
<td>Detect Option3</td>
<td>0004H-4</td>
<td>La base de données correspond à une région différente de la région actuelle</td>
</tr>
</tbody>
</table>

Solution : Paramétrer les paramètres sur la valeur désirée et exécuter Sauvegarder paramètre

<table>
<thead>
<tr>
<th>Index</th>
<th>Message d’erreur affiché à l’écran</th>
<th>Souscode</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Charger Param usine</td>
<td>0001H-1</td>
<td>La base de données sauvegardée n’est pas valable</td>
</tr>
<tr>
<td>2</td>
<td>Detect Option1</td>
<td>0002H-2</td>
<td>La base de données sauvegardée n’est pas compatible</td>
</tr>
<tr>
<td>3</td>
<td>Detect Option2</td>
<td>0003H-3</td>
<td>La base de données correspond à une grandeur différente de la grandeur actuelle</td>
</tr>
<tr>
<td>4</td>
<td>Detect Option3</td>
<td>0004H-4</td>
<td>La base de données correspond à une région différente de la région actuelle</td>
</tr>
</tbody>
</table>

Solution : Paramétrer les paramètres sur la valeur désirée et exécuter Sauvegarder paramètre

<table>
<thead>
<tr>
<th>Index</th>
<th>Message d’erreur affiché à l’écran</th>
<th>Souscode</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Charger Param usine</td>
<td>0001H-1</td>
<td>La base de données sauvegardée n’est pas valable</td>
</tr>
<tr>
<td>2</td>
<td>Detect Option1</td>
<td>0002H-2</td>
<td>La base de données sauvegardée n’est pas compatible</td>
</tr>
<tr>
<td>3</td>
<td>Detect Option2</td>
<td>0003H-3</td>
<td>La base de données correspond à une grandeur différente de la grandeur actuelle</td>
</tr>
<tr>
<td>4</td>
<td>Detect Option3</td>
<td>0004H-4</td>
<td>La base de données correspond à une région différente de la région actuelle</td>
</tr>
</tbody>
</table>

Solution : Paramétrer les paramètres sur la valeur désirée et exécuter Sauvegarder paramètre

<table>
<thead>
<tr>
<th>Index</th>
<th>Message d’erreur affiché à l’écran</th>
<th>Souscode</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Charger Param usine</td>
<td>0001H-1</td>
<td>La base de données sauvegardée n’est pas valable</td>
</tr>
<tr>
<td>2</td>
<td>Detect Option1</td>
<td>0002H-2</td>
<td>La base de données sauvegardée n’est pas compatible</td>
</tr>
<tr>
<td>3</td>
<td>Detect Option2</td>
<td>0003H-3</td>
<td>La base de données correspond à une grandeur différente de la grandeur actuelle</td>
</tr>
<tr>
<td>4</td>
<td>Detect Option3</td>
<td>0004H-4</td>
<td>La base de données correspond à une région différente de la région actuelle</td>
</tr>
</tbody>
</table>

Solution : Paramétrer les paramètres sur la valeur désirée et exécuter Sauvegarder paramètre

<table>
<thead>
<tr>
<th>Index</th>
<th>Message d’erreur affiché à l’écran</th>
<th>Souscode</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Charger Param usine</td>
<td>0001H-1</td>
<td>La base de données sauvegardée n’est pas valable</td>
</tr>
<tr>
<td>2</td>
<td>Detect Option1</td>
<td>0002H-2</td>
<td>La base de données sauvegardée n’est pas compatible</td>
</tr>
<tr>
<td>3</td>
<td>Detect Option2</td>
<td>0003H-3</td>
<td>La base de données correspond à une grandeur différente de la grandeur actuelle</td>
</tr>
<tr>
<td>4</td>
<td>Detect Option3</td>
<td>0004H-4</td>
<td>La base de données correspond à une région différente de la région actuelle</td>
</tr>
</tbody>
</table>

Solution : Paramétrer les paramètres sur la valeur désirée et exécuter Sauvegarder paramètre

<table>
<thead>
<tr>
<th>Index</th>
<th>Message d’erreur affiché à l’écran</th>
<th>Souscode</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Charger Param usine</td>
<td>0001H-1</td>
<td>La base de données sauvegardée n’est pas valable</td>
</tr>
<tr>
<td>2</td>
<td>Detect Option1</td>
<td>0002H-2</td>
<td>La base de données sauvegardée n’est pas compatible</td>
</tr>
<tr>
<td>3</td>
<td>Detect Option2</td>
<td>0003H-3</td>
<td>La base de données correspond à une grandeur différente de la grandeur actuelle</td>
</tr>
<tr>
<td>4</td>
<td>Detect Option3</td>
<td>0004H-4</td>
<td>La base de données correspond à une région différente de la région actuelle</td>
</tr>
</tbody>
</table>

Solution : Paramétrer les paramètres sur la valeur désirée et exécuter Sauvegarder paramètre

<table>
<thead>
<tr>
<th>Index</th>
<th>Message d’erreur affiché à l’écran</th>
<th>Souscode</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Charger Param usine</td>
<td>0001H-1</td>
<td>La base de données sauvegardée n’est pas valable</td>
</tr>
<tr>
<td>2</td>
<td>Detect Option1</td>
<td>0002H-2</td>
<td>La base de données sauvegardée n’est pas compatible</td>
</tr>
<tr>
<td>3</td>
<td>Detect Option2</td>
<td>0003H-3</td>
<td>La base de données correspond à une grandeur différente de la grandeur actuelle</td>
</tr>
<tr>
<td>4</td>
<td>Detect Option3</td>
<td>0004H-4</td>
<td>La base de données correspond à une région différente de la région actuelle</td>
</tr>
</tbody>
</table>

Solution : Paramétrer les paramètres sur la valeur désirée et exécuter Sauvegarder paramètre

<table>
<thead>
<tr>
<th>Index</th>
<th>Message d’erreur affiché à l’écran</th>
<th>Souscode</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Charger Param usine</td>
<td>0001H-1</td>
<td>La base de données sauvegardée n’est pas valable</td>
</tr>
<tr>
<td>2</td>
<td>Detect Option1</td>
<td>0002H-2</td>
<td>La base de données sauvegardée n’est pas compatible</td>
</tr>
<tr>
<td>3</td>
<td>Detect Option2</td>
<td>0003H-3</td>
<td>La base de données correspond à une grandeur différente de la grandeur actuelle</td>
</tr>
<tr>
<td>4</td>
<td>Detect Option3</td>
<td>0004H-4</td>
<td>La base de données correspond à une région différente de la région actuelle</td>
</tr>
</tbody>
</table>

Solution : Paramétrer les paramètres sur la valeur désirée et exécuter Sauvegarder paramètre

<table>
<thead>
<tr>
<th>Index</th>
<th>Message d’erreur affiché à l’écran</th>
<th>Souscode</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Charger Param usine</td>
<td>0001H-1</td>
<td>La base de données sauvegardée n’est pas valable</td>
</tr>
<tr>
<td>2</td>
<td>Detect Option1</td>
<td>0002H-2</td>
<td>La base de données sauvegardée n’est pas compatible</td>
</tr>
<tr>
<td>3</td>
<td>Detect Option2</td>
<td>0003H-3</td>
<td>La base de données correspond à une grandeur différente de la grandeur actuelle</td>
</tr>
<tr>
<td>4</td>
<td>Detect Option3</td>
<td>0004H-4</td>
<td>La base de données correspond à une région différente de la région actuelle</td>
</tr>
</tbody>
</table>

Solution : Paramétrer les paramètres sur la valeur désirée et exécuter Sauvegarder paramètre
<table>
<thead>
<tr>
<th>Index</th>
<th>Message d’erreur affiché à l’écran</th>
<th>Souscode</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>On a lancé la commande Autoétalonnage sans activation.</td>
<td>7</td>
<td>Solution : Avant de lancer la commande Autoétalonnage, il faut fermer le contact d’activation.</td>
</tr>
<tr>
<td>8</td>
<td>Erreur de calcul interne relatif au contrôle IGBT</td>
<td>8</td>
<td>Solution : effectuer à nouveau l’auto-calibrage, si le problème persiste, contacter l’Assistance technique Gefran.</td>
</tr>
<tr>
<td>9</td>
<td>Le drive a mesuré une valeur de la résistance de stator supérieure à la limite programmée.</td>
<td>9</td>
<td>Solution : contacter l’Assistance technique Gefran.</td>
</tr>
<tr>
<td>10</td>
<td>Le drive a mesuré une valeur de la résistance de stator inférieure à la limite programmée.</td>
<td>10</td>
<td>Solution : contacter l’Assistance technique Gefran.</td>
</tr>
<tr>
<td>11-12</td>
<td>Mesure de la tension de compensation interne DTL hors du champ admis.</td>
<td>11-12</td>
<td>Solution : contrôler le branchement entre drive et moteur. Si le branchement est correct, le drive est défectueux, contacter l’Assistance technique Gefran.</td>
</tr>
<tr>
<td>13-14</td>
<td>Mesure de la tension interne DTS hors du champ admis.</td>
<td>13-14</td>
<td>Solution : contrôler le branchement entre drive et moteur. Si le branchement est correct, le drive est défectueux, contacter l’Assistance technique Gefran.</td>
</tr>
<tr>
<td>18-19</td>
<td>Valeur du courant de magnétisation Im hors du champ admis.</td>
<td>18-19</td>
<td>Solution : effectuer à nouveau l’auto-calibrage, si le problème persiste, contacter l’Assistance technique Gefran.</td>
</tr>
<tr>
<td>20-21</td>
<td>Valeur de la résistance de rotor Rr hors du champ admis.</td>
<td>20-21</td>
<td>Solution : effectuer à nouveau l’auto-calibrage, si le problème persiste, contacter l’Assistance technique Gefran.</td>
</tr>
</tbody>
</table>

Solution :
Si on à l’affichage du message avec une valeur différente de 0 suivre les indications fournies cas par cas et répéter l’étalonnage automatique. Il est conseillé d’effectuer l’étalonnage automatique en utilisant la procédure wizard disponible par le clavier (MISE SERVICE GUIDE) et par le logiciel Tool sur PC.
Faire attention à tous les paramètres des caractéristiques de la plaque du moteur et plus particulièrement à :
- **Vitesse nominale**, vitesse nominale du moteur en rpm.
- **Fréquence nominale** Fréquence nominale du moteur en Hz
- **Nb paires de Pôles**, Deux pôles du moteur.
Faire attention à ne pas programmer le paramètre **Vitesse nominale** à la vitesse synchrone. Le paramètre **Vitesse nominale** doit avoir une valeur inférieure à :

\[
\text{Fréquence nominale} \times 60 \div \text{Nb paires de Pôles}
\]

Si après avoir effectué les indications fournies le problème persiste, il faut confirmer la valeur des paramètres des caractéristiques de la plaque du moteur, exécuter la commande **Prise en compt param** mais ne pas exécuter l’étalonnage automatique.

6 Config Puissance

Condition : peu se produire pendant la reconnaissance des cartes de puissance. Avec ce message, il est impossible de commander le moteur.

<table>
<thead>
<tr>
<th>Souscode</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0020H-32</td>
<td>La configuration de la carte de puissance est pour un drive incompatible avec la carte de régulation.</td>
</tr>
<tr>
<td>0021H-33</td>
<td>La configuration de la carte de puissance est incompatible avec la carte de régulation.</td>
</tr>
<tr>
<td>0017H-23</td>
<td>La configuration demandée n’est pas disponible sur la carte de puissance.</td>
</tr>
</tbody>
</table>

Solution :
Télécharger sur la carte de puissance la configuration exacte.

7 Sauver param Echec

Condition : pendant le transfert des paramètres du drive à la mémoire du clavier.

<table>
<thead>
<tr>
<th>Souscode</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0H-0</td>
<td>Erreur de communication</td>
</tr>
<tr>
<td>0025H-37</td>
<td>Les données mémorisées dans le clavier ne sont pas valables</td>
</tr>
<tr>
<td>0026H-38</td>
<td>Type contrôle incompatible</td>
</tr>
<tr>
<td>0027H-39</td>
<td>Version logiciel incompatible</td>
</tr>
<tr>
<td>0028H-40</td>
<td>Grandeur Drive incompatible</td>
</tr>
<tr>
<td>0029H-41</td>
<td>Erreur lors de l’enregistrement des paramètres dans le drive</td>
</tr>
</tbody>
</table>

Solution :

8 Chrg param Echec

Condition : pendant le transfert des paramètres de la mémoire du clavier au drive

<table>
<thead>
<tr>
<th>Souscode</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0H-0</td>
<td>Erreur de communication</td>
</tr>
<tr>
<td>0025H-37</td>
<td>Les données mémorisées dans le clavier ne sont pas valables. Aucun paramètre n’est transféré du clavier au drive</td>
</tr>
<tr>
<td>0026H-38</td>
<td>Type contrôle incompatible. Aucun paramètre n’est transféré du clavier au drive</td>
</tr>
<tr>
<td>Index</td>
<td>Message d’erreur affiché à l’écran</td>
</tr>
<tr>
<td>-------</td>
<td>-----------------------------------</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Solution : Récupérer une série de paramètres d’un drive compatible (modèle et grandeur)</td>
</tr>
<tr>
<td>10</td>
<td>Erreur Config Option</td>
</tr>
<tr>
<td></td>
<td>Condition : peu se produit lors du démarrage du drive, lors de la reconnaissance des cartes optionnelles installées</td>
</tr>
<tr>
<td></td>
<td>0002H-2</td>
</tr>
<tr>
<td></td>
<td>0004H-4</td>
</tr>
<tr>
<td></td>
<td>0010H-16</td>
</tr>
<tr>
<td></td>
<td>0020H-32</td>
</tr>
<tr>
<td></td>
<td>0040H-64</td>
</tr>
<tr>
<td></td>
<td>Solution : Enlever les cartes optionnelles des slots erronés et les insérer dans les slots exacts</td>
</tr>
<tr>
<td>11</td>
<td>Charger PLC d’usine</td>
</tr>
<tr>
<td></td>
<td>Condition : peut se produire pendant le téléchargement de la base de données des paramètres sauvegardée dans la Flash de l’application Mdplc. C’est normal s’il s’affiche lors du premier démarrage, après avoir téléchargé une nouvelle application. Si ce message s’affiche lorsque le drive est déjà en service, cela signifie qu’un problème s’est produit dans la base de données des paramètres sauvegardées dans Flash. Si ce message s’affiche, le drive rétablit la base de données par défaut c’est-à-dire celle téléchargée lors du download.</td>
</tr>
<tr>
<td></td>
<td>Solution : Paramétrer les paramètres sur la valeur désirée et exécuter Sauvegarde paramètre</td>
</tr>
<tr>
<td>12</td>
<td>Config PLC Echec</td>
</tr>
<tr>
<td></td>
<td>Condition : peut se produire pendant le téléchargement de l’application Mdplc. L’application Mdplc se trouvant sur le drive n’est pas exécutée.</td>
</tr>
<tr>
<td></td>
<td>0065H-101</td>
</tr>
<tr>
<td></td>
<td>0066H-102</td>
</tr>
<tr>
<td></td>
<td>0067H-103</td>
</tr>
<tr>
<td></td>
<td>0068H-104</td>
</tr>
<tr>
<td></td>
<td>0069H-105</td>
</tr>
<tr>
<td></td>
<td>006AH-106</td>
</tr>
<tr>
<td></td>
<td>006BH-107</td>
</tr>
<tr>
<td></td>
<td>006CH-108</td>
</tr>
</tbody>
</table>

Solution :
- 10 Erreur Config Option: Enlever les cartes optionnelles des slots erronés et les insérer dans les slots exacts.
- 11 Charger PLC d’usine: Paramétrer les paramètres sur la valeur désirée et exécuter Sauvegarde paramètre.
- 12 Config PLC Echec: Voir dans Alarm List d’autres informations concernant l’erreur qui s’est produite.
Index Message d’erreur affiché à l’écran Souscode Description

<table>
<thead>
<tr>
<th>Index</th>
<th>Message d’erreur affiché à l’écran</th>
<th>Souscode</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>13</td>
<td>Plc 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>Plc 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>Plc 3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>Plc 4</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Solution : Enlever l’application Mdplc ou télécharger une application Mdplc correcte

Messages réservés et consacrés à l’application PLC, voir le manuel de l’application.

<table>
<thead>
<tr>
<th>17</th>
<th>Option bus fault</th>
<th>Condition : peut se produire lors du démarrage du drive, pendant la configuration de la carte du Bus de terrain Erreur pendant la configuration ou erreur de communication.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>XXX0H-X Si le premier chiffre à gauche de "H" du sous-code d’alarme est 0, l’erreur est due à un problème de communication.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>XXX0H-X Si le premier chiffre à gauche de "H" du sous-code d’alarme est différent de 0, l’erreur est due à un problème de configuration.</td>
</tr>
</tbody>
</table>

Solution : Pour les erreurs de configuration, contrôler la configuration de la communication avec Bus, type de Bus, Baudrate, address, programmation des paramètres.

Pour les erreurs de communication contrôler les câblages, les résistances de terminaison, la protection contre les parasites, les configurations des temps des timeout.

Pour de plus amples informations, consulter le Manuel de la carte de bus utilisée.

<table>
<thead>
<tr>
<th>18</th>
<th>Key failed</th>
<th>Condition : peut se produire pendant la phase d’alimentation du drive, si la clé d’activation erronée est insérée pour une fonction donnée du firmware.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>0001H-1 Clé pour PLC erronée. Application PLC non disponible.</td>
</tr>
</tbody>
</table>

Solution : Demander à Gefran la clé de validation appropriée à la fonction firmware souhaitée.

<table>
<thead>
<tr>
<th>19</th>
<th>Key expiring</th>
<th>Condition : il peut se produire une phase de power-on du drive si l’on a introduit la clé d’activation erronée pour une date fonction firmware. On est encore dans la phase où il est permis d’utiliser librement la fonction firmware mais rapidement ce temps se terminera.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>xxxxxH-x Nombre d’heures encore disponibles pendant lesquelles il est permis d’utiliser librement la fonction.</td>
</tr>
</tbody>
</table>

Solution : Paramétrer le paramètre qui provoque l’erreur à une valeur, dans les limites de paramétrage, et effectuer une commande Sauvegarde paramètre, puis arrêter et remettre en marche le drive. Si l’IPA du paramètre n’est pas indiqué sur la Manuel, il faut contacter le service après vente.

<table>
<thead>
<tr>
<th>20</th>
<th>Err Paramétrage</th>
<th>Condition : si une erreur se produit pendant l’activation de la base de données des paramètres sauvegardée en flash ; l’alarme est insérée dans la liste des alarmes et l’historique des alarmes.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>XXX0H-X Le code XXX0H-X indique l’IPA du paramètre qui est paramétré hors des limites consenties pour l’activation de la base de données.</td>
</tr>
</tbody>
</table>

Solution : Paramétrer le paramètre qui provoque l’erreur à une valeur, dans les limites de paramétrage, et effectuer une commande Sauvegarde paramètre, puis arrêter et remettre en marche le drive. Si l’IPA du paramètre n’est pas indiqué sur la Manuel, il faut contacter le service après vente.

<table>
<thead>
<tr>
<th>21</th>
<th>Erreur codeur</th>
<th>Condition : une erreur peut se produire à l’alimentation du drive, pendant la phase de configuration du codeur exécutée pour chaque configuration du paramètre 552 Mode de Regulation .</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>100H-2564 Cause: Une erreur s’est produite pendant la phase de configuration : les informations reçues par le codeur ne sont pas fiables. Si le codeur est utilisé pour la rétroaction, une alarme de Alar RetVitess [22] est aussi générée.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>200H-512 Cause: Le firmware sur la carte en option du codeur n’est pas compatible avec celui sur la carte de réglage. Les informations reçues du codeur ne sont pas fiables.</td>
</tr>
</tbody>
</table>

Solution : Consulter le personnel Gefran pour actualiser le firmware de la carte en option du codeur.

<table>
<thead>
<tr>
<th>22</th>
<th>Erreur codeur</th>
<th>Condition : peut se produire en phase d’alimentation du drive si une carte d’expansion a été enlevée ou remplacée, si la clé d’activation erronée est insérée pour une fonction donnée du firmware</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>0064H-100 Carte du slot 1 enlevée.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0014H-20 Carte du slot 2 enlevée.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0003H-3 Carte du slot 3 enlevée.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0078H-120 Carte du slot 1 et du slot 2 enlevée.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0067H-103 Carte du slot 1 et du slot 3 enlevée.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0017H-23 Carte du slot 2 et du slot 3 enlevée.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>007BH-123 Carte du slot 1, du slot 2 et du slot 3 enlevée.</td>
</tr>
</tbody>
</table>

Solution : Contrôler la configuration hardware, puis appuyer sur la touche ESC. Pour sauvegarder une nouvelle configuration hardware, il faut enregistrer des paramètres (Sauvegarde paramètre, menu 04.01 par. 550).

| 23 | Autoétalonnage (phasage) | 0 | Aucune erreur |

200 ADV200 • Messages
<table>
<thead>
<tr>
<th>Index</th>
<th>Message d’erreur affiché à l’écran</th>
<th>Souscode</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>40</td>
<td>La carte de codeur utilisé ne prend pas en charge la procédure automatique de mise en phase.</td>
<td>40</td>
<td>Solution: Utiliser la carte de codeur appropriée.</td>
</tr>
<tr>
<td>41</td>
<td>Compte erroné des impulsions du codeur incrémentiel</td>
<td>41</td>
<td>Solution: Vérifier les signaux électriques du codeur incrémentiel. Vérifier la valeur du paramètre Impulsions codeur.</td>
</tr>
<tr>
<td>42</td>
<td>Compte erroné des impulsions du codeur absolu</td>
<td>42</td>
<td>Solution: Vérifier les signaux électriques du codeur absolu. Vérifier la configuration du codeur absolu.</td>
</tr>
<tr>
<td>43</td>
<td>Compte erroné des impulsions du codeur incrémentiel ou compte erroné des impulsions du codeur absolu probablement dû à la valeur incorrecte du paramètre des Couples polaires ou d’une charge appliquée sur le moteur.</td>
<td>43</td>
<td>Solution: Vérifier la valeur du paramètre Couples polaires et vérifier si une charge est appliquée.</td>
</tr>
<tr>
<td>44</td>
<td>Compte erroné des impulsions du codeur incrémentiel probablement dû à une valeur incorrecte du paramètre Impulsions codeur.</td>
<td>44</td>
<td>Solution: Vérifier les signaux électriques du codeur incrémentiel. Vérifier la valeur du paramètre Impulsions codeur.</td>
</tr>
<tr>
<td>45</td>
<td>Compte erroné des impulsions du codeur absolu</td>
<td>45</td>
<td>Solution: Vérifier les signaux électriques du codeur absolu. Vérifier la configuration du codeur absolu.</td>
</tr>
<tr>
<td>46</td>
<td>Compte des impulsions du codeur incrémentiel présentant une inversion de signe par rapport au compte des impulsions du codeur absolu.</td>
<td>46</td>
<td>Solution: Inverser les signaux A+ et A⁻ du codeur incrémentiel.</td>
</tr>
<tr>
<td>47</td>
<td>Compte des impulsions du codeur incrémentiel présentant une inversion de signe par rapport au compte des impulsions du codeur absolu.</td>
<td>47</td>
<td>Solution: Inverser les signaux A+ et A⁻ du codeur absolu.</td>
</tr>
<tr>
<td>48</td>
<td>Séquence incorrecte des phases (Message non signalé)</td>
<td>48</td>
<td>Solution: La procédure automatique s’est chargée de modifier la configuration du paramètre de direction du codeur. Aucune autre action requise.</td>
</tr>
<tr>
<td>49</td>
<td>Pendant la mise en phase automatique, un canal de communication s’active entre le drive et le codeur. Une erreur s’est présentée sur ce canal de communication.</td>
<td>49</td>
<td>Solution: Répéter la procédure.</td>
</tr>
</tbody>
</table>

Solution: Si un message s’affiche avec une valeur différente de 0, suivre les indications fournies cas par cas et répéter la mise en phase automatique.

| 24 | Sécurité active | Condition: L’entraînement a redémarré lorsque PAR 1010 Cmd start sécurisé = ON et en présence de la commande Habilitation. | **Solution:** Pour effacer le message, appuyer sur la touche ESC. Pour faire redémarrer l’entraînement, il est nécessaire d’exclure la commande Habilitation. |

Remarque:
Si l’on visualise sur l’afficheur des messages ne se trouvant pas dans cette liste, voir le manuel de l’application MDPLc utilisée pour le drive.

8.3 Other anomalies

Noisy motor (Flux Vect B.O. mode)

Condition: triggering of “noises” (torque instability and/or ripple) when controlling speed mainly due to mechanical coupling (resonance bands at 500rad/s ≈80Hz) between motor and load

Solution: manually change the value of one or more of the following parameters as shown:
- IPA 2242 Largeur de bande (rad/s): reduce
- IPA 2236 Régulation N gain P (N/rpm): reduce
- IPA 2134 Filtre vit.codeur 1 (ms): increase to 0.5 … 2ms
Aperçu du drive

Referenc et rampe

Commande Vitesse/Couple

Commande du moteur

Rétroaction de vitesse

<table>
<thead>
<tr>
<th>Ecran des commandes</th>
</tr>
</thead>
<tbody>
<tr>
<td>1066° - Visu état validé</td>
</tr>
<tr>
<td>1068° - Visu état Start</td>
</tr>
<tr>
<td>1070° - Visu état Arrêt rapide</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Stat</th>
</tr>
</thead>
<tbody>
<tr>
<td>250° - Courant de sortie</td>
</tr>
<tr>
<td>252° - Tension de sortie</td>
</tr>
<tr>
<td>254° - Fréquence de sortie</td>
</tr>
<tr>
<td>256° - Puissance de sortie</td>
</tr>
<tr>
<td>260° - Vitesse du moteur</td>
</tr>
<tr>
<td>2172° - Code de halte codeur</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>RefMulti</th>
<th>RefRampe</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rampes</td>
<td>RefVitesse</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Commande Vitesse/Couple</th>
</tr>
</thead>
<tbody>
<tr>
<td>ConfCouple</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Rétroaction de vitesse</th>
</tr>
</thead>
<tbody>
<tr>
<td>COD 1</td>
</tr>
<tr>
<td>COD 2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Ecran des commandes</th>
</tr>
</thead>
<tbody>
<tr>
<td>000000000 CodeDdefauMotor</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>RefMulti</th>
<th>RefRampe</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rampes</td>
<td>RefVitesse</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Aperçu du drive</th>
</tr>
</thead>
<tbody>
<tr>
<td>AperçuDrv</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SortNum</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>ENTÉES ANALOGIQUES</th>
</tr>
</thead>
<tbody>
<tr>
<td>SortAnal</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SORTIES ANALOGIQUES</th>
</tr>
</thead>
<tbody>
<tr>
<td>ConfigCodeur</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>REGULATEUR DE VITESSE</th>
</tr>
</thead>
<tbody>
<tr>
<td>RegulVitesse</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Config Couple</th>
</tr>
</thead>
<tbody>
<tr>
<td>ConfigCouple</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Fonctions</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>INDEX DES DIAGRAMMES D’APPLICATIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>IndexApp</td>
</tr>
</tbody>
</table>

D - Schemas fonctionnels

Index des diagrammes de système
Référence multiple

Sélecteur réf multi

800 - Multi vitesse 0

802 - Multi vitesse 1

830 - Multi vitesse 15

834 - Multi vitesse 1 src

804 - Multi vitesse 2

806 - Multi vitesse 3

808 - Multi vitesse 4

810 - Multi vitesse 5

812 - Multi vitesse 6

814 - Multi vitesse 7

816 - Multi vitesse 8

818 - Multi vitesse 9

820 - Multi vitesse 10

822 - Multi vitesse 11

824 - Multi vitesse 12

826 - Multi vitesse 13

828 - Multi vitesse 14

830 - Multi vitesse 15

052° - Multi vit actuelle

0 rpm

0 rpm
Potentiomètre du moteur

Fonction jog
Entrées numériques

ENTREES NUMERIQUES STANDARD

ENTREES NUMERIQUES CARTE EXTENSION

Entrées du terminal standard

1133 - Inverse Entr dig 1
1112 - Vite entr dig 1

1134 - Inverse Entr dig 2
1114 - Vite entr dig 2

1136 - Inverse Entr dig 3
1116 - Vite entr dig 3

1138 - Inverse Entr dig 4
1118 - Vite entr dig 4

1140 - Inverse Entr dig 5
1120 - Vite entr dig 5

Scram

1160 - Vite entr digit

Destinations

1150 - Dest entre dig 1
Non utilisé
1152 - Dest Entre dig 1
FR forward arc
1154 - Dest Entre dig 2
FR reverse arc
1156 - Dest Entre dig 3
Non utilisé
1158 - Dest Entre dig 4
Non utilisé
1160 - Dest Entre dig 5
Acquet alerme arc
Entrée analogique

ENTREE ANALOGIQUE 1 STANDARD EntAn1Std
ENTREE ANALOGIQUE 2 STANDARD EntAn2Std
ENTREE ANALOGIQUE 1 CARTE EXTENSION EntAn1Exp
ENTREE ANALOGIQUE 2 CARTE EXTENSION EntAn2Exp
Sortie analogique

SORTIE ANALOGIQUE 1 STANDARD [SorAn1Std]

SORTIE ANALOGIQUE 2 STANDARD [SorAn2Std]

SORTIE ANALOGIQUE 1 CARTE EXTENSION [SorAn1Exp]

SORTIE ANALOGIQUE 2 CARTE EXTENSION [SorAn2Exp]

Diagramme de l'unité de sortie analogique avec les paramètres de gain et les limites des sorties analogiques pour chaque sortie.
Regulateur de vitesse

Diagramme de fonctionnement:

- RéfVitesse
- Vitesse ref totale
- Reg adapt seuil 1, 2
- Valid gain 0
- Dévalide
- Regul N adapt P0
- Regul N adapt I0
- Reg adapt bande 1, 2
- Regul N adapt P1
- Regul N adapt P2
- Regul N adapt I2
- Regul N adapt I1
- Regul N actuel P
- Regul N actuel I

Écran des paramètres de rég vitesse:
Fonctions

- DROOP
- COMP INERTIE
- SURCHARGE MOTEUR
- SURC RES FREIN
- DOUBLE JEUPARAM
- PERTE PUISSANCE
- COMPARER
- CONTROLE DU FREIN
- FACTEUR DIMENS.
- CONTROL MODE
- TEMP CONTROL
- CTRL LIQUIDE
- MINUTEUR
- ADAPT LIM COUPLE

Diagramme

- 3062 - Equilibre T filter
- Limite droop
- 3070° - Equil T result visu rpm
- 3052 - Equilibre T ref arc
- 2395° - Consigne de couple %
- 0 0 %
- Confcouple
- 3064 - Equilibre T limit
- 3060 - Equilibre T gain
- 0.0 %

Diagramme 2

- 3100 - Compensat inertie
- 0.000 kgm²
- 664° - Vitesse ref totale
- 0 rpm Réfvitesse
- 3104° - Visu Comp inertie
- 0.0 %
- 3102 - Filtre Comp inertie
- 30 ms
3152 - Mode Freinage DC

Réf de vitesse

Référence 0 thr

Courant de sortie

3154 - Retard Freinage DC
0.50 s

3156 - Durée Freinage DC
1.00 s

3158 - Courant Freinage DC
50.0 %

Etat Freinage DC

3160® - Etat Freinage DC
Non actif

3132 - Mode Freinage DC

Freinage DC src

Rrif de vitesse

Référence 0 thr

Courant de sortie

3154 - Retard Freinage DC
0.50 s

3156 - Durée Freinage DC
1.00 s

3158 - Courant Freinage DC
50.0 %

Etat Freinage DC

3160® - Etat Freinage DC
Non actif
E - Liste des paramètres (Expert)

<table>
<thead>
<tr>
<th>Menu</th>
<th>PAR</th>
<th>Description</th>
<th>UM</th>
<th>Type</th>
<th>FB</th>
<th>BIT</th>
<th>Def</th>
<th>Min</th>
<th>Maxi</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 - AFFICHAGE</td>
<td></td>
</tr>
<tr>
<td>1.1</td>
<td>250</td>
<td>Intensité de sortie</td>
<td>A</td>
<td>FLOAT</td>
<td>16/32</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>R</td>
<td>FVS</td>
<td></td>
</tr>
<tr>
<td>1.2</td>
<td>252</td>
<td>Tension de sortie</td>
<td>V</td>
<td>FLOAT</td>
<td>16/32</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>R</td>
<td>FVS</td>
<td></td>
</tr>
<tr>
<td>1.3</td>
<td>254</td>
<td>Fréquence de sortie</td>
<td>Hz</td>
<td>FLOAT</td>
<td>16/32</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>R</td>
<td>FVS</td>
<td></td>
</tr>
<tr>
<td>1.4</td>
<td>256</td>
<td>Puissance de sortie</td>
<td>kW</td>
<td>FLOAT</td>
<td>16/32</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>R</td>
<td>FVS</td>
<td></td>
</tr>
<tr>
<td>1.5</td>
<td>628</td>
<td>Gestion des rampes</td>
<td>FF</td>
<td>INT16</td>
<td>16/32</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>R</td>
<td>FVS</td>
<td></td>
</tr>
<tr>
<td>1.6</td>
<td>664</td>
<td>Vitesse ref totale</td>
<td>FF</td>
<td>INT16</td>
<td>16/32</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>R</td>
<td>FVS</td>
<td></td>
</tr>
<tr>
<td>1.7</td>
<td>260</td>
<td>Vitesse moteur</td>
<td>FF</td>
<td>INT16</td>
<td>16/32</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>R</td>
<td>FVS</td>
<td></td>
</tr>
<tr>
<td>1.8</td>
<td>270</td>
<td>Tension circuit DC</td>
<td>V</td>
<td>FLOAT</td>
<td>16/32</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>ER</td>
<td>FVS</td>
<td></td>
</tr>
<tr>
<td>1.9</td>
<td>272</td>
<td>Température radiateur</td>
<td>degC</td>
<td>INT16</td>
<td>16/32</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>ER</td>
<td>FVS</td>
<td></td>
</tr>
<tr>
<td>1.10</td>
<td>290</td>
<td>Température moteur</td>
<td>degC</td>
<td>FLOAT</td>
<td>16/32</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>ER</td>
<td>FVS</td>
<td></td>
</tr>
<tr>
<td>1.11</td>
<td>292</td>
<td>Visu.entrée sonde X</td>
<td>degC</td>
<td>FLOAT</td>
<td>16/32</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>ER</td>
<td>FVS</td>
<td></td>
</tr>
<tr>
<td>1.12</td>
<td>1544</td>
<td>Visu.temp.Ent.ana 1</td>
<td>degC</td>
<td>FLOAT</td>
<td>16/32</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>ER</td>
<td>FVS</td>
<td></td>
</tr>
<tr>
<td>1.13</td>
<td>1594</td>
<td>Visu.temp.Ent.ana 2</td>
<td>degC</td>
<td>FLOAT</td>
<td>16/32</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>ER</td>
<td>FVS</td>
<td></td>
</tr>
<tr>
<td>1.14</td>
<td>1610</td>
<td>E ana 1X temp visu</td>
<td>degC</td>
<td>FLOAT</td>
<td>16/32</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>ER</td>
<td>FVS</td>
<td></td>
</tr>
<tr>
<td>1.15</td>
<td>1660</td>
<td>E ana 2X temp visu</td>
<td>degC</td>
<td>FLOAT</td>
<td>16/32</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>ER</td>
<td>FVS</td>
<td></td>
</tr>
<tr>
<td>1.16</td>
<td>2342</td>
<td>Charge actuelle %</td>
<td>perc</td>
<td>FLOAT</td>
<td>16/32</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>ER</td>
<td>FVS</td>
<td></td>
</tr>
<tr>
<td>1.17</td>
<td>280</td>
<td>Consigne Couple</td>
<td>A</td>
<td>FLOAT</td>
<td>16/32</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>ER</td>
<td>FVS</td>
<td></td>
</tr>
<tr>
<td>1.18</td>
<td>282</td>
<td>Consigne I magnet</td>
<td>A</td>
<td>FLOAT</td>
<td>16/32</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>ER</td>
<td>FVS</td>
<td></td>
</tr>
<tr>
<td>1.19</td>
<td>284</td>
<td>Courant de couple</td>
<td>A</td>
<td>FLOAT</td>
<td>16/32</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>ER</td>
<td>FVS</td>
<td></td>
</tr>
<tr>
<td>1.20</td>
<td>286</td>
<td>Courant magnétisant</td>
<td>A</td>
<td>FLOAT</td>
<td>16/32</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>ER</td>
<td>FVS</td>
<td></td>
</tr>
<tr>
<td>1.21</td>
<td>3212</td>
<td>Cumul surchg moteur</td>
<td>perc</td>
<td>UINT16</td>
<td>16/32</td>
<td>0</td>
<td>0</td>
<td>100</td>
<td>ER</td>
<td>FVS</td>
<td></td>
</tr>
<tr>
<td>1.22</td>
<td>368</td>
<td>Drive surcharge cum</td>
<td>perc</td>
<td>UINT16</td>
<td>16/32</td>
<td>0</td>
<td>0</td>
<td>100</td>
<td>ER</td>
<td>FVS</td>
<td></td>
</tr>
<tr>
<td>1.23</td>
<td>3260</td>
<td>Cumul surch R frein</td>
<td>perc</td>
<td>UINT16</td>
<td>16/32</td>
<td>0</td>
<td>0</td>
<td>100</td>
<td>ER</td>
<td>FVS</td>
<td></td>
</tr>
<tr>
<td>1.24</td>
<td>1066</td>
<td>Visu état validé</td>
<td>BIT</td>
<td>16</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>R</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.25</td>
<td>1068</td>
<td>Visu état Start</td>
<td>BIT</td>
<td>16</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>R</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.26</td>
<td>1070</td>
<td>Visu état Arr rapid</td>
<td>BIT</td>
<td>16</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>R</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.27</td>
<td>1100</td>
<td>Visu entrées digit</td>
<td>UINT16</td>
<td>16</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>R</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.28</td>
<td>1300</td>
<td>Visu Sorties digital</td>
<td>UINT16</td>
<td>16</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>R</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.29</td>
<td>1200</td>
<td>Visu entrée dig X</td>
<td>UINT16</td>
<td>16</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>R</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.30</td>
<td>1400</td>
<td>Visu Sortie dig virt</td>
<td>UINT16</td>
<td>16</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>R</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.31</td>
<td>5400</td>
<td>Visu Ent dig 0 Ext</td>
<td>UINT32</td>
<td>32</td>
<td>0</td>
<td>0</td>
<td>4294967295</td>
<td>ER</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.32</td>
<td>5402</td>
<td>Visu Ent dig 1 Ext</td>
<td>UINT32</td>
<td>32</td>
<td>0</td>
<td>0</td>
<td>4294967295</td>
<td>ER</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.33</td>
<td>5450</td>
<td>Visu Sort dig 0 Ext</td>
<td>UINT32</td>
<td>32</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>ER</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.34</td>
<td>5452</td>
<td>Visu Sort dig 1 Ext</td>
<td>UINT32</td>
<td>32</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>ER</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

2 - INFO VARIATEUR

<table>
<thead>
<tr>
<th>Menu</th>
<th>PAR</th>
<th>Description</th>
<th>UM</th>
<th>Type</th>
<th>FB</th>
<th>BIT</th>
<th>Def</th>
<th>Min</th>
<th>Maxi</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>480</td>
<td>Type de contrôle</td>
<td>ENUM</td>
<td>Synchrone</td>
<td>0</td>
<td>0</td>
<td>R</td>
<td>FVS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>Asynchrone</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td>Synchrone</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.2</td>
<td>482</td>
<td>Calibre du variateur</td>
<td>UINT16</td>
<td>Pas de Puiss</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>RS</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.3</td>
<td>484</td>
<td>Famille de variateur</td>
<td>ENUM</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>RS</td>
<td>FVS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>380V.480V</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td>500V..575V</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3</td>
<td>690V</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4</td>
<td>230V</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5</td>
<td>380V..480V LC</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.4</td>
<td>486</td>
<td>Région du variateur</td>
<td>ENUM</td>
<td>EU</td>
<td>0</td>
<td>1</td>
<td>R</td>
<td>FVS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td>EU</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>USA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Menu</td>
<td>PAR</td>
<td>Description</td>
<td>UM</td>
<td>Type</td>
<td>FB BIT</td>
<td>Def</td>
<td>Min</td>
<td>Maxi</td>
<td>Acc</td>
<td>Mod</td>
<td></td>
</tr>
<tr>
<td>------</td>
<td>-----</td>
<td>---------------------------</td>
<td>-----</td>
<td>-------</td>
<td>--------</td>
<td>-----</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>-----</td>
<td></td>
</tr>
<tr>
<td>2.5</td>
<td>488</td>
<td>Courant nominal drv</td>
<td>A</td>
<td>FLOAT</td>
<td>CALCF</td>
<td>0.0</td>
<td>0.0</td>
<td>RZS</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.6</td>
<td>490</td>
<td>Firmware ver.edition</td>
<td>UINT16</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>R</td>
<td>FVS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.7</td>
<td>496</td>
<td>Firmware type</td>
<td>UINT16</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>R</td>
<td>FVS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.8</td>
<td>504</td>
<td>Application ver.edit</td>
<td>UINT16</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>ER</td>
<td>FVS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.9</td>
<td>506</td>
<td>Application type</td>
<td>UINT16</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>ER</td>
<td>FVS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.10</td>
<td>508</td>
<td>Application subver</td>
<td>UINT16</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>ER</td>
<td>FVS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.11</td>
<td>510</td>
<td>Heures alimentées</td>
<td>h.min</td>
<td>UINT32</td>
<td>0</td>
<td>0</td>
<td>ER</td>
<td>FVS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.12</td>
<td>512</td>
<td>Heures en fonction</td>
<td>h.min</td>
<td>UINT32</td>
<td>0</td>
<td>0</td>
<td>ER</td>
<td>FVS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.13</td>
<td>514</td>
<td>Nombre de boots eff</td>
<td>UINT16</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>ER</td>
<td>FVS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.14</td>
<td>516</td>
<td>Temp.marche ventil.</td>
<td>h.min</td>
<td>UINT32</td>
<td>0</td>
<td>0</td>
<td>ER</td>
<td>FVS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.15</td>
<td>526</td>
<td>Version Puissance</td>
<td>UINT16</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>ER</td>
<td>FVS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.16</td>
<td>530</td>
<td>Slot1 carte type</td>
<td>ENUM</td>
<td>Aucun</td>
<td>0</td>
<td>0</td>
<td>R</td>
<td>FVS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.17</td>
<td>532</td>
<td>Slot2 carte type</td>
<td>ENUM</td>
<td>Aucun</td>
<td>0</td>
<td>0</td>
<td>R</td>
<td>FVS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.18</td>
<td>534</td>
<td>Slot3 carte type</td>
<td>ENUM</td>
<td>Aucun</td>
<td>0</td>
<td>0</td>
<td>R</td>
<td>FVS</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

| 3 - MISE SERVICE GUIDE |

| 4 - CONFIGURATION |

4.1	550	Sauvegarde paramètre	BIT	0	0	1	RW	FVS
4.2	552	Mode de Regulation	ENUM	Flux Vect B.F. 1	3	RWZ	FVS	
				Flux Vect B.O.				
				Flux Vect B.F.				
				Autoétalonnage				
4.3	554	Mode d’accès	ENUM	Facile	0	1	RW	FVS
				Facile				

ADV200 • Liste des paramètres
<table>
<thead>
<tr>
<th>Menu</th>
<th>PAR</th>
<th>Description</th>
<th>UM</th>
<th>Type</th>
<th>FB</th>
<th>BIT</th>
<th>Def</th>
<th>Min</th>
<th>Maxi</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.4</td>
<td>558</td>
<td>Application select</td>
<td>ENUM</td>
<td>Aucun</td>
<td>0</td>
<td></td>
<td></td>
<td>0</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Aucun</td>
<td>1</td>
<td>Application 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Application 2</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.5</td>
<td>560</td>
<td>Tension réseau</td>
<td>ENUM</td>
<td>Aucun</td>
<td>0</td>
<td>400 V</td>
<td>SIZE</td>
<td>SIZE</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>230 V</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>380 V</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>400 V</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>415 V</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>440 V</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>460 V</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>480 V</td>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>500 V</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>575 V</td>
<td>9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>690 V</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.6</td>
<td>586</td>
<td>DC supply</td>
<td>ENUM</td>
<td>Aucun</td>
<td>0</td>
<td></td>
<td></td>
<td>0</td>
<td>7</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>540V(380-480V)</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>650V(380-480V)</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>750V(380-480V)</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>675V(690V)</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>810V(690V)</td>
<td>11</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>935V(690V)</td>
<td>12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1120V(690V)</td>
<td>13</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.7</td>
<td>450</td>
<td>Sous tension</td>
<td>V</td>
<td>FLOAT</td>
<td></td>
<td>CALCF</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.8</td>
<td>562</td>
<td>Freq de découpage</td>
<td>ENUM</td>
<td>Aucun</td>
<td>0</td>
<td>1 kHz</td>
<td>SIZE</td>
<td>SIZE</td>
<td>SIZE</td>
<td>ERWS</td>
<td>FVS</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2 kHz</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4 kHz</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>6 kHz</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>8 kHz</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>10 kHz</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>12 kHz</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>16 kHz</td>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.9</td>
<td>564</td>
<td>Température ambiante</td>
<td>ENUM</td>
<td>40 °C</td>
<td>0</td>
<td></td>
<td></td>
<td>0</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>50 °C</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.10</td>
<td>566</td>
<td>Mode surcharge drive</td>
<td>ENUM</td>
<td>Forte Charge</td>
<td>1</td>
<td></td>
<td></td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Forte Charge</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.11</td>
<td>568</td>
<td>Freq découp mode</td>
<td>ENUM</td>
<td>Constant</td>
<td>0</td>
<td>Constant</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Constant</td>
<td>1</td>
<td>Variable</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.12</td>
<td>454</td>
<td>Act.Résist.freinage</td>
<td>V</td>
<td>FLOAT</td>
<td></td>
<td>CALCF</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.13</td>
<td>570</td>
<td>Mot de passe</td>
<td>UINT32</td>
<td>0</td>
<td>0</td>
<td>99999</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.14</td>
<td>572</td>
<td>Clé d’Application</td>
<td>UINT32</td>
<td>0</td>
<td>0</td>
<td>4294967295</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.15</td>
<td>574</td>
<td>Affichage initial</td>
<td>INT16</td>
<td>-1</td>
<td>-1</td>
<td>20000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.16</td>
<td>576</td>
<td>Rétroéclair display</td>
<td>BIT</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.17</td>
<td>578</td>
<td>Selecteur de langue</td>
<td>ENUM</td>
<td>Anglais</td>
<td>0</td>
<td></td>
<td></td>
<td>9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Italien</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Français</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Allemand</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Menu PAR Description UM Type FB BIT Def Min Maxi Acc Mod

<p>| | | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Espagnole</td>
<td>BIT</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>RWZ</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Polonais</td>
<td>BIT</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>RW</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Roumain</td>
<td>BIT</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>RWZ</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Russe</td>
<td>BIT</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>RWZ</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Turc</td>
<td>BIT</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>ERW</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Portugais</td>
<td>BIT</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>ERW</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

5 - CONSIGNES

<p>| | | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>5.1</td>
<td>600</td>
<td>Dig ramp ref 1</td>
<td>FF</td>
<td>INT16</td>
<td>16/32</td>
<td>0</td>
<td>CALCI</td>
<td>CALCI</td>
<td>RW</td>
</tr>
<tr>
<td>5.2</td>
<td>602</td>
<td>Dig ramp ref 2</td>
<td>FF</td>
<td>INT16</td>
<td>16/32</td>
<td>0</td>
<td>CALCI</td>
<td>CALCI</td>
<td>ERW</td>
</tr>
<tr>
<td>5.3</td>
<td>604</td>
<td>Dig ramp ref 3</td>
<td>FF</td>
<td>INT16</td>
<td>16/32</td>
<td>0</td>
<td>CALCI</td>
<td>CALCI</td>
<td>ERW</td>
</tr>
<tr>
<td>5.4</td>
<td>610</td>
<td>Ramp ref 1 src</td>
<td>LINK</td>
<td>L_MLTREF</td>
<td>16/32</td>
<td>1500</td>
<td>0</td>
<td>16384</td>
<td>RW</td>
</tr>
<tr>
<td>5.5</td>
<td>612</td>
<td>Ramp ref 2 src</td>
<td>LINK</td>
<td>L_MLTREF</td>
<td>16/32</td>
<td>602</td>
<td>0</td>
<td>16384</td>
<td>ERW</td>
</tr>
<tr>
<td>5.6</td>
<td>614</td>
<td>Ramp ref 3 src</td>
<td>LINK</td>
<td>L_MLTREF</td>
<td>16/32</td>
<td>894</td>
<td>0</td>
<td>16384</td>
<td>ERW</td>
</tr>
<tr>
<td>5.7</td>
<td>616</td>
<td>Ramp ref invert src</td>
<td>LINK</td>
<td>L_DIGSEL2</td>
<td>16</td>
<td>1050</td>
<td>0</td>
<td>16384</td>
<td>ERW</td>
</tr>
<tr>
<td>5.8</td>
<td>620</td>
<td>Ramp ref 1 visu</td>
<td>FF</td>
<td>INT16</td>
<td>16/32</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>R</td>
</tr>
<tr>
<td>5.9</td>
<td>622</td>
<td>Ramp ref 2 visu</td>
<td>FF</td>
<td>INT16</td>
<td>16/32</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>ER</td>
</tr>
<tr>
<td>5.10</td>
<td>624</td>
<td>Ramp ref 3 visu</td>
<td>FF</td>
<td>INT16</td>
<td>16/32</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>ER</td>
</tr>
<tr>
<td>5.11</td>
<td>634</td>
<td>Lim.haut Rampe ref</td>
<td>FF</td>
<td>INT32</td>
<td>16/32</td>
<td>0</td>
<td>0</td>
<td>CALCI</td>
<td>ERWZ</td>
</tr>
<tr>
<td>5.12</td>
<td>636</td>
<td>Lim.bas Rampe ref</td>
<td>FF</td>
<td>INT32</td>
<td>16/32</td>
<td>0</td>
<td>0</td>
<td>CALCI</td>
<td>ERWZ</td>
</tr>
<tr>
<td>5.13</td>
<td>630</td>
<td>Saut de frequence</td>
<td>rpm</td>
<td>INT16</td>
<td>16/32</td>
<td>0</td>
<td>0</td>
<td>CALCI</td>
<td>ERW</td>
</tr>
<tr>
<td>5.14</td>
<td>632</td>
<td>Bande saut de freq</td>
<td>rpm</td>
<td>INT16</td>
<td>16/32</td>
<td>0</td>
<td>0</td>
<td>CALCI</td>
<td>ERW</td>
</tr>
<tr>
<td>5.15</td>
<td>640</td>
<td>Dig vitesse ref 1</td>
<td>FF</td>
<td>INT16</td>
<td>16/32</td>
<td>0</td>
<td>CALCI</td>
<td>CALCI</td>
<td>ERW</td>
</tr>
<tr>
<td>5.16</td>
<td>642</td>
<td>Dig vitesse ref 2</td>
<td>FF</td>
<td>INT16</td>
<td>16/32</td>
<td>0</td>
<td>CALCI</td>
<td>CALCI</td>
<td>ERW</td>
</tr>
<tr>
<td>5.17</td>
<td>650</td>
<td>Vitesse ref 1 src</td>
<td>LINK</td>
<td>L_MLTREF</td>
<td>16/32</td>
<td>640</td>
<td>0</td>
<td>16384</td>
<td>ERW</td>
</tr>
<tr>
<td>5.18</td>
<td>652</td>
<td>Vitesse ref 2 src</td>
<td>LINK</td>
<td>L_MLTREF</td>
<td>16/32</td>
<td>642</td>
<td>0</td>
<td>16384</td>
<td>ERW</td>
</tr>
<tr>
<td>5.19</td>
<td>654</td>
<td>Vitesse ref invers src</td>
<td>LINK</td>
<td>L_DIGSEL2</td>
<td>16</td>
<td>6000</td>
<td>0</td>
<td>16384</td>
<td>ERWZ</td>
</tr>
<tr>
<td>5.20</td>
<td>660</td>
<td>Vitesse ref 1 visu</td>
<td>FF</td>
<td>INT16</td>
<td>16/32</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>ER</td>
</tr>
<tr>
<td>5.21</td>
<td>662</td>
<td>Vitesse ref 2 visu</td>
<td>FF</td>
<td>INT16</td>
<td>16/32</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>ER</td>
</tr>
<tr>
<td>5.22</td>
<td>670</td>
<td>Vitesse ref max</td>
<td>FF</td>
<td>INT32</td>
<td>16/32</td>
<td>0</td>
<td>0</td>
<td>CALCI</td>
<td>ERWZ</td>
</tr>
<tr>
<td>5.23</td>
<td>672</td>
<td>Vitesse ref min</td>
<td>FF</td>
<td>INT32</td>
<td>16/32</td>
<td>0</td>
<td>0</td>
<td>CALCI</td>
<td>ERWZ</td>
</tr>
<tr>
<td>5.24</td>
<td>666</td>
<td>Filtre ref vitesse</td>
<td>ms</td>
<td>UINT16</td>
<td>16/32</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1000</td>
</tr>
<tr>
<td>5.25</td>
<td>680</td>
<td>Vitesse pour 10V</td>
<td>rpm</td>
<td>INT16</td>
<td>16/32</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1000</td>
</tr>
</tbody>
</table>

6 - RAMPES

<p>| | | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>6.1</td>
<td>700</td>
<td>Acceleration temps 0</td>
<td>s</td>
<td>FLOAT</td>
<td>10.0</td>
<td>0.01</td>
<td>1000.0</td>
<td>RW</td>
<td>FVS</td>
</tr>
<tr>
<td>6.2</td>
<td>702</td>
<td>Deceleration temps 0</td>
<td>s</td>
<td>FLOAT</td>
<td>10.0</td>
<td>0.01</td>
<td>1000.0</td>
<td>RW</td>
<td>FVS</td>
</tr>
<tr>
<td>6.3</td>
<td>704</td>
<td>Acceleration temps 1</td>
<td>s</td>
<td>FLOAT</td>
<td>10.0</td>
<td>0.01</td>
<td>1000.0</td>
<td>RW</td>
<td>FVS</td>
</tr>
<tr>
<td>6.4</td>
<td>706</td>
<td>Deceleration temps 1</td>
<td>s</td>
<td>FLOAT</td>
<td>10.0</td>
<td>0.01</td>
<td>1000.0</td>
<td>RW</td>
<td>FVS</td>
</tr>
<tr>
<td>6.5</td>
<td>708</td>
<td>Acceleration temps 2</td>
<td>s</td>
<td>FLOAT</td>
<td>10.0</td>
<td>0.01</td>
<td>1000.0</td>
<td>ERW</td>
<td>FVS</td>
</tr>
<tr>
<td>6.6</td>
<td>710</td>
<td>Deceleration temps 2</td>
<td>s</td>
<td>FLOAT</td>
<td>10.0</td>
<td>0.01</td>
<td>1000.0</td>
<td>ERW</td>
<td>FVS</td>
</tr>
</tbody>
</table>
Menu PAR Description UM Type FB BIT Def Min Maxi Acc Mod

<p>| | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>6.7</td>
<td>712</td>
<td>Acceleration temps 3</td>
<td>s</td>
<td>FLOAT</td>
<td>10.0</td>
<td>0.01</td>
</tr>
<tr>
<td>6.8</td>
<td>714</td>
<td>Deceleration temps 3</td>
<td>s</td>
<td>FLOAT</td>
<td>10.0</td>
<td>0.01</td>
</tr>
<tr>
<td>6.9</td>
<td>720</td>
<td>Rampe type</td>
<td>ENUM</td>
<td>Linéaire</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Linéaire</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Rampe en S</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Bypass</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Off</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.10</td>
<td>722</td>
<td>Multi ramp sel 0 src</td>
<td>LINK</td>
<td>L_DIGSEL2</td>
<td>16</td>
<td>6000</td>
</tr>
<tr>
<td>6.11</td>
<td>724</td>
<td>Multi ramp sel 1 src</td>
<td>LINK</td>
<td>L_DIGSEL2</td>
<td>16</td>
<td>6000</td>
</tr>
<tr>
<td>6.12</td>
<td>726</td>
<td>Multi ramp sel visu</td>
<td>UINT16</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>6.13</td>
<td>730</td>
<td>Accel S temps 0</td>
<td>s</td>
<td>FLOAT</td>
<td>1.0</td>
<td>0.02</td>
</tr>
<tr>
<td>6.14</td>
<td>732</td>
<td>Decel S temps 0</td>
<td>s</td>
<td>FLOAT</td>
<td>1.0</td>
<td>0.02</td>
</tr>
<tr>
<td>6.15</td>
<td>734</td>
<td>Accel S temps 1</td>
<td>s</td>
<td>FLOAT</td>
<td>1.0</td>
<td>0.02</td>
</tr>
<tr>
<td>6.16</td>
<td>736</td>
<td>Decel S temps 1</td>
<td>s</td>
<td>FLOAT</td>
<td>1.0</td>
<td>0.02</td>
</tr>
<tr>
<td>6.17</td>
<td>738</td>
<td>Accel S temps 2</td>
<td>s</td>
<td>FLOAT</td>
<td>1.0</td>
<td>0.02</td>
</tr>
<tr>
<td>6.18</td>
<td>740</td>
<td>Decel S temps 2</td>
<td>s</td>
<td>FLOAT</td>
<td>1.0</td>
<td>0.02</td>
</tr>
<tr>
<td>6.19</td>
<td>742</td>
<td>Accel S temps 3</td>
<td>s</td>
<td>FLOAT</td>
<td>1.0</td>
<td>0.02</td>
</tr>
<tr>
<td>6.20</td>
<td>744</td>
<td>Decel S temps 3</td>
<td>s</td>
<td>FLOAT</td>
<td>1.0</td>
<td>0.02</td>
</tr>
<tr>
<td>6.21</td>
<td>750</td>
<td>Entrée Ramp = 0</td>
<td>LINK</td>
<td>L_DIGSEL2</td>
<td>16</td>
<td>6000</td>
</tr>
<tr>
<td>6.22</td>
<td>752</td>
<td>Sortie Ramp = 0</td>
<td>LINK</td>
<td>L_DIGSEL2</td>
<td>16</td>
<td>6000</td>
</tr>
<tr>
<td>6.23</td>
<td>754</td>
<td>Blocage de rampe</td>
<td>LINK</td>
<td>L_DIGSEL2</td>
<td>16</td>
<td>3480</td>
</tr>
</tbody>
</table>

7 - MULTI-VITESSE

<p>| | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>7.1</td>
<td>800</td>
<td>Multi vitesse 0</td>
<td>FF</td>
<td>INT16</td>
<td>16/32</td>
<td>0</td>
</tr>
<tr>
<td>7.2</td>
<td>802</td>
<td>Multi vitesse 1</td>
<td>FF</td>
<td>INT16</td>
<td>16/32</td>
<td>0</td>
</tr>
<tr>
<td>7.3</td>
<td>804</td>
<td>Multi vitesse 2</td>
<td>FF</td>
<td>INT16</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>7.4</td>
<td>806</td>
<td>Multi vitesse 3</td>
<td>FF</td>
<td>INT16</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>7.5</td>
<td>808</td>
<td>Multi vitesse 4</td>
<td>FF</td>
<td>INT16</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>7.6</td>
<td>810</td>
<td>Multi vitesse 5</td>
<td>FF</td>
<td>INT16</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>7.7</td>
<td>812</td>
<td>Multi vitesse 6</td>
<td>FF</td>
<td>INT16</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>7.8</td>
<td>814</td>
<td>Multi vitesse 7</td>
<td>FF</td>
<td>INT16</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>7.9</td>
<td>816</td>
<td>Multi vitesse 8</td>
<td>FF</td>
<td>INT16</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>7.10</td>
<td>818</td>
<td>Multi vitesse 9</td>
<td>FF</td>
<td>INT16</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>7.11</td>
<td>820</td>
<td>Multi vitesse 10</td>
<td>FF</td>
<td>INT16</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>7.12</td>
<td>822</td>
<td>Multi vitesse 11</td>
<td>FF</td>
<td>INT16</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>7.13</td>
<td>824</td>
<td>Multi vitesse 12</td>
<td>FF</td>
<td>INT16</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>7.14</td>
<td>826</td>
<td>Multi vitesse 13</td>
<td>FF</td>
<td>INT16</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>7.15</td>
<td>828</td>
<td>Multi vitesse 14</td>
<td>FF</td>
<td>INT16</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>7.16</td>
<td>830</td>
<td>Multi vitesse 15</td>
<td>FF</td>
<td>INT16</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>7.17</td>
<td>832</td>
<td>Multi vitesse 0 src</td>
<td>LINK</td>
<td>L_MLTREF</td>
<td>16/32</td>
<td>800</td>
</tr>
<tr>
<td>7.18</td>
<td>834</td>
<td>Multi vitesse 1 src</td>
<td>LINK</td>
<td>L_MLTREF</td>
<td>16/32</td>
<td>802</td>
</tr>
<tr>
<td>7.19</td>
<td>840</td>
<td>Multi vit sel 0 src</td>
<td>LINK</td>
<td>L_DIGSEL2</td>
<td>16</td>
<td>6000</td>
</tr>
<tr>
<td>7.20</td>
<td>842</td>
<td>Multi vit sel 1 src</td>
<td>LINK</td>
<td>L_DIGSEL2</td>
<td>16</td>
<td>6000</td>
</tr>
<tr>
<td>7.21</td>
<td>844</td>
<td>Multi vit sel 2 src</td>
<td>LINK</td>
<td>L_DIGSEL2</td>
<td>16</td>
<td>6000</td>
</tr>
<tr>
<td>Menu</td>
<td>PAR</td>
<td>Description</td>
<td>UM</td>
<td>Type</td>
<td>FB</td>
<td>BIT</td>
</tr>
<tr>
<td>------</td>
<td>-----</td>
<td>---------------------</td>
<td>--------</td>
<td>-------</td>
<td>----</td>
<td>-----</td>
</tr>
<tr>
<td></td>
<td></td>
<td>L_DIGSEL2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.22</td>
<td>846</td>
<td>Multi vit sel 3 src</td>
<td>LINK</td>
<td>16</td>
<td>6000</td>
<td>0</td>
</tr>
<tr>
<td>7.23</td>
<td>850</td>
<td>Multi vit sel visu</td>
<td>UINT16</td>
<td>0</td>
<td>0</td>
<td>15</td>
</tr>
<tr>
<td>7.24</td>
<td>852</td>
<td>Multi vit actuelle</td>
<td>FF</td>
<td>INT16</td>
<td>16/32</td>
<td>0</td>
</tr>
</tbody>
</table>

8 - MOTOPOTENTIOMETRE

<p>| | | | | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>8.1</td>
<td>870</td>
<td>Mpot vit départ</td>
<td>FF</td>
<td>INT16</td>
<td>16/32</td>
<td>0</td>
<td>CALCI</td>
<td>CALCI</td>
<td>R</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.2</td>
<td>872</td>
<td>Mpot acceleration</td>
<td>s</td>
<td>FLOAT</td>
<td>5.0</td>
<td>0.01</td>
<td>1000.0</td>
<td></td>
<td>RW</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.3</td>
<td>874</td>
<td>Mpot deceleration</td>
<td>s</td>
<td>FLOAT</td>
<td>5.0</td>
<td>0.01</td>
<td>1000.0</td>
<td></td>
<td>RW</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.4</td>
<td>876</td>
<td>Mpot limit max</td>
<td>FF</td>
<td>INT16</td>
<td>CALCI</td>
<td>CALCI</td>
<td>CALCI</td>
<td>ERW</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.5</td>
<td>878</td>
<td>Mpot limit min</td>
<td>FF</td>
<td>INT16</td>
<td>0</td>
<td>CALCI</td>
<td>CALCI</td>
<td>ERW</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.6</td>
<td>880</td>
<td>Mpot init cfg</td>
<td>ENUM</td>
<td>Zero</td>
<td>0</td>
<td>3</td>
<td>ERW</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>8.7</td>
<td>882</td>
<td>Mpot presel cfg</td>
<td>ENUM</td>
<td>Aucun</td>
<td>0</td>
<td>11</td>
<td>ERW</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>8.8</td>
<td>884</td>
<td>Mpot + vité src</td>
<td>LINK</td>
<td>16</td>
<td>6000</td>
<td>0</td>
<td>16384</td>
<td>RW</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.9</td>
<td>886</td>
<td>Mpot - vité src</td>
<td>LINK</td>
<td>16</td>
<td>6000</td>
<td>0</td>
<td>16384</td>
<td>RW</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.10</td>
<td>888</td>
<td>Mpot invers src</td>
<td>LINK</td>
<td>16</td>
<td>6000</td>
<td>0</td>
<td>16384</td>
<td>ERW</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.11</td>
<td>890</td>
<td>Mpot presel src</td>
<td>LINK</td>
<td>16</td>
<td>6000</td>
<td>0</td>
<td>16384</td>
<td>ERW</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.12</td>
<td>892</td>
<td>Mpot mode</td>
<td>ENUM</td>
<td>Fin&Last Val</td>
<td>0</td>
<td>3</td>
<td>ERW</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>8.13</td>
<td>894</td>
<td>Mpot sortie visu rpm</td>
<td>rpm</td>
<td>INT16</td>
<td>16/32</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>ER</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

9 - FONCTION JOG

<p>| | | | | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>9.1</td>
<td>910</td>
<td>Jog consigne rpm</td>
<td>rpm</td>
<td>INT16</td>
<td>0</td>
<td>CALCI</td>
<td>CALCI</td>
<td>RW</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9.2</td>
<td>912</td>
<td>Jog acceleration s</td>
<td>FLOAT</td>
<td>5.0</td>
<td>0.01</td>
<td>1000.0</td>
<td></td>
<td>RW</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9.3</td>
<td>914</td>
<td>Jog deceleration s</td>
<td>FLOAT</td>
<td>5.0</td>
<td>0.01</td>
<td>1000.0</td>
<td></td>
<td>RW</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9.4</td>
<td>916</td>
<td>Jog cmd + src</td>
<td>LINK</td>
<td>16</td>
<td>6000</td>
<td>0</td>
<td>16384</td>
<td>RW</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9.5</td>
<td>918</td>
<td>Jog cmd - src</td>
<td>LINK</td>
<td>16</td>
<td>6000</td>
<td>0</td>
<td>16384</td>
<td>RW</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9.6</td>
<td>920</td>
<td>Jog sortie visu rpm</td>
<td>rpm</td>
<td>INT16</td>
<td>16/32</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>ER</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ADV200 • Liste des paramètres
10 - FONCTION AFFICHAGE

<table>
<thead>
<tr>
<th>Menu</th>
<th>PAR</th>
<th>Description</th>
<th>UM</th>
<th>Type</th>
<th>FB</th>
<th>BIT</th>
<th>Def</th>
<th>Min</th>
<th>Maxi</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.1</td>
<td>930</td>
<td>Consigne > 0 seuil rpm</td>
<td>INT16</td>
<td>30</td>
<td>0</td>
<td>CALCI</td>
<td>RW</td>
<td>FVS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10.2</td>
<td>932</td>
<td>Consigne > 0 retard ms</td>
<td>UINT16</td>
<td>400</td>
<td>0</td>
<td>10000</td>
<td>RW</td>
<td>FVS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10.3</td>
<td>940</td>
<td>Vitesse > 0 seuil rpm</td>
<td>INT16</td>
<td>30</td>
<td>0</td>
<td>CALCI</td>
<td>RW</td>
<td>FVS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10.4</td>
<td>942</td>
<td>Vitesse > 0 retard ms</td>
<td>UINT16</td>
<td>400</td>
<td>0</td>
<td>10000</td>
<td>RW</td>
<td>FVS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10.5</td>
<td>950</td>
<td>Vitesse seuil 1 rpm</td>
<td>INT32</td>
<td>0</td>
<td>CALCI</td>
<td>CALCI</td>
<td>RW</td>
<td>FVS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10.6</td>
<td>952</td>
<td>Vitesse seuil 2 rpm</td>
<td>INT32</td>
<td>0</td>
<td>CALCI</td>
<td>CALCI</td>
<td>RW</td>
<td>FVS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10.7</td>
<td>954</td>
<td>Vitesse seuil retard ms</td>
<td>UINT16</td>
<td>0</td>
<td>50000</td>
<td>RW</td>
<td>FVS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10.8</td>
<td>960</td>
<td>Vit atteinte src LINK L CMP</td>
<td>16/32</td>
<td>628</td>
<td>0</td>
<td>16384</td>
<td>ERW</td>
<td>FVS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10.9</td>
<td>962</td>
<td>Vit atteinte erreur rpm</td>
<td>INT16</td>
<td>100</td>
<td>0</td>
<td>CALCI</td>
<td>RW</td>
<td>FVS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10.10</td>
<td>964</td>
<td>Vit atteinte retard ms</td>
<td>UINT16</td>
<td>0</td>
<td>0</td>
<td>50000</td>
<td>RW</td>
<td>FVS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10.11</td>
<td>968</td>
<td>Seuil fixe vit.ref rpm</td>
<td>INT16</td>
<td>16/32</td>
<td>0</td>
<td>CALCI</td>
<td>CALCI</td>
<td>ERW</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10.12</td>
<td>970</td>
<td>Seuil vitesse 3 rpm</td>
<td>INT32</td>
<td>0</td>
<td>0</td>
<td>CALCI</td>
<td>RW</td>
<td>FVS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10.13</td>
<td>972</td>
<td>Seuil hystér.vit 3 rpm</td>
<td>INT16</td>
<td>0</td>
<td>0</td>
<td>CALCI</td>
<td>RW</td>
<td>FVS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10.14</td>
<td>974</td>
<td>Seuil vitesse. 3 src LINK L REF</td>
<td>16/32</td>
<td>262</td>
<td>0</td>
<td>16384</td>
<td>ERW</td>
<td>FVS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10.15</td>
<td>980</td>
<td>Seuil courant perc</td>
<td>INT16</td>
<td>100</td>
<td>0</td>
<td>200</td>
<td>RW</td>
<td>FVS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10.16</td>
<td>982</td>
<td>Seuil courant hystér</td>
<td>INT16</td>
<td>0</td>
<td>0</td>
<td>100</td>
<td>RW</td>
<td>FVS</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

11 - GESTION PARAM

<table>
<thead>
<tr>
<th>Menu</th>
<th>PAR</th>
<th>Description</th>
<th>UM</th>
<th>Type</th>
<th>FB</th>
<th>BIT</th>
<th>Def</th>
<th>Min</th>
<th>Maxi</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.1</td>
<td>1000</td>
<td>Sel commande distance</td>
<td>ENUM</td>
<td>Bornier</td>
<td>0</td>
<td>1</td>
<td>RWZ</td>
<td>FVS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11.2</td>
<td>1002</td>
<td>Sel commande locale</td>
<td>ENUM</td>
<td>Bornier</td>
<td>0</td>
<td>1</td>
<td>ERWZ</td>
<td>FVS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11.3</td>
<td>1004</td>
<td>Mod de valid/dévalid</td>
<td>ENUM</td>
<td>Arr/Rap=N=0</td>
<td>0</td>
<td>3</td>
<td>ERWZ</td>
<td>FVS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11.4</td>
<td>1006</td>
<td>Ret dévalid à vit=0 ms</td>
<td>UINT16</td>
<td>1000</td>
<td>0</td>
<td>10000</td>
<td>ERW</td>
<td>FVS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11.5</td>
<td>1008</td>
<td>Boutton Stop mode</td>
<td>ENUM</td>
<td>Inactif</td>
<td>0</td>
<td>1</td>
<td>ERW</td>
<td>FVS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11.6</td>
<td>1010</td>
<td>Cmd start sécurisé</td>
<td>BIT</td>
<td>0</td>
<td>1</td>
<td>ERW</td>
<td>FVS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11.7</td>
<td>1012</td>
<td>Dig local/Distance</td>
<td>ENUM</td>
<td>Distance</td>
<td>0</td>
<td>1</td>
<td>ERW</td>
<td>FVS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11.8</td>
<td>1014</td>
<td>Local/Distance src</td>
<td>LINK</td>
<td>16</td>
<td>1012</td>
<td>16384</td>
<td>ERW</td>
<td>FVS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11.9</td>
<td>1016</td>
<td>Bornier Start src</td>
<td>LINK</td>
<td>16</td>
<td>1048</td>
<td>16384</td>
<td>ERW</td>
<td>FVS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11.10</td>
<td>1018</td>
<td>Validat Digital src</td>
<td>LINK</td>
<td>16</td>
<td>6000</td>
<td>16384</td>
<td>ERW</td>
<td>FVS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11.11</td>
<td>1020</td>
<td>Start Digital src</td>
<td>LINK</td>
<td>16</td>
<td>6000</td>
<td>16384</td>
<td>ERW</td>
<td>FVS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11.12</td>
<td>1022</td>
<td>Arrêt rapide src</td>
<td>LINK</td>
<td>16</td>
<td>6000</td>
<td>16384</td>
<td>ERW</td>
<td>FVS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11.13</td>
<td>1024</td>
<td>Validat cmd visu</td>
<td>BIT</td>
<td>16</td>
<td>0</td>
<td>1</td>
<td>R</td>
<td>FVS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11.14</td>
<td>1026</td>
<td>Start cmd visu</td>
<td>BIT</td>
<td>16</td>
<td>0</td>
<td>1</td>
<td>R</td>
<td>FVS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>---</td>
</tr>
<tr>
<td>Menu</td>
<td>PAR</td>
<td>Description</td>
<td>UM</td>
<td>Type</td>
<td>FB</td>
<td>BIT</td>
<td>Def</td>
<td>Min</td>
<td>Maxi</td>
<td>Acc</td>
<td>Mod</td>
</tr>
<tr>
<td>11.15</td>
<td>1028</td>
<td>Arrêt rapid cmd visu</td>
<td>BIT</td>
<td>16</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>R</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11.16</td>
<td>1054</td>
<td>Visu.Dem.Correct</td>
<td>BIT</td>
<td>16</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>ER</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11.17</td>
<td>1040</td>
<td>FR mode</td>
<td>ENUM</td>
<td>Deux fils 0</td>
<td>Normale</td>
<td>1</td>
<td>Deux fils</td>
<td>2</td>
<td>ERWZ</td>
<td>FVS</td>
<td></td>
</tr>
<tr>
<td>11.18</td>
<td>1042</td>
<td>FR forward src</td>
<td>LINK</td>
<td>1112</td>
<td>0</td>
<td>16384</td>
<td>ERW</td>
<td>FVS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11.19</td>
<td>1044</td>
<td>FR reverse src</td>
<td>LINK</td>
<td>1114</td>
<td>0</td>
<td>16384</td>
<td>ERW</td>
<td>FVS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11.20</td>
<td>1046</td>
<td>FR *stop src</td>
<td>LINK</td>
<td>6000</td>
<td>0</td>
<td>16384</td>
<td>ERW</td>
<td>FVS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11.21</td>
<td>1048</td>
<td>FR start visu</td>
<td>BIT</td>
<td>16</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>ER</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11.22</td>
<td>1050</td>
<td>FR reverse visu</td>
<td>BIT</td>
<td>16</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>ER</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11.23</td>
<td>1052</td>
<td>FR cmd visu</td>
<td>UINT16</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>ER</td>
<td>FVS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11.24</td>
<td>1032</td>
<td>Verrouil.Var src</td>
<td>LINK</td>
<td>6002</td>
<td>0</td>
<td>16384</td>
<td>ERW</td>
<td>FVS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11.25</td>
<td>1034</td>
<td>Visu Verrouil.Var</td>
<td>BIT</td>
<td>16</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>ER</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11.26</td>
<td>1036</td>
<td>Mode arrêt rapide</td>
<td>ENUM</td>
<td>Not Latched 0</td>
<td>Not Latched</td>
<td>1</td>
<td>Latched</td>
<td>ERW</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

12 - ENTREES DIGITALES

<p>| | | | | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>12.1</td>
<td>1132</td>
<td>Invers Entré dig 1</td>
<td>BIT</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>RW</td>
<td>FVS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12.2</td>
<td>1134</td>
<td>Invers Entré dig 2</td>
<td>BIT</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>RW</td>
<td>FVS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12.3</td>
<td>1136</td>
<td>Invers Entré dig 3</td>
<td>BIT</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>RW</td>
<td>FVS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12.4</td>
<td>1138</td>
<td>Invers Entré dig 4</td>
<td>BIT</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>RW</td>
<td>FVS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12.5</td>
<td>1140</td>
<td>Invers Entré dig 5</td>
<td>BIT</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>RW</td>
<td>FVS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12.6</td>
<td>1150</td>
<td>Dest entrée dig E</td>
<td>ILINK</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>ER</td>
<td>FVS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12.7</td>
<td>1152</td>
<td>Dest Entrée dig 1</td>
<td>ILINK</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>ER</td>
<td>FVS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12.8</td>
<td>1154</td>
<td>Dest Entrée dig 2</td>
<td>ILINK</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>ER</td>
<td>FVS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12.9</td>
<td>1156</td>
<td>Dest Entrée dig 3</td>
<td>ILINK</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>ER</td>
<td>FVS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12.10</td>
<td>1158</td>
<td>Dest Entrée dig 4</td>
<td>ILINK</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>ER</td>
<td>FVS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12.11</td>
<td>1160</td>
<td>Dest Entrée dig 5</td>
<td>ILINK</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>ER</td>
<td>FVS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12.12</td>
<td>1240</td>
<td>Inv entrée dig 1X</td>
<td>BIT</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>RW</td>
<td>FVS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12.13</td>
<td>1242</td>
<td>Inv entrée dig 2X</td>
<td>BIT</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>RW</td>
<td>FVS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12.14</td>
<td>1244</td>
<td>Inv entrée dig 3X</td>
<td>BIT</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>RW</td>
<td>FVS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12.15</td>
<td>1246</td>
<td>Inv entrée dig 4X</td>
<td>BIT</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>RW</td>
<td>FVS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12.16</td>
<td>1248</td>
<td>Inv entrée dig 5X</td>
<td>BIT</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>RW</td>
<td>FVS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12.17</td>
<td>1250</td>
<td>Inv entrée dig 6X</td>
<td>BIT</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>RW</td>
<td>FVS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12.18</td>
<td>1252</td>
<td>Inv entrée dig 7X</td>
<td>BIT</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>RW</td>
<td>FVS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12.19</td>
<td>1254</td>
<td>Inv entrée dig 8X</td>
<td>BIT</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>RW</td>
<td>FVS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12.20</td>
<td>5540</td>
<td>Inv entrée dig 9X</td>
<td>BIT</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>ERW</td>
<td>FVS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12.21</td>
<td>5542</td>
<td>Inv entrée dig10X</td>
<td>BIT</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>ERW</td>
<td>FVS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12.22</td>
<td>5544</td>
<td>Inv entrée dig11X</td>
<td>BIT</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>ERW</td>
<td>FVS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12.23</td>
<td>5546</td>
<td>Inv entrée dig12X</td>
<td>BIT</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>ERW</td>
<td>FVS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12.24</td>
<td>5548</td>
<td>Inv entrée dig13X</td>
<td>BIT</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>ERW</td>
<td>FVS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12.25</td>
<td>5550</td>
<td>Inv entrée dig14X</td>
<td>BIT</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>ERW</td>
<td>FVS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12.26</td>
<td>5552</td>
<td>Inv entrée dig15X</td>
<td>BIT</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>ERW</td>
<td>FVS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12.27</td>
<td>5554</td>
<td>Inv entrée dig16X</td>
<td>BIT</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>ERW</td>
<td>FVS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12.28</td>
<td>1270</td>
<td>Dest Entrée dig 1X</td>
<td>ILINK</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>ER</td>
<td>FVS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12.29</td>
<td>1272</td>
<td>Dest Entrée dig 2X</td>
<td>ILINK</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>ER</td>
<td>FVS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12.30</td>
<td>1274</td>
<td>Dest Entrée dig 3X</td>
<td>ILINK</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>ER</td>
<td>FVS</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
13 - SORTIES DIGITALES

<table>
<thead>
<tr>
<th>Menu</th>
<th>PAR</th>
<th>Description</th>
<th>UM</th>
<th>Type</th>
<th>FB</th>
<th>BIT</th>
<th>Def</th>
<th>Min</th>
<th>Maxi</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>13.1</td>
<td>1310</td>
<td>Sortie dig 1 src</td>
<td>LINK</td>
<td>L_DIGSEL1</td>
<td>16</td>
<td>1062</td>
<td>0</td>
<td>16384</td>
<td>RW</td>
<td>FVS</td>
<td></td>
</tr>
<tr>
<td>13.2</td>
<td>1312</td>
<td>Sortie dig 2 src</td>
<td>LINK</td>
<td>L_DIGSEL1</td>
<td>16</td>
<td>1064</td>
<td>0</td>
<td>16384</td>
<td>RW</td>
<td>FVS</td>
<td></td>
</tr>
<tr>
<td>13.3</td>
<td>1314</td>
<td>Sortie dig 3 src</td>
<td>LINK</td>
<td>L_DIGSEL1</td>
<td>16</td>
<td>946</td>
<td>0</td>
<td>16384</td>
<td>RW</td>
<td>FVS</td>
<td></td>
</tr>
<tr>
<td>13.4</td>
<td>1316</td>
<td>Sortie dig 4 src</td>
<td>LINK</td>
<td>L_DIGSEL1</td>
<td>16</td>
<td>936</td>
<td>0</td>
<td>16384</td>
<td>RW</td>
<td>FVS</td>
<td></td>
</tr>
<tr>
<td>13.5</td>
<td>1330</td>
<td>Inv Sortie dig 1</td>
<td>BIT</td>
<td></td>
<td></td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>RW</td>
<td>FVS</td>
<td></td>
</tr>
<tr>
<td>13.6</td>
<td>1332</td>
<td>Inv Sortie dig 2</td>
<td>BIT</td>
<td></td>
<td></td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>RW</td>
<td>FVS</td>
<td></td>
</tr>
<tr>
<td>13.7</td>
<td>1334</td>
<td>Inv Sortie dig 3</td>
<td>BIT</td>
<td></td>
<td></td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>RW</td>
<td>FVS</td>
<td></td>
</tr>
<tr>
<td>13.8</td>
<td>1336</td>
<td>Inv Sortie dig 4</td>
<td>BIT</td>
<td></td>
<td></td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>RW</td>
<td>FVS</td>
<td></td>
</tr>
<tr>
<td>13.9</td>
<td>1410</td>
<td>Sortie dig 1X src</td>
<td>LINK</td>
<td>L_DIGSEL1</td>
<td>16</td>
<td>6000</td>
<td>0</td>
<td>16384</td>
<td>RW</td>
<td>FVS</td>
<td></td>
</tr>
<tr>
<td>13.10</td>
<td>1412</td>
<td>Sortie dig 2X src</td>
<td>LINK</td>
<td>L_DIGSEL1</td>
<td>16</td>
<td>6000</td>
<td>0</td>
<td>16384</td>
<td>RW</td>
<td>FVS</td>
<td></td>
</tr>
<tr>
<td>13.11</td>
<td>1414</td>
<td>Sortie dig 3X src</td>
<td>LINK</td>
<td>L_DIGSEL1</td>
<td>16</td>
<td>6000</td>
<td>0</td>
<td>16384</td>
<td>RW</td>
<td>FVS</td>
<td></td>
</tr>
<tr>
<td>13.12</td>
<td>1416</td>
<td>Sortie dig 4X src</td>
<td>LINK</td>
<td>L_DIGSEL1</td>
<td>16</td>
<td>6000</td>
<td>0</td>
<td>16384</td>
<td>RW</td>
<td>FVS</td>
<td></td>
</tr>
<tr>
<td>13.13</td>
<td>1418</td>
<td>Sortie dig 5X src</td>
<td>LINK</td>
<td>L_DIGSEL1</td>
<td>16</td>
<td>6000</td>
<td>0</td>
<td>16384</td>
<td>RW</td>
<td>FVS</td>
<td></td>
</tr>
<tr>
<td>13.14</td>
<td>1420</td>
<td>Sortie dig 6X src</td>
<td>LINK</td>
<td>L_DIGSEL1</td>
<td>16</td>
<td>6000</td>
<td>0</td>
<td>16384</td>
<td>RW</td>
<td>FVS</td>
<td></td>
</tr>
<tr>
<td>13.15</td>
<td>1422</td>
<td>Sortie dig 7X src</td>
<td>LINK</td>
<td>L_DIGSEL1</td>
<td>16</td>
<td>6000</td>
<td>0</td>
<td>16384</td>
<td>RW</td>
<td>FVS</td>
<td></td>
</tr>
<tr>
<td>13.16</td>
<td>1424</td>
<td>Sortie dig 8X src</td>
<td>LINK</td>
<td>L_DIGSEL1</td>
<td>16</td>
<td>6000</td>
<td>0</td>
<td>16384</td>
<td>RW</td>
<td>FVS</td>
<td></td>
</tr>
<tr>
<td>13.17</td>
<td>1426</td>
<td>Sortie dig 9X src</td>
<td>LINK</td>
<td>L_DIGSEL1</td>
<td>16</td>
<td>6000</td>
<td>0</td>
<td>16384</td>
<td>RW</td>
<td>FVS</td>
<td></td>
</tr>
<tr>
<td>13.18</td>
<td>1430</td>
<td>Inv Sortie dig 1X</td>
<td>BIT</td>
<td></td>
<td></td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>RW</td>
<td>FVS</td>
<td></td>
</tr>
<tr>
<td>13.19</td>
<td>1432</td>
<td>Inv Sortie dig 2X</td>
<td>BIT</td>
<td></td>
<td></td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>RW</td>
<td>FVS</td>
<td></td>
</tr>
<tr>
<td>13.20</td>
<td>1434</td>
<td>Inv Sortie dig 3X</td>
<td>BIT</td>
<td></td>
<td></td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>RW</td>
<td>FVS</td>
<td></td>
</tr>
<tr>
<td>13.21</td>
<td>1436</td>
<td>Inv Sortie dig 4X</td>
<td>BIT</td>
<td></td>
<td></td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>RW</td>
<td>FVS</td>
<td></td>
</tr>
<tr>
<td>13.22</td>
<td>1438</td>
<td>Inv Sortie dig 5X</td>
<td>BIT</td>
<td></td>
<td></td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>RW</td>
<td>FVS</td>
<td></td>
</tr>
<tr>
<td>13.23</td>
<td>1440</td>
<td>Inv Sortie dig 6X</td>
<td>BIT</td>
<td></td>
<td></td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>RW</td>
<td>FVS</td>
<td></td>
</tr>
<tr>
<td>13.24</td>
<td>1442</td>
<td>Inv Sortie dig 7X</td>
<td>BIT</td>
<td></td>
<td></td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>RW</td>
<td>FVS</td>
<td></td>
</tr>
<tr>
<td>13.25</td>
<td>1444</td>
<td>Inv Sortie dig 8X</td>
<td>BIT</td>
<td></td>
<td></td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>RW</td>
<td>FVS</td>
<td></td>
</tr>
</tbody>
</table>
14 - ENTRÉES ANA

<table>
<thead>
<tr>
<th>Menu</th>
<th>PAR</th>
<th>Description</th>
<th>UM</th>
<th>Type</th>
<th>FB(bit)</th>
<th>Def Min</th>
<th>Maxi Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>13.26</td>
<td>1446</td>
<td>Inv Sortie dig 9X</td>
<td>BIT</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>RW FVS</td>
<td></td>
</tr>
</tbody>
</table>

14.1 Visu entré Ana 1
- **Type**: ENUM
- **UM**: INT16
- **FB(bit)**: 16/32
- **Def Min**: -10V..+10V
- **Maxi Acc**: 4
- **Mod**: RW FVS
- **Value**: 0
- **Value**: -10V..+10V
- **Value**: 1
- **Value**: 0.20mA , 0.10V
- **Value**: 2
- **Value**: 4..20mA
- **Value**: 3
- **Value**: 0.1V..10.1V
- **Value**: 4
- **Value**: KTY84

14.2 Entré ana 1 type
- **Type**: BIT
- **UM**: INT16
- **FB(bit)**: 0
- **Def Min**: 0
- **Maxi Acc**: 0
- **Mod**: RW FVS

14.3 Entré ana 1 Gain
- **Type**: FLOAT
- **UM**: INT16
- **FB(bit)**: 1.0
- **Def Min**: -10.0
- **Maxi Acc**: 10.0
- **Mod**: RW FVS

14.4 Entré ana 1 offset cond
- **Type**: BIT
- **UM**: INT16
- **FB(bit)**: 0
- **Def Min**: 0
- **Maxi Acc**: 1
- **Mod**: RW FVS

14.5 Entré ana 1 gain cond
- **Type**: BIT
- **UM**: INT16
- **FB(bit)**: 0
- **Def Min**: 0
- **Maxi Acc**: 1
- **Mod**: RW FVS

14.6 Entrée ana 1 filtre
- **Type**: FLOAT
- **UM**: INT16
- **FB(bit)**: 10.0
- **Def Min**: 1.0
- **Maxi Acc**: 1000.0
- **Mod**: ERW FVS

14.7 Lim sup entré ana 1
- **Type**: FLOAT
- **UM**: INT16
- **FB(bit)**: 16384
- **Def Min**: -32768
- **Maxi Acc**: +32767
- **Mod**: ERW FVS

14.8 Lim inf entré ana 1
- **Type**: FLOAT
- **UM**: INT16
- **FB(bit)**: -16384
- **Def Min**: -32768
- **Maxi Acc**: +32767
- **Mod**: ERW FVS

14.9 Entrée ana 1 offset
- **Type**: FLOAT
- **UM**: INT16
- **FB(bit)**: 0
- **Def Min**: 0
- **Maxi Acc**: 0
- **Mod**: RW FVS

14.10 Entrée ana 1 gain
- **Type**: FLOAT
- **UM**: INT16
- **FB(bit)**: 1.0
- **Def Min**: 10.0
- **Maxi Acc**: 10.0
- **Mod**: ERW FVS

14.11 Entrée ana 1 seuil
- **Type**: FLOAT
- **UM**: INT16
- **FB(bit)**: 0
- **Def Min**: 0
- **Maxi Acc**: 0
- **Mod**: RW FVS

14.12 Entrée ana 1 bande morte
- **Type**: FLOAT
- **UM**: INT16
- **FB(bit)**: 0.0
- **Def Min**: 0.0
- **Maxi Acc**: 100.0
- **Mod**: ERW FVS

14.13 Entrée ana 1 valeur Alt
- **Type**: FLOAT
- **UM**: INT16
- **FB(bit)**: 0
- **Def Min**: 0
- **Maxi Acc**: 0
- **Mod**: RW FVS

14.14 Dest Entrée ana 1
- **Type**: ILINK
- **UM**: INT16
- **FB(bit)**: 0
- **Def Min**: 0
- **Maxi Acc**: 0
- **Mod**: ER FVS

14.15 E ana 1 val Alt src
- **Type**: ILINK
- **UM**: INT16
- **FB(bit)**: 16
- **Def Min**: 0
- **Maxi Acc**: 0
- **Mod**: ERW FVS

14.16 Dest Entrée ana 1
- **Type**: ILINK
- **UM**: INT16
- **FB(bit)**: 0
- **Def Min**: 0
- **Maxi Acc**: 0
- **Mod**: ER FVS

14.17 Visu entré Ana 2
- **Type**: ENUM
- **UM**: INT16
- **FB(bit)**: 16/32
- **Def Min**: -16384
- **Maxi Acc**: 16384
- **Mod**: R FVS

14.18 Entré ana 2 type
- **Type**: ENUM
- **UM**: INT16
- **FB(bit)**: -10V..+10V
- **Def Min**: 0
- **Maxi Acc**: 4
- **Mod**: RW FVS

14.19 Entré ana 2 Gain
- **Type**: FLOAT
- **UM**: INT16
- **FB(bit)**: 1.0
- **Def Min**: -10.0
- **Maxi Acc**: 10.0
- **Mod**: RW FVS

14.20 Entré ana 2 offset cond
- **Type**: BIT
- **UM**: INT16
- **FB(bit)**: 0
- **Def Min**: 0
- **Maxi Acc**: 1
- **Mod**: RW FVS

14.21 Entré ana 2 gain cond
- **Type**: BIT
- **UM**: INT16
- **FB(bit)**: 0
- **Def Min**: 0
- **Maxi Acc**: 1
- **Mod**: RW FVS

14.22 Entrée ana 2 filtre
- **Type**: FLOAT
- **UM**: INT16
- **FB(bit)**: 10.0
- **Def Min**: 1.0
- **Maxi Acc**: 1000.0
- **Mod**: ERW FVS

14.23 Lim sup entré ana 2
- **Type**: FLOAT
- **UM**: INT16
- **FB(bit)**: 16384
- **Def Min**: -32768
- **Maxi Acc**: +32767
- **Mod**: ERW FVS

14.24 Lim inf entré ana 2
- **Type**: FLOAT
- **UM**: INT16
- **FB(bit)**: -16384
- **Def Min**: -32768
- **Maxi Acc**: +32767
- **Mod**: ERW FVS

14.25 Entrée ana 2 offset
- **Type**: FLOAT
- **UM**: INT16
- **FB(bit)**: 0
- **Def Min**: 0
- **Maxi Acc**: 0
- **Mod**: RW FVS

14.26 Entrée ana 2 gain
- **Type**: FLOAT
- **UM**: INT16
- **FB(bit)**: 1.0
- **Def Min**: -10.0
- **Maxi Acc**: 10.0
- **Mod**: ERW FVS

14.27 Entrée ana 2 seuil
- **Type**: FLOAT
- **UM**: INT16
- **FB(bit)**: 0
- **Def Min**: 0
- **Maxi Acc**: 0
- **Mod**: RW FVS

14.28 E ana 2 bande morte
- **Type**: FLOAT
- **UM**: INT16
- **FB(bit)**: 0.0
- **Def Min**: 0.0
- **Maxi Acc**: 100.0
- **Mod**: ERW FVS

14.29 E ana 2 valeur Alt
- **Type**: FLOAT
- **UM**: INT16
- **FB(bit)**: 0
- **Def Min**: 0
- **Maxi Acc**: 0
- **Mod**: RW FVS

14.30 E ana 2 signe src
- **Type**: LINK
- **UM**: INT16
- **FB(bit)**: 16
- **Def Min**: 0
- **Maxi Acc**: 0
- **Mod**: ERW FVS

14.31 E ana 2 val Alt src
- **Type**: LINK
- **UM**: INT16
- **FB(bit)**: 16
- **Def Min**: 0
- **Maxi Acc**: 0
- **Mod**: ERW FVS

14.32 Dest Entrée ana 2
- **Type**: ILINK
- **UM**: INT16
- **FB(bit)**: 0
- **Def Min**: 0
- **Maxi Acc**: 0
- **Mod**: ER FVS

14.33 Visu entré Ana 1X
- **Type**: ENUM
- **UM**: INT16
- **FB(bit)**: 16/32
- **Def Min**: -16384
- **Maxi Acc**: 16384
- **Mod**: R FVS

14.34 Entré ana 1X type
- **Type**: ENUM
- **UM**: INT16
- **FB(bit)**: -10V..+10V
- **Def Min**: 0
- **Maxi Acc**: 8
- **Mod**: RW FVS

- **Value**: -10V..+10V
- **Value**: 0
- **Value**: 0.10V
- **Value**: 1
- **Value**: 0..10V
<table>
<thead>
<tr>
<th>Menu</th>
<th>PAR</th>
<th>Description</th>
<th>UM</th>
<th>Type</th>
<th>FB</th>
<th>BIT</th>
<th>Def</th>
<th>Min</th>
<th>Maxi</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>14.35</td>
<td>1604</td>
<td>Entrée ana 1X Gain</td>
<td></td>
<td>FLOAT</td>
<td>1.0</td>
<td>-20.0</td>
<td>20.0</td>
<td>RW</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14.36</td>
<td>1606</td>
<td>E ana 1X offset cond</td>
<td></td>
<td>BIT</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>RW</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14.37</td>
<td>1608</td>
<td>E ana 1X gain cond</td>
<td></td>
<td>BIT</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>RW</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14.38</td>
<td>1620</td>
<td>Filtr Entr. Ana 1X</td>
<td></td>
<td>UINT16</td>
<td>0</td>
<td>0</td>
<td>1000</td>
<td>ERW</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14.39</td>
<td>1612</td>
<td>Lim sup entré ana 1X</td>
<td></td>
<td>INT16</td>
<td>16384</td>
<td>-32768</td>
<td>+32767</td>
<td>ERW</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14.40</td>
<td>1614</td>
<td>Lim inf entré ana 1X</td>
<td></td>
<td>INT16</td>
<td>-16384</td>
<td>-32768</td>
<td>+32767</td>
<td>ERW</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14.41</td>
<td>1616</td>
<td>Entrée ana 1X offset</td>
<td></td>
<td>INT16</td>
<td>0</td>
<td>-32768</td>
<td>+32767</td>
<td>ERW</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14.42</td>
<td>1618</td>
<td>Entrée ana 1X gain</td>
<td></td>
<td>FLOAT</td>
<td>1.0</td>
<td>-20.0</td>
<td>20.0</td>
<td>ERW</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14.43</td>
<td>1626</td>
<td>E ana 1X signe src</td>
<td></td>
<td>LINK</td>
<td>L_DIGSEL2</td>
<td>6000</td>
<td>0</td>
<td>16384</td>
<td>ERW</td>
<td>FVS</td>
<td></td>
</tr>
<tr>
<td>14.44</td>
<td>1632</td>
<td>Dest Entrée ana 1X</td>
<td></td>
<td>ILINK</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>ER</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14.45</td>
<td>1650</td>
<td>Visu entré Ana 2X</td>
<td></td>
<td>INT16</td>
<td>16/32</td>
<td>0</td>
<td>-16384</td>
<td>16384</td>
<td>R</td>
<td>FVS</td>
<td></td>
</tr>
<tr>
<td>14.46</td>
<td>1652</td>
<td>Entrée ana 2X type</td>
<td></td>
<td>ENUM</td>
<td>-10V..+10V</td>
<td>0</td>
<td>8</td>
<td>RW</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14.47</td>
<td>1654</td>
<td>Entrée ana 2X Gain</td>
<td></td>
<td>FLOAT</td>
<td>1.0</td>
<td>-20.0</td>
<td>20.0</td>
<td>RW</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14.48</td>
<td>1656</td>
<td>E ana 2X offset cond</td>
<td></td>
<td>BIT</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>RW</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14.49</td>
<td>1658</td>
<td>E ana 2X gain cond</td>
<td></td>
<td>BIT</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>RW</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14.50</td>
<td>1670</td>
<td>Filtre Entr. Ana 2X</td>
<td></td>
<td>UINT16</td>
<td>0</td>
<td>0</td>
<td>1000</td>
<td>ERW</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14.51</td>
<td>1662</td>
<td>Lim sup entré ana 2X</td>
<td></td>
<td>INT16</td>
<td>16384</td>
<td>-32768</td>
<td>+32767</td>
<td>ERW</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14.52</td>
<td>1664</td>
<td>Lim inf entré ana 2X</td>
<td></td>
<td>INT16</td>
<td>-16384</td>
<td>-32768</td>
<td>+32767</td>
<td>ERW</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14.53</td>
<td>1666</td>
<td>Entrée ana 2X offset</td>
<td></td>
<td>INT16</td>
<td>0</td>
<td>-32768</td>
<td>+32767</td>
<td>ERW</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14.54</td>
<td>1668</td>
<td>Entrée ana 2X gain</td>
<td></td>
<td>FLOAT</td>
<td>1.0</td>
<td>-20.0</td>
<td>20.0</td>
<td>ERW</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14.55</td>
<td>1676</td>
<td>E ana 2X signe src</td>
<td></td>
<td>LINK</td>
<td>L_DIGSEL2</td>
<td>6000</td>
<td>0</td>
<td>16384</td>
<td>ERW</td>
<td>FVS</td>
<td></td>
</tr>
<tr>
<td>14.56</td>
<td>1682</td>
<td>Dest Entrée ana 2X</td>
<td></td>
<td>ILINK</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>ER</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14.57</td>
<td>5410</td>
<td>Visu Ent ana 0 Ext</td>
<td></td>
<td>INT16</td>
<td>16</td>
<td>0</td>
<td>-32768</td>
<td>32767</td>
<td>ER</td>
<td>FVS</td>
<td></td>
</tr>
<tr>
<td>14.58</td>
<td>5412</td>
<td>Visu Ent ana 1 Ext</td>
<td></td>
<td>INT16</td>
<td>16</td>
<td>0</td>
<td>-32768</td>
<td>32767</td>
<td>ER</td>
<td>FVS</td>
<td></td>
</tr>
<tr>
<td>14.59</td>
<td>5414</td>
<td>Visu Ent ana 2 Ext</td>
<td></td>
<td>INT16</td>
<td>16</td>
<td>0</td>
<td>-32768</td>
<td>32767</td>
<td>ER</td>
<td>FVS</td>
<td></td>
</tr>
<tr>
<td>14.60</td>
<td>5416</td>
<td>Visu Ent ana 3 Ext</td>
<td></td>
<td>INT16</td>
<td>16</td>
<td>0</td>
<td>-32768</td>
<td>32767</td>
<td>ER</td>
<td>FVS</td>
<td></td>
</tr>
<tr>
<td>14.61</td>
<td>5418</td>
<td>Visu Ent ana 4 Ext</td>
<td></td>
<td>INT16</td>
<td>16</td>
<td>0</td>
<td>-32768</td>
<td>32767</td>
<td>ER</td>
<td>FVS</td>
<td></td>
</tr>
<tr>
<td>14.62</td>
<td>5420</td>
<td>Visu Ent ana 5 Ext</td>
<td></td>
<td>INT16</td>
<td>16</td>
<td>0</td>
<td>-32768</td>
<td>32767</td>
<td>ER</td>
<td>FVS</td>
<td></td>
</tr>
<tr>
<td>14.63</td>
<td>5422</td>
<td>Visu Ent ana 6 Ext</td>
<td></td>
<td>INT16</td>
<td>16</td>
<td>0</td>
<td>-32768</td>
<td>32767</td>
<td>ER</td>
<td>FVS</td>
<td></td>
</tr>
<tr>
<td>14.64</td>
<td>5424</td>
<td>Visu Ent ana 7 Ext</td>
<td></td>
<td>INT16</td>
<td>16</td>
<td>0</td>
<td>-32768</td>
<td>32767</td>
<td>ER</td>
<td>FVS</td>
<td></td>
</tr>
<tr>
<td>14.65</td>
<td>1586</td>
<td>Type sonde Entrée X</td>
<td></td>
<td>ENUM</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Menu</td>
<td>PAR</td>
<td>Description</td>
<td>UM</td>
<td>Type</td>
<td>FB BIT</td>
<td>Def</td>
<td>Min</td>
<td>Maxi</td>
<td>Acc</td>
<td>Mod</td>
<td></td>
</tr>
<tr>
<td>------</td>
<td>-----</td>
<td>-------------------</td>
<td>--------</td>
<td>----------</td>
<td>--------</td>
<td>-----</td>
<td>--------</td>
<td>--------</td>
<td>-----</td>
<td>-----</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>15.1</td>
<td>Sortie ana 1 src</td>
<td>LINK</td>
<td>FB</td>
<td>6000</td>
<td>0</td>
<td>16384</td>
<td>RW</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>15.2</td>
<td>Sortie ana 2 src</td>
<td>LINK</td>
<td>FB</td>
<td>6000</td>
<td>0</td>
<td>16384</td>
<td>RW</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>15.3</td>
<td>Sortie ana 1 gain</td>
<td>FLOAT</td>
<td></td>
<td>-10.0</td>
<td>10.0</td>
<td></td>
<td>RW</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>15.4</td>
<td>Sortie ana 2 gain</td>
<td>FLOAT</td>
<td></td>
<td>-10.0</td>
<td>10.0</td>
<td></td>
<td>RW</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>15.5</td>
<td>Visu sortie ana 1</td>
<td>cnt</td>
<td>INT16</td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>ER</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>15.6</td>
<td>Visu sortie ana 2</td>
<td>cnt</td>
<td>INT16</td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>ER</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>15.7</td>
<td>Signe sortie Ana 1</td>
<td>ENUM</td>
<td></td>
<td></td>
<td>0</td>
<td>1</td>
<td>ER</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>15.8</td>
<td>Signe sortie Ana 2</td>
<td>ENUM</td>
<td></td>
<td></td>
<td>0</td>
<td>1</td>
<td>ER</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>15.9</td>
<td>Sortie ana 1 min</td>
<td>cnt</td>
<td>INT16</td>
<td>-16384</td>
<td>-32768</td>
<td>+32767</td>
<td>ERW</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>15.10</td>
<td>Sortie ana 1 max</td>
<td>cnt</td>
<td>INT16</td>
<td>16384</td>
<td>-32768</td>
<td>+32767</td>
<td>ERW</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>15.11</td>
<td>Sortie ana 2 min</td>
<td>cnt</td>
<td>INT16</td>
<td>-16384</td>
<td>-32768</td>
<td>+32767</td>
<td>ERW</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>15.12</td>
<td>Sortie ana 2 max</td>
<td>cnt</td>
<td>INT16</td>
<td>16384</td>
<td>-32768</td>
<td>+32767</td>
<td>ERW</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>15.13</td>
<td>Sortie ana 2 type</td>
<td>ENUM</td>
<td></td>
<td>-10V..+10V</td>
<td>0</td>
<td>2</td>
<td>ER</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>15.14</td>
<td>Sortie ana 1X src</td>
<td>LINK</td>
<td>FB</td>
<td>6000</td>
<td>0</td>
<td>16384</td>
<td>RW</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>15.15</td>
<td>Sortie ana 2X src</td>
<td>LINK</td>
<td>FB</td>
<td>6000</td>
<td>0</td>
<td>16384</td>
<td>RW</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>15.16</td>
<td>Sortie ana 1X gain</td>
<td>FLOAT</td>
<td></td>
<td>-20.0</td>
<td>20.0</td>
<td></td>
<td>RW</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>15.17</td>
<td>Sortie ana 2X gain</td>
<td>FLOAT</td>
<td></td>
<td>-20.0</td>
<td>20.0</td>
<td></td>
<td>RW</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>15.18</td>
<td>Visu sortie ana 1X</td>
<td>cnt</td>
<td>INT16</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>ER</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>15.19</td>
<td>Visu sortie ana 2X</td>
<td>cnt</td>
<td>INT16</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>ER</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>15.20</td>
<td>Signe sortie Ana 1X</td>
<td>ENUM</td>
<td></td>
<td></td>
<td>0</td>
<td>1</td>
<td>ER</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>15.21</td>
<td>Signe sortie Ana 2X</td>
<td>ENUM</td>
<td></td>
<td></td>
<td>0</td>
<td>1</td>
<td>ER</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>15.22</td>
<td>Sortie ana 1X min</td>
<td>cnt</td>
<td>INT16</td>
<td>-16384</td>
<td>-32768</td>
<td>+32767</td>
<td>ERW</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>15.23</td>
<td>Sortie ana 1X max</td>
<td>cnt</td>
<td>INT16</td>
<td>16384</td>
<td>-32768</td>
<td>+32767</td>
<td>ERW</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>15.24</td>
<td>Sortie ana 1 Xtype</td>
<td>ENUM</td>
<td></td>
<td>-10V..+10V</td>
<td>0</td>
<td>3</td>
<td>ER</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>15.25</td>
<td>Sortie ana 2X min</td>
<td>cnt</td>
<td>INT16</td>
<td>-16384</td>
<td>-32768</td>
<td>+32767</td>
<td>ERW</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>15.26</td>
<td>Sortie ana 2X max</td>
<td>cnt</td>
<td>INT16</td>
<td>16384</td>
<td>-32768</td>
<td>+32767</td>
<td>ERW</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>15.27</td>
<td>Sortie ana 2 Xtype</td>
<td>ENUM</td>
<td></td>
<td>-10V..+10V</td>
<td>0</td>
<td>3</td>
<td>ER</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>15.28</td>
<td>Sort ana 0 Ext</td>
<td>INT16</td>
<td></td>
<td>16</td>
<td>0</td>
<td>-32768</td>
<td>32767</td>
<td>ER</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>15.29</td>
<td>Sort ana 1 Ext</td>
<td>INT16</td>
<td></td>
<td>16</td>
<td>0</td>
<td>-32768</td>
<td>32767</td>
<td>ER</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>15.30</td>
<td>Sort ana 2 Ext</td>
<td>INT16</td>
<td></td>
<td>16</td>
<td>0</td>
<td>-32768</td>
<td>32767</td>
<td>ER</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Menu</td>
<td>PAR</td>
<td>Description</td>
<td>UM</td>
<td>Type</td>
<td>FB BIT</td>
<td>Def</td>
<td>Min</td>
<td>Maxi</td>
<td>Acc</td>
<td>Mod</td>
<td></td>
</tr>
<tr>
<td>------</td>
<td>-----</td>
<td>------------------</td>
<td>------</td>
<td>------</td>
<td>--------</td>
<td>-----</td>
<td>---------</td>
<td>---------</td>
<td>-----</td>
<td>-----</td>
<td></td>
</tr>
<tr>
<td>15.31</td>
<td>5466</td>
<td>Sort ana 3 Ext</td>
<td>INT16</td>
<td>16</td>
<td>0</td>
<td>-32768</td>
<td>32767</td>
<td>ERW</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15.32</td>
<td>5468</td>
<td>Sort ana 4 Ext</td>
<td>INT16</td>
<td>16</td>
<td>0</td>
<td>-32768</td>
<td>32767</td>
<td>ERW</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15.33</td>
<td>5470</td>
<td>Sort ana 5 Ext</td>
<td>INT16</td>
<td>16</td>
<td>0</td>
<td>-32768</td>
<td>32767</td>
<td>ERW</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15.34</td>
<td>5472</td>
<td>Sort ana 6 Ext</td>
<td>INT16</td>
<td>16</td>
<td>0</td>
<td>-32768</td>
<td>32767</td>
<td>ERW</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15.35</td>
<td>5474</td>
<td>Sort ana 7 Ext</td>
<td>INT16</td>
<td>16</td>
<td>0</td>
<td>-32768</td>
<td>32767</td>
<td>ERW</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

16 - DONNEES MOTEURS

<table>
<thead>
<tr>
<th>Menu</th>
<th>PAR</th>
<th>Description</th>
<th>UM</th>
<th>Type</th>
<th>FB BIT</th>
<th>Def</th>
<th>Min</th>
<th>Maxi</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>16.1</td>
<td>2000</td>
<td>Tension nominale</td>
<td>V</td>
<td>FLOAT</td>
<td>SIZE</td>
<td>50.0</td>
<td>690.0</td>
<td>RWZS</td>
<td>FVS</td>
<td></td>
</tr>
<tr>
<td>16.2</td>
<td>2002</td>
<td>Intensité nominale</td>
<td>A</td>
<td>FLOAT</td>
<td>SIZE</td>
<td>0.3</td>
<td>2200.0</td>
<td>RWZS</td>
<td>FVS</td>
<td></td>
</tr>
<tr>
<td>16.3</td>
<td>2004</td>
<td>Vitesse nominale</td>
<td>rpm</td>
<td>FLOAT</td>
<td>SIZE</td>
<td>10.0</td>
<td>32000.0</td>
<td>RWZS</td>
<td>FVS</td>
<td></td>
</tr>
<tr>
<td>16.4</td>
<td>2008</td>
<td>Nb paires de Pôles</td>
<td>UINT16</td>
<td>SIZE</td>
<td>1</td>
<td>CALCI</td>
<td>RWZS</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16.5</td>
<td>2010</td>
<td>Couple constant</td>
<td>Nm/A</td>
<td>FLOAT</td>
<td>SIZE</td>
<td>0.1</td>
<td>100.0</td>
<td>RWZS</td>
<td>FVS</td>
<td></td>
</tr>
<tr>
<td>16.6</td>
<td>2012</td>
<td>EMF constant</td>
<td>Vb</td>
<td>FLOAT</td>
<td>SIZE</td>
<td>0.0</td>
<td>100.0</td>
<td>RWZS</td>
<td>FVS</td>
<td></td>
</tr>
<tr>
<td>16.7</td>
<td>2020</td>
<td>Prise en compt param</td>
<td>BIT</td>
<td></td>
<td></td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>RWZ</td>
<td>FVS</td>
</tr>
<tr>
<td>16.8</td>
<td>2022</td>
<td>Etalonnage rotation</td>
<td>BIT</td>
<td></td>
<td></td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>RWZ</td>
<td>FVS</td>
</tr>
<tr>
<td>16.9</td>
<td>2024</td>
<td>Etalonnage à l’arrê</td>
<td>BIT</td>
<td></td>
<td></td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>RWZ</td>
<td>FVS</td>
</tr>
<tr>
<td>16.10</td>
<td>2026</td>
<td>Etalonnage mode</td>
<td>ENUM</td>
<td></td>
<td></td>
<td>0</td>
<td>1</td>
<td>ERW</td>
<td>FVS</td>
<td></td>
</tr>
<tr>
<td>16.11</td>
<td>2028</td>
<td>Prise en compte état</td>
<td>ENUM</td>
<td></td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>R</td>
<td>FVS</td>
</tr>
<tr>
<td>16.12</td>
<td>2030</td>
<td>Etat Etalonnage</td>
<td>ENUM</td>
<td></td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>R</td>
<td>FVS</td>
</tr>
<tr>
<td>16.13</td>
<td>2050</td>
<td>RS mesuré</td>
<td>ohm</td>
<td>FLOAT</td>
<td>CALCF</td>
<td>0.0005</td>
<td>200.0</td>
<td>ERWS</td>
<td>FVS</td>
<td></td>
</tr>
<tr>
<td>16.14</td>
<td>2052</td>
<td>DTL mesuré</td>
<td>V</td>
<td>FLOAT</td>
<td>CALCF</td>
<td>0.0</td>
<td>0.0</td>
<td>100.0</td>
<td>ERWS</td>
<td>FVS</td>
</tr>
<tr>
<td>16.15</td>
<td>2054</td>
<td>DTS mesuré</td>
<td>V/A</td>
<td>FLOAT</td>
<td>CALCF</td>
<td>0.0</td>
<td>0.0</td>
<td>100.0</td>
<td>ERWS</td>
<td>FVS</td>
</tr>
<tr>
<td>16.16</td>
<td>2056</td>
<td>Lsig mesuré</td>
<td>mH</td>
<td>FLOAT</td>
<td>CALCF</td>
<td>0.001</td>
<td>200.0</td>
<td>ERWS</td>
<td>FVS</td>
<td></td>
</tr>
<tr>
<td>16.17</td>
<td>2074</td>
<td>Measured Lsig min</td>
<td>mH</td>
<td>FLOAT</td>
<td>CALCF</td>
<td>0.001</td>
<td>200.0</td>
<td>ERWS</td>
<td>FVS</td>
<td></td>
</tr>
<tr>
<td>16.18</td>
<td>2078</td>
<td>Prise compte étalon</td>
<td>BIT</td>
<td></td>
<td></td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>ERWZ</td>
<td>FVS</td>
</tr>
</tbody>
</table>

17 - CODEUR

17.1 - CODEUR/CODEUR CONFIG

<table>
<thead>
<tr>
<th>Menu</th>
<th>PAR</th>
<th>Description</th>
<th>UM</th>
<th>Type</th>
<th>FB BIT</th>
<th>Def</th>
<th>Min</th>
<th>Maxi</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>17.1.1</td>
<td>5310</td>
<td>Sel codeur src</td>
<td>LINK</td>
<td>16</td>
<td>6000</td>
<td>0</td>
<td>16384</td>
<td>ERW</td>
<td>FVS</td>
<td></td>
</tr>
<tr>
<td>17.1.2</td>
<td>5314</td>
<td>Sel codeur mon</td>
<td>UINT16</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>ER</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17.1.3</td>
<td>2172</td>
<td>Code défaut codeur</td>
<td>UINT32</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>ER</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17.1.4</td>
<td>2190</td>
<td>Autophase rotation</td>
<td>BIT</td>
<td></td>
<td></td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>ERWZ</td>
<td>FVS</td>
</tr>
<tr>
<td>17.1.5</td>
<td>2192</td>
<td>Autophase à l’arrê</td>
<td>BIT</td>
<td></td>
<td></td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>ERWZ</td>
<td>FVS</td>
</tr>
<tr>
<td>17.1.6</td>
<td>2194</td>
<td>Mod.phasing statique</td>
<td>ENUM</td>
<td></td>
<td></td>
<td>0</td>
<td>1</td>
<td>ERW</td>
<td>FVS</td>
<td></td>
</tr>
<tr>
<td>17.1.7</td>
<td>2196</td>
<td>Mode fonct.phasing</td>
<td>ENUM</td>
<td></td>
<td></td>
<td>0</td>
<td>3</td>
<td>ERW</td>
<td>FVS</td>
<td></td>
</tr>
<tr>
<td>17.1.8</td>
<td>2198</td>
<td>Phasing moteur</td>
<td>ENUM</td>
<td></td>
<td></td>
<td>0</td>
<td>2</td>
<td>ERW</td>
<td>FVS</td>
<td></td>
</tr>
</tbody>
</table>
Menu PAR Description UM Type FB BIT Def Min Maxi Acc Mod

17.2 - CODEUR/CODEUR 1

<table>
<thead>
<tr>
<th>Menu</th>
<th>PAR</th>
<th>Description</th>
<th>UM</th>
<th>Type</th>
<th>FB</th>
<th>BIT</th>
<th>Def</th>
<th>Min</th>
<th>Maxi</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>17.2.1</td>
<td>2100</td>
<td>Codeur 1 impuls.</td>
<td>ppr</td>
<td>UINT16</td>
<td></td>
<td></td>
<td>CALCI</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17.2.2</td>
<td>2102</td>
<td>Alim.codeur 1</td>
<td>V</td>
<td>FLOAT</td>
<td>5.2</td>
<td></td>
<td>CALCF</td>
<td>5.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17.2.3</td>
<td>2104</td>
<td>Config.entr.codeur 1</td>
<td></td>
<td>ENUM</td>
<td></td>
<td></td>
<td>TTL</td>
<td>0</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17.2.4</td>
<td>2106</td>
<td>Répétition codeur 1</td>
<td></td>
<td>ENUM</td>
<td></td>
<td></td>
<td>Pas division</td>
<td>0</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17.2.5</td>
<td>2108</td>
<td>Signal codeur 1 Vpp</td>
<td>V</td>
<td>FLOAT</td>
<td>1.0</td>
<td></td>
<td>1.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17.2.6</td>
<td>2110</td>
<td>Défaut signal code 1</td>
<td></td>
<td>ENUM</td>
<td></td>
<td></td>
<td>Ctrl désactivé</td>
<td>0</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17.2.7</td>
<td>2112</td>
<td>Clock codeur 1 SSI</td>
<td>UINT16</td>
<td>13</td>
<td></td>
<td>25</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17.2.8</td>
<td>2114</td>
<td>Bits codeur 1 SSI</td>
<td>UINT16</td>
<td>13</td>
<td></td>
<td>25</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17.2.9</td>
<td>2182</td>
<td>Codeur 1 ENDAT clock</td>
<td>ENUM</td>
<td>1 MHz</td>
<td>0</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17.2.10</td>
<td>2130</td>
<td>Direction codeur 1</td>
<td>ENUM</td>
<td>Non Inversé</td>
<td>0</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17.2.11</td>
<td>2132</td>
<td>Mode codeur 1</td>
<td>ENUM</td>
<td>Aucun</td>
<td>CALCI</td>
<td>CALCI</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17.2.12</td>
<td>2134</td>
<td>Filtre vit.codeur 1</td>
<td>ms</td>
<td>FLOAT</td>
<td>0.250</td>
<td>0.125</td>
<td>20.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17.2.13</td>
<td>2150</td>
<td>Vitesse codeur 1</td>
<td>rpm</td>
<td>INT16</td>
<td>16/32</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17.2.14</td>
<td>2162</td>
<td>Position codeur 1</td>
<td>cnt</td>
<td>UINT16</td>
<td>16</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17.2.15</td>
<td>2176</td>
<td>Encoder 1 sync mode</td>
<td>UINT16</td>
<td>1</td>
<td>0</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17.2.16</td>
<td>2186</td>
<td>Cod.1 couple 0=arrêt</td>
<td>UINT16</td>
<td>0</td>
<td>0</td>
<td>65535</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17.2.17</td>
<td>2188</td>
<td>Rapport mot/codeur 1</td>
<td>FLOAT</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17.2.18</td>
<td>5350</td>
<td>Etat codeur 1</td>
<td>UINT16</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17.2.19</td>
<td>5352</td>
<td>Code err.Codeur 1</td>
<td>UINT32</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

17.3 - CODEUR/CODEUR 2

<table>
<thead>
<tr>
<th>Menu</th>
<th>PAR</th>
<th>Description</th>
<th>UM</th>
<th>Type</th>
<th>FB</th>
<th>BIT</th>
<th>Def</th>
<th>Min</th>
<th>Maxi</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>17.3.1</td>
<td>5100</td>
<td>Codeur 2 impuls.</td>
<td>ppr</td>
<td>UINT16</td>
<td></td>
<td></td>
<td>CALCI</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17.3.2</td>
<td>5102</td>
<td>Alim.codeur 2</td>
<td>V</td>
<td>FLOAT</td>
<td>5.2</td>
<td></td>
<td>CALCF</td>
<td>5.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17.3.3</td>
<td>5104</td>
<td>Config.entr.codeur 2</td>
<td>ENUM</td>
<td>TTL</td>
<td>0</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17.3.4</td>
<td>5106</td>
<td>Répétition codeur 2</td>
<td>ENUM</td>
<td>Pas division</td>
<td>0</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Menu PAR Description UM Type FB BIT Def Min Maxi Acc Mod

<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>17.3.5</td>
<td>5108</td>
<td>Signal codeur 2 Vpp</td>
<td>V</td>
<td>FLOAT</td>
<td>1.0</td>
</tr>
<tr>
<td>17.3.6</td>
<td>5110</td>
<td>Défaut signal code 2</td>
<td>ENUM</td>
<td>Ctrl désactivé</td>
<td>0</td>
</tr>
<tr>
<td>17.3.7</td>
<td>5112</td>
<td>Clock codeur 2 SSI</td>
<td>UINT16</td>
<td>13</td>
<td>11</td>
</tr>
<tr>
<td>17.3.8</td>
<td>5114</td>
<td>Bits codeur 2 SSI</td>
<td>UINT16</td>
<td>13</td>
<td>11</td>
</tr>
<tr>
<td>17.3.9</td>
<td>5182</td>
<td>Codeur2 ENDAT clock</td>
<td>ENUM</td>
<td>1 MHz</td>
<td>0</td>
</tr>
<tr>
<td>17.3.10</td>
<td>5130</td>
<td>Direction codeur 2</td>
<td>ENUM</td>
<td>Non Inversé</td>
<td>0</td>
</tr>
<tr>
<td>17.3.11</td>
<td>5132</td>
<td>Mode codeur 2</td>
<td>ENUM</td>
<td>Aucun</td>
<td>CALCI</td>
</tr>
<tr>
<td>17.3.12</td>
<td>5134</td>
<td>Filtre vit.codeur 2</td>
<td>ms FLOAT</td>
<td>0.250</td>
<td>0.125</td>
</tr>
<tr>
<td>17.3.13</td>
<td>5150</td>
<td>Vitesse codeur 2</td>
<td>rpm INT16</td>
<td>16/32</td>
<td>0</td>
</tr>
<tr>
<td>17.3.14</td>
<td>5162</td>
<td>Position codeur 2</td>
<td>cnt UINT16</td>
<td>16</td>
<td>0</td>
</tr>
<tr>
<td>17.3.15</td>
<td>5176</td>
<td>Encoder 2 sync mode</td>
<td>UINT16</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>17.3.16</td>
<td>5186</td>
<td>Cod.2 couple 0=arrêt</td>
<td>UINT16</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>17.3.17</td>
<td>5188</td>
<td>Rapport mot/codeur 2</td>
<td>FLOT</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>17.3.18</td>
<td>5360</td>
<td>Etat codeur 2</td>
<td>UINT16</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>17.3.19</td>
<td>5362</td>
<td>Code err.Codeur 2</td>
<td>UINT32</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

17.4 - CODEUR/CODEUR 3

<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>17.4.1</td>
<td>5200</td>
<td>Impulsions codeur 3</td>
<td>ppr</td>
<td>UINT16</td>
<td>1024</td>
</tr>
<tr>
<td>17.4.2</td>
<td>5204</td>
<td>Cfg,entrée codeur 3</td>
<td>ENUM</td>
<td>TTL</td>
<td>0</td>
</tr>
<tr>
<td>17.4.3</td>
<td>5210</td>
<td>Défaut signal code 3</td>
<td>ENUM</td>
<td>Ctrl désactivé</td>
<td>0</td>
</tr>
<tr>
<td>17.4.4</td>
<td>5230</td>
<td>Direction codeur 3</td>
<td>ENUM</td>
<td>Non Inversé</td>
<td>0</td>
</tr>
<tr>
<td>17.4.5</td>
<td>5262</td>
<td>Position codeur 3</td>
<td>cnt UINT16</td>
<td>16</td>
<td>0</td>
</tr>
</tbody>
</table>
17.5 - CODEUR/RESOLVER

<table>
<thead>
<tr>
<th>Menu</th>
<th>PAR</th>
<th>Description</th>
<th>UM</th>
<th>Type</th>
<th>FB</th>
<th>BIT</th>
<th>Def</th>
<th>Min</th>
<th>Maxi</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>17.4.6</td>
<td>5370</td>
<td>Etat codeur 3</td>
<td>UINT16</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>ER</td>
<td>FVS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17.4.7</td>
<td>5372</td>
<td>Code err.Codeur 3</td>
<td>UINT32</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>ER</td>
<td>FVS</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

17.5.1 2116 Paire pôles Resolver
- UM: UINT16
- Type: 1
- FB: 8000
- BIT: 2000.0
- Def: 10000.0
- Acc: ERWZ
- Mod: FVS

17.5.2 2118 Fréquence Resolver
- UM: FLOAT
- Type: 0.5
- FB: 1024
- BIT: 4096
- Def: 16384
- Acc: ERWZ
- Mod: FVS

17.5.3 2120 Rapp transf resolver
- UM: ENUM
- Type: 256 ppr
- FB: 16384 ppr
- BIT: 3
- Acc: ERWZ
- Mod: FVS

17.5.4 2122 Repetition Resolver
- UM: FLOAT
- Type: 1
- FB: 0.0
- BIT: 1
- Def: 0.2
- Maxi: 1.0
- Acc: ERWZ
- Mod: FVS

17.5.5 2124 Seuil per.Sig.Resolv
- UM: FLOAT
- Type: 2.200
- FB: 4.820
- BIT: 0.0
- Def: 0.0
- Maxi: 4.820
- Acc: ERWZ
- Mod: FVS

17.5.6 2128 INC.Seuil Resolver
- UM: FLOAT
- Type: 0.380
- FB: 4.820
- BIT: 0.0
- Def: 0.0
- Maxi: 4.820
- Acc: ERWZ
- Mod: FVS

17.5.7 2094 Bloc ent 0.Resol.src
- UM: LINK
- Type: 16
- FB: 6000
- BIT: 0
- Def: 16384
- Acc: ERWZ
- Mod: FVS

17.5.8 2096 Bloc ent 1.Resol.src
- UM: LINK
- Type: 16
- FB: 6000
- BIT: 0
- Def: 16384
- Acc: ERWZ
- Mod: FVS

18 - REGULATEUR VITESSE

<table>
<thead>
<tr>
<th>Menu</th>
<th>PAR</th>
<th>Description</th>
<th>UM</th>
<th>Type</th>
<th>FB</th>
<th>BIT</th>
<th>Def</th>
<th>Min</th>
<th>Maxi</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>18.1</td>
<td>2200</td>
<td>Regul N adapt P1</td>
<td>INT16</td>
<td>100</td>
<td>0</td>
<td>1000</td>
<td>RW</td>
<td>F_S</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18.2</td>
<td>2202</td>
<td>Regul N adapt I1</td>
<td>INT16</td>
<td>100</td>
<td>0</td>
<td>1000</td>
<td>RW</td>
<td>F_S</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18.3</td>
<td>2204</td>
<td>Regul N adapt P2</td>
<td>INT16</td>
<td>150</td>
<td>0</td>
<td>1000</td>
<td>ER</td>
<td>F_S</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18.4</td>
<td>2206</td>
<td>Regul N adapt I2</td>
<td>INT16</td>
<td>100</td>
<td>0</td>
<td>1000</td>
<td>ER</td>
<td>F_S</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18.5</td>
<td>2216</td>
<td>Regul N adapt src</td>
<td>LINK</td>
<td>16/32</td>
<td>664</td>
<td>0</td>
<td>16384</td>
<td>ERW</td>
<td>F_S</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18.6</td>
<td>2218</td>
<td>Reg adapt seuil1_2</td>
<td>FLOAT</td>
<td>0.0</td>
<td>0</td>
<td>100.0</td>
<td>ERW</td>
<td>F_S</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18.7</td>
<td>2220</td>
<td>Reg adapt bande1_2</td>
<td>FLOAT</td>
<td>0.0</td>
<td>0</td>
<td>100.0</td>
<td>ERW</td>
<td>F_S</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18.8</td>
<td>2226</td>
<td>Valid gain 0</td>
<td>ENUM</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>ERW</td>
<td>F_S</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Dévalidé</td>
<td>0</td>
<td>1</td>
<td>ERW</td>
<td>F_S</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Menu</th>
<th>PAR</th>
<th>Description</th>
<th>UM</th>
<th>Type</th>
<th>FB</th>
<th>BIT</th>
<th>Def</th>
<th>Min</th>
<th>Maxi</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>18.9</td>
<td>2228</td>
<td>Regul N adapt P0</td>
<td>INT16</td>
<td>100</td>
<td>0</td>
<td>1000</td>
<td>ERW</td>
<td>F_S</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18.10</td>
<td>2230</td>
<td>Regul N adapt I0</td>
<td>INT16</td>
<td>100</td>
<td>0</td>
<td>1000</td>
<td>ERW</td>
<td>F_S</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18.11</td>
<td>2232</td>
<td>Reg N actuel P</td>
<td>INT16</td>
<td>16/32</td>
<td>100</td>
<td>0</td>
<td>1000</td>
<td>ER</td>
<td>F_S</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18.12</td>
<td>2234</td>
<td>Reg N actuel I</td>
<td>INT16</td>
<td>16/32</td>
<td>100</td>
<td>0</td>
<td>1000</td>
<td>ER</td>
<td>F_S</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18.13</td>
<td>2236</td>
<td>Régulation N gain P</td>
<td>FLOAT</td>
<td>0.0</td>
<td>0</td>
<td>500.0</td>
<td>ERWS</td>
<td>F_S</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18.14</td>
<td>2238</td>
<td>Régulation N temps I</td>
<td>ms</td>
<td>5000.0</td>
<td>0</td>
<td>1.0</td>
<td>ERWS</td>
<td>F_S</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18.15</td>
<td>2244</td>
<td>Reg Vit I M/A src</td>
<td>LINK</td>
<td>16/32</td>
<td>6000</td>
<td>0</td>
<td>16384</td>
<td>ERW</td>
<td>F_S</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>L_DIGSEL2</td>
<td>0</td>
<td>16384</td>
<td>ERW</td>
<td>F_S</td>
</tr>
<tr>
<td>18.16</td>
<td>2246</td>
<td>Reg Vitesse P Coef</td>
<td>FLOAT</td>
<td>0.0</td>
<td>0</td>
<td>0</td>
<td>ER</td>
<td>F_S</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18.17</td>
<td>2248</td>
<td>Reg Vitesse I Coef</td>
<td>FLOAT</td>
<td>0.0</td>
<td>0</td>
<td>0</td>
<td>ER</td>
<td>F_S</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18.18</td>
<td>2240</td>
<td>Inertie</td>
<td>FLOAT</td>
<td>SIZE 0.001</td>
<td>0</td>
<td>100.0</td>
<td>RWZS</td>
<td>F_S</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18.19</td>
<td>2242</td>
<td>Largeur de bande</td>
<td>FLOAT</td>
<td>SIZE 1.0</td>
<td>0</td>
<td>700.0</td>
<td>RWZS</td>
<td>F_S</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

19 - PARAM DE REGUL

<table>
<thead>
<tr>
<th>Menu</th>
<th>PAR</th>
<th>Description</th>
<th>UM</th>
<th>Type</th>
<th>FB</th>
<th>BIT</th>
<th>Def</th>
<th>Min</th>
<th>Maxi</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>19.1</td>
<td>2250</td>
<td>Régulateur I gain P</td>
<td>V/A</td>
<td>FLOAT</td>
<td>0</td>
<td>0</td>
<td>ERW</td>
<td>F_S</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19.2</td>
<td>2252</td>
<td>Régulateur I temps I</td>
<td>ms</td>
<td>FLOAT</td>
<td>0.01</td>
<td>10000.0</td>
<td>ERWS</td>
<td>F_S</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19.3</td>
<td>2270</td>
<td>Reg tension gain P</td>
<td>Wb/V</td>
<td>FLOAT</td>
<td>0.0</td>
<td>0.0</td>
<td>ERWS</td>
<td>F_S</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19.4</td>
<td>2272</td>
<td>Reg tension temp I</td>
<td>s</td>
<td>FLOAT</td>
<td>0.01</td>
<td>100.0</td>
<td>ERWS</td>
<td>FVS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19.5</td>
<td>2280</td>
<td>Lim temps bande morte</td>
<td>V</td>
<td>FLOAT</td>
<td>SIZE</td>
<td>50.0</td>
<td>ERWS</td>
<td>FVS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19.6</td>
<td>2282</td>
<td>Lim der bande morte</td>
<td>V/A</td>
<td>FLOAT</td>
<td>SIZE</td>
<td>0.0</td>
<td>200.0</td>
<td>ERWS</td>
<td>F_S</td>
<td></td>
<td></td>
</tr>
<tr>
<td>19.7</td>
<td>2290</td>
<td>Tension de base</td>
<td>V</td>
<td>FLOAT</td>
<td>50.0</td>
<td>690.0</td>
<td>ERWS</td>
<td>F_S</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Menu</td>
<td>PAR</td>
<td>Description</td>
<td>UM</td>
<td>Type</td>
<td>FB</td>
<td>BIT</td>
<td>Def</td>
<td>Min</td>
<td>Maxi</td>
<td>Acc</td>
<td>Mod</td>
</tr>
<tr>
<td>------</td>
<td>------</td>
<td>---------------------------</td>
<td>-----------</td>
<td>--------</td>
<td>----</td>
<td>-----</td>
<td>-----</td>
<td>-------</td>
<td>-------</td>
<td>-----</td>
<td>------</td>
</tr>
<tr>
<td>19.8</td>
<td>2292</td>
<td>Marge de tension</td>
<td>perc</td>
<td>FLOAT</td>
<td>5.0</td>
<td>0.0</td>
<td>10.0</td>
<td>ERWS</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>19.9</td>
<td>132</td>
<td>Lim courant magnet</td>
<td>A</td>
<td>FLOAT</td>
<td>CALCF</td>
<td>0.0</td>
<td>CALCF</td>
<td>CALCF</td>
<td>ERWZS</td>
<td>FVS</td>
<td></td>
</tr>
<tr>
<td>19.10</td>
<td>144</td>
<td>Valid.Anticp.Tension</td>
<td>BIT</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>ERWZ</td>
<td>F_S</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19.11</td>
<td>152</td>
<td>Compensation rotor</td>
<td>BIT</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>ERWZ</td>
<td>FVS</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

20 - COUPLE

<table>
<thead>
<tr>
<th>Menu</th>
<th>PAR</th>
<th>Description</th>
<th>UM</th>
<th>Type</th>
<th>FB</th>
<th>BIT</th>
<th>Def</th>
<th>Min</th>
<th>Maxi</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>20.1</td>
<td>2350</td>
<td>Lim cour.couple pos</td>
<td>A</td>
<td>FLOAT</td>
<td>16/32</td>
<td>CALCF</td>
<td>0.0</td>
<td>CALCF</td>
<td>ERWS</td>
<td>FVS</td>
<td></td>
</tr>
<tr>
<td>20.2</td>
<td>2352</td>
<td>Lim cour.couple neg</td>
<td>A</td>
<td>FLOAT</td>
<td>16/32</td>
<td>CALCF</td>
<td>0.0</td>
<td>CALCF</td>
<td>ERWS</td>
<td>FVS</td>
<td></td>
</tr>
<tr>
<td>20.3</td>
<td>2354</td>
<td>Lim cour.couple sel</td>
<td>ENUM</td>
<td>Off</td>
<td>0</td>
<td>4</td>
<td>ERWZ</td>
<td>FVS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td>Off</td>
<td>0</td>
<td>4</td>
<td>ERWZ</td>
<td>FVS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>Lim couple +/-</td>
<td>0</td>
<td>4</td>
<td>ERWZ</td>
<td>FVS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td>Lim C Mot/Gen</td>
<td>0</td>
<td>4</td>
<td>ERWZ</td>
<td>FVS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3</td>
<td>T lim sym</td>
<td>0</td>
<td>4</td>
<td>ERWZ</td>
<td>FVS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>4</td>
<td>T lim pos/neg</td>
<td>0</td>
<td>4</td>
<td>ERWZ</td>
<td>FVS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20.4</td>
<td>2358</td>
<td>Lim.couple pos src</td>
<td>LINK</td>
<td>L_PLM</td>
<td>16/32</td>
<td>0</td>
<td>16384</td>
<td>ERWZ</td>
<td>F_S</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20.5</td>
<td>2370</td>
<td>Lim.couple neg.src</td>
<td>LINK</td>
<td>L_NLIM</td>
<td>16/32</td>
<td>0</td>
<td>16384</td>
<td>ERWZ</td>
<td>F_S</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20.6</td>
<td>2372</td>
<td>Limite de couple pos</td>
<td>perc</td>
<td>FLOAT</td>
<td>16/32</td>
<td>CALCF</td>
<td>0.0</td>
<td>CALCF</td>
<td>ERW</td>
<td>F_S</td>
<td></td>
</tr>
<tr>
<td>20.7</td>
<td>2374</td>
<td>Limite de couple neg</td>
<td>perc</td>
<td>FLOAT</td>
<td>16/32</td>
<td>CALCF</td>
<td>0.0</td>
<td>CALCF</td>
<td>ERW</td>
<td>F_S</td>
<td></td>
</tr>
<tr>
<td>20.8</td>
<td>2376</td>
<td>Sel.unità lim couple</td>
<td>ENUM</td>
<td>%</td>
<td>0</td>
<td>1</td>
<td>ERW</td>
<td>F_S</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td>Off</td>
<td>0</td>
<td>1</td>
<td>ERW</td>
<td>F_S</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>%</td>
<td>0</td>
<td>1</td>
<td>ERW</td>
<td>F_S</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20.9</td>
<td>2360</td>
<td>Lim couple post act</td>
<td>A</td>
<td>FLOAT</td>
<td>16/32</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>ER</td>
<td>FVS</td>
<td></td>
</tr>
<tr>
<td>20.10</td>
<td>2362</td>
<td>Lim couple neg act</td>
<td>A</td>
<td>FLOAT</td>
<td>16/32</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>ER</td>
<td>FVS</td>
<td></td>
</tr>
<tr>
<td>20.11</td>
<td>2378</td>
<td>Filtre Couple ref 1</td>
<td>ms</td>
<td>FLOAT</td>
<td>16/32</td>
<td>0.0</td>
<td>0.0</td>
<td>1000.0</td>
<td>ERW</td>
<td>F_S</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td>Off</td>
<td>0</td>
<td>1</td>
<td>ERW</td>
<td>F_S</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>Enabled</td>
<td>0</td>
<td>1</td>
<td>ERW</td>
<td>F_S</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20.12</td>
<td>2380</td>
<td>Consigne couple 1</td>
<td>perc</td>
<td>FLOAT</td>
<td>16/32</td>
<td>0.0</td>
<td>0.0</td>
<td>300.0</td>
<td>ERW</td>
<td>F_S</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td>Off</td>
<td>0</td>
<td>1</td>
<td>ERW</td>
<td>F_S</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>Enabled</td>
<td>0</td>
<td>1</td>
<td>ERW</td>
<td>F_S</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20.13</td>
<td>2382</td>
<td>Consigne couple 1 src</td>
<td>LINK</td>
<td>L_VREF</td>
<td>16/32</td>
<td>3104</td>
<td>0</td>
<td>16384</td>
<td>ERWZ</td>
<td>F_S</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td>Off</td>
<td>0</td>
<td>1</td>
<td>ERW</td>
<td>F_S</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20.14</td>
<td>2392</td>
<td>Visu cons couple 1 %</td>
<td>perc</td>
<td>FLOAT</td>
<td>16/32</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>ER</td>
<td>F_S</td>
<td></td>
</tr>
<tr>
<td>20.15</td>
<td>2346</td>
<td>Consigne Couple 1</td>
<td>A</td>
<td>FLOAT</td>
<td>16/32</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>ER</td>
<td>F_S</td>
<td></td>
</tr>
<tr>
<td>20.16</td>
<td>2348</td>
<td>Visu cons couple 1 Nm</td>
<td>Nm</td>
<td>FLOAT</td>
<td>16/32</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>ER</td>
<td>F_S</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td>Off</td>
<td>0</td>
<td>1</td>
<td>ERW</td>
<td>F_S</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20.17</td>
<td>2384</td>
<td>Filtre consig couple</td>
<td>ms</td>
<td>FLOAT</td>
<td>0.125</td>
<td>0.125</td>
<td>10.0</td>
<td>ERW</td>
<td>F_S</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td>Off</td>
<td>0</td>
<td>1</td>
<td>ERW</td>
<td>F_S</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>Enabled</td>
<td>0</td>
<td>1</td>
<td>ERW</td>
<td>F_S</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20.18</td>
<td>2386</td>
<td>Consigne de couple %</td>
<td>perc</td>
<td>FLOAT</td>
<td>16/32</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>ER</td>
<td>F_S</td>
<td></td>
</tr>
<tr>
<td>20.19</td>
<td>2390</td>
<td>Consigne de couple Nm</td>
<td>Nm</td>
<td>FLOAT</td>
<td>16/32</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>ER</td>
<td>F_S</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td>Off</td>
<td>0</td>
<td>1</td>
<td>ERW</td>
<td>F_S</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>Enabled</td>
<td>0</td>
<td>1</td>
<td>ERW</td>
<td>F_S</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20.20</td>
<td>2394</td>
<td>Couple %</td>
<td>perc</td>
<td>FLOAT</td>
<td>16/32</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>ER</td>
<td>F_S</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td>Off</td>
<td>0</td>
<td>1</td>
<td>ERW</td>
<td>F_S</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>Enabled</td>
<td>0</td>
<td>1</td>
<td>ERW</td>
<td>F_S</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20.21</td>
<td>2398</td>
<td>Couple</td>
<td>Nm</td>
<td>FLOAT</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>ER</td>
<td>F_S</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td>Off</td>
<td>0</td>
<td>1</td>
<td>ERW</td>
<td>F_S</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>Enabled</td>
<td>0</td>
<td>1</td>
<td>ERW</td>
<td>F_S</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20.22</td>
<td>2366</td>
<td>Red.lim.cour.couple</td>
<td>A</td>
<td>FLOAT</td>
<td>16/32</td>
<td>CALCF</td>
<td>0.0</td>
<td>CALCF</td>
<td>ERWS</td>
<td>FVS</td>
<td></td>
</tr>
<tr>
<td>20.23</td>
<td>2368</td>
<td>Red.clim.courant src</td>
<td>LINK</td>
<td>L_DIGSEL2</td>
<td>16</td>
<td>6000</td>
<td>0</td>
<td>16384</td>
<td>ERW</td>
<td>FVS</td>
<td></td>
</tr>
</tbody>
</table>

21 - SANS CAPTEUR

<table>
<thead>
<tr>
<th>Menu</th>
<th>PAR</th>
<th>Description</th>
<th>UM</th>
<th>Type</th>
<th>FB</th>
<th>BIT</th>
<th>Def</th>
<th>Min</th>
<th>Maxi</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>21.1</td>
<td>7008</td>
<td>SLS status</td>
<td>ENUM</td>
<td>Off</td>
<td>0</td>
<td>2</td>
<td>R</td>
<td>FVS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td>Off</td>
<td>0</td>
<td>2</td>
<td>R</td>
<td>FVS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>Enabled</td>
<td>0</td>
<td>2</td>
<td>R</td>
<td>FVS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td>Marche</td>
<td>0</td>
<td>2</td>
<td>R</td>
<td>FVS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>21.2</td>
<td>7010</td>
<td>SLS Vit.Min.BF</td>
<td>rpm</td>
<td>FLOAT</td>
<td>CALCF</td>
<td>0.0</td>
<td>CALCF</td>
<td>RWZ</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>21.3</td>
<td>7012</td>
<td>SLS Vit.Max. BO</td>
<td>rpm</td>
<td>FLOAT</td>
<td>0</td>
<td>CALCF</td>
<td>CALCF</td>
<td>RWZ</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>21.4</td>
<td>7014</td>
<td>SLS Corr.Courant Id</td>
<td>A</td>
<td>FLOAT</td>
<td>CALCF</td>
<td>0</td>
<td>CALCF</td>
<td>RW</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>21.5</td>
<td>7016</td>
<td>SLS Tps.Desat.Id</td>
<td>ms</td>
<td>FLOAT</td>
<td>CALCF</td>
<td>1</td>
<td>1000</td>
<td>ERW</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>21.6</td>
<td>7018</td>
<td>SLS Seuil.Vit.Id</td>
<td>rpm</td>
<td>FLOAT</td>
<td>CALCF</td>
<td>0</td>
<td>CALCF</td>
<td>ERW</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>21.7</td>
<td>7020</td>
<td>SLS Ctrl.Mode Id</td>
<td>ENUM</td>
<td>Normale</td>
<td>0</td>
<td>1</td>
<td>ERW</td>
<td>FVS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Menu</td>
<td>PAR</td>
<td>Description</td>
<td>UM</td>
<td>Type</td>
<td>FB BIT</td>
<td>Def</td>
<td>Min</td>
<td>Maxi</td>
<td>Acc</td>
<td>Mod</td>
<td></td>
</tr>
<tr>
<td>------</td>
<td>-----</td>
<td>----------------------</td>
<td>------</td>
<td>---------</td>
<td>--------</td>
<td>-----</td>
<td>------</td>
<td>------</td>
<td>-----</td>
<td>-----</td>
<td></td>
</tr>
<tr>
<td>21.8</td>
<td>7022</td>
<td>SLS Gain.Vit.Obs</td>
<td>FLOAT</td>
<td>0.001</td>
<td>50</td>
<td>RW</td>
<td>FVS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>21.9</td>
<td>7024</td>
<td>SLS K1 Vit.Obs</td>
<td>CALCF</td>
<td>35000</td>
<td>ERW</td>
<td>FVS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>21.10</td>
<td>7026</td>
<td>SLS K2 Vit.Obs</td>
<td>CALCF</td>
<td>2000</td>
<td>ERW</td>
<td>FVS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>21.11</td>
<td>7028</td>
<td>SLS Fact.Corr.RS</td>
<td>INT16</td>
<td>0</td>
<td>-100</td>
<td>100</td>
<td>ERW</td>
<td>FVS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>21.13</td>
<td>7032</td>
<td>SLS K1 Moteur Obs</td>
<td>CALCF</td>
<td>0.0</td>
<td>800000</td>
<td>ERWZ</td>
<td>FVS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>21.14</td>
<td>7034</td>
<td>SLS K2 Moteur Obs</td>
<td>CALCF</td>
<td>-3050000</td>
<td>-10</td>
<td>ERWZ</td>
<td>FVS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>21.15</td>
<td>7040</td>
<td>SLS Validation rampe</td>
<td>ENUM</td>
<td>Dévalide</td>
<td>1</td>
<td>RWZ</td>
<td>FVS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>21.16</td>
<td>7042</td>
<td>SLS Tps.Rampe.ACC</td>
<td>FLOAT</td>
<td>10.0</td>
<td>0.01</td>
<td>1000.0</td>
<td>RW</td>
<td>FVS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>21.17</td>
<td>7044</td>
<td>SLS Tps.Rampe.DEC</td>
<td>FLOAT</td>
<td>10.0</td>
<td>0.01</td>
<td>1000.0</td>
<td>RW</td>
<td>FVS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>21.18</td>
<td>7046</td>
<td>SLS Seuil.Vit.Rampe</td>
<td>UINT32</td>
<td>CALCI</td>
<td>RW</td>
<td>FVS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>21.19</td>
<td>7048</td>
<td>SLS Alignement Rotor</td>
<td>ENUM</td>
<td>Statique</td>
<td>2</td>
<td>ERWZ</td>
<td>FVS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td></td>
</tr>
</tbody>
</table>

22 - FONCTIONS

22.1 - FONCTIONS/RAPPORT VITESSE

<table>
<thead>
<tr>
<th>Menu</th>
<th>PAR</th>
<th>Description</th>
<th>UM</th>
<th>Type</th>
<th>FB BIT</th>
<th>Def</th>
<th>Min</th>
<th>Maxi</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>22.1.1</td>
<td>3000</td>
<td>Rapport de vitesse</td>
<td>INT16</td>
<td>CALCI</td>
<td>CALCI</td>
<td>ERW</td>
<td>FVS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22.1.2</td>
<td>3002</td>
<td>Rapport vitesse src</td>
<td>LINK</td>
<td>16384</td>
<td>16/32</td>
<td>3000</td>
<td>0</td>
<td>16/32</td>
<td>0</td>
<td>16384</td>
</tr>
<tr>
<td>22.1.3</td>
<td>3008</td>
<td>Div rapp vitesse</td>
<td>ENUM</td>
<td>1</td>
<td>0</td>
<td>3</td>
<td>ERW</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

22.2 - FONCTIONS/DROOP

<table>
<thead>
<tr>
<th>Menu</th>
<th>PAR</th>
<th>Description</th>
<th>UM</th>
<th>Type</th>
<th>FB BIT</th>
<th>Def</th>
<th>Min</th>
<th>Maxi</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>22.2.1</td>
<td>3052</td>
<td>Equilibre T ref src</td>
<td>LINK</td>
<td>16/32</td>
<td>6000</td>
<td>0</td>
<td>16384</td>
<td>ERW</td>
<td>F_S</td>
<td></td>
</tr>
<tr>
<td>22.2.2</td>
<td>3060</td>
<td>Equilibre T gain</td>
<td>per</td>
<td>100.0</td>
<td>0.0</td>
<td>100.0</td>
<td>ERW</td>
<td>F_S</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22.2.3</td>
<td>3062</td>
<td>Equilibre T filter</td>
<td>ms</td>
<td>100.0</td>
<td>0.0</td>
<td>100.0</td>
<td>ERW</td>
<td>F_S</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22.2.4</td>
<td>3064</td>
<td>Equilibre T limit</td>
<td>rpm</td>
<td>100.0</td>
<td>0.0</td>
<td>100.0</td>
<td>ERW</td>
<td>F_S</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22.2.5</td>
<td>3070</td>
<td>Equil T result visu</td>
<td>rpm</td>
<td>100.0</td>
<td>0.0</td>
<td>100.0</td>
<td>ER</td>
<td>F_S</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

22.3 - FONCTIONS/COMP INERTIE

<table>
<thead>
<tr>
<th>Menu</th>
<th>PAR</th>
<th>Description</th>
<th>UM</th>
<th>Type</th>
<th>FB BIT</th>
<th>Def</th>
<th>Min</th>
<th>Maxi</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>22.3.1</td>
<td>3100</td>
<td>Compensat° inertie</td>
<td>kgm2</td>
<td>100.0</td>
<td>0.0</td>
<td>100.0</td>
<td>ERWS</td>
<td>F_S</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22.3.2</td>
<td>3102</td>
<td>Filtre Comp inertie</td>
<td>ms</td>
<td>100.0</td>
<td>0.0</td>
<td>100.0</td>
<td>ERWS</td>
<td>F_S</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22.3.3</td>
<td>3104</td>
<td>Visu Comp inertie</td>
<td>per</td>
<td>100.0</td>
<td>0.0</td>
<td>100.0</td>
<td>ERWS</td>
<td>F_S</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

22.4 - FONCTIONS/SURCHARG MOTEUR

<table>
<thead>
<tr>
<th>Menu</th>
<th>PAR</th>
<th>Description</th>
<th>UM</th>
<th>Type</th>
<th>FB BIT</th>
<th>Def</th>
<th>Min</th>
<th>Maxi</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>22.4.1</td>
<td>3200</td>
<td>Valid surchg moteur</td>
<td>BIT</td>
<td>1</td>
<td>ERW</td>
<td>FVS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22.4.2</td>
<td>3202</td>
<td>Facteur surchg mot</td>
<td>per</td>
<td>300.0</td>
<td>100.0</td>
<td>100.0</td>
<td>ERWS</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22.4.3</td>
<td>3204</td>
<td>Temps surchg moteur</td>
<td>s</td>
<td>300.0</td>
<td>100.0</td>
<td>100.0</td>
<td>ERWS</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22.4.4</td>
<td>3206</td>
<td>Facteur service mot</td>
<td>per</td>
<td>200.0</td>
<td>100.0</td>
<td>100.0</td>
<td>ERWS</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22.4.5</td>
<td>3216</td>
<td>Type Vent. du moteur</td>
<td>ENUM</td>
<td>Servo Ventil.</td>
<td>1</td>
<td>ERW</td>
<td>FVS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Menu</td>
<td>PAR</td>
<td>Description</td>
<td>UM</td>
<td>Type</td>
<td>FB</td>
<td>BIT</td>
<td>Def</td>
<td>Min</td>
<td>Maxi</td>
<td>Acc</td>
</tr>
<tr>
<td>--------</td>
<td>------</td>
<td>-----------------------------------</td>
<td>------</td>
<td>---------</td>
<td>----</td>
<td>-----</td>
<td>-----</td>
<td>-------</td>
<td>------</td>
<td>------</td>
</tr>
<tr>
<td>22.4.6</td>
<td>3218</td>
<td>Fact. énergie moteur</td>
<td>perc</td>
<td>FLOAT</td>
<td></td>
<td>50.0</td>
<td>0.0</td>
<td>100.0</td>
<td></td>
<td>ERWS</td>
</tr>
</tbody>
</table>

22.5 - FONCTIONS/SURC RES FREIN

<table>
<thead>
<tr>
<th>Menu</th>
<th>PAR</th>
<th>Description</th>
<th>UM</th>
<th>Type</th>
<th>FB</th>
<th>BIT</th>
<th>Def</th>
<th>Min</th>
<th>Maxi</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>22.5.1</td>
<td>3250</td>
<td>Control Res freinage</td>
<td>BIT</td>
<td></td>
<td>0</td>
<td></td>
<td>0</td>
<td>1</td>
<td></td>
<td>ERWZ</td>
<td>FVS</td>
</tr>
<tr>
<td>22.5.2</td>
<td>3252</td>
<td>Valeur Res freinage</td>
<td>ohm</td>
<td>FLOAT</td>
<td></td>
<td>3.0</td>
<td>1000.0</td>
<td></td>
<td>ERWS</td>
<td>FVS</td>
<td></td>
</tr>
<tr>
<td>22.5.3</td>
<td>3254</td>
<td>Puissance Res frein</td>
<td>kW</td>
<td>FLOAT</td>
<td></td>
<td>0.1</td>
<td>100.0</td>
<td></td>
<td>ERWS</td>
<td>FVS</td>
<td></td>
</tr>
<tr>
<td>22.5.4</td>
<td>3256</td>
<td>Fact surch Res frein</td>
<td>FLOAT</td>
<td>SIZE</td>
<td></td>
<td>1.5</td>
<td>10.0</td>
<td></td>
<td>ERWS</td>
<td>FVS</td>
<td></td>
</tr>
<tr>
<td>22.5.5</td>
<td>3258</td>
<td>Tps surchg Res frein</td>
<td>s</td>
<td>FLOAT</td>
<td></td>
<td>0.5</td>
<td>50.0</td>
<td></td>
<td>ERWS</td>
<td>FVS</td>
<td></td>
</tr>
<tr>
<td>22.5.6</td>
<td>3272</td>
<td>Valid.BU src</td>
<td>LINK</td>
<td>16</td>
<td></td>
<td>6002</td>
<td>0</td>
<td>16384</td>
<td></td>
<td>ERW</td>
<td>FVS</td>
</tr>
<tr>
<td>22.5.7</td>
<td>3274</td>
<td>Valid.BU inv</td>
<td>BIT</td>
<td></td>
<td>0</td>
<td></td>
<td>0</td>
<td>1</td>
<td></td>
<td>ERW</td>
<td>FVS</td>
</tr>
</tbody>
</table>

22.6 - FONCTIONS/DOUBLE JEUPARAM

<table>
<thead>
<tr>
<th>Menu</th>
<th>PAR</th>
<th>Description</th>
<th>UM</th>
<th>Type</th>
<th>FB</th>
<th>BIT</th>
<th>Def</th>
<th>Min</th>
<th>Maxi</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>22.6.1</td>
<td>3300</td>
<td>Valid 2jeu de param</td>
<td>ENUM</td>
<td></td>
<td></td>
<td></td>
<td>Dévalidé</td>
<td>0</td>
<td>1</td>
<td>ERW</td>
<td>FVS</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td>Dévalidé</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>Validé</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22.6.2</td>
<td>3302</td>
<td>Sel Jeu de param src</td>
<td>LINK</td>
<td>16</td>
<td></td>
<td>6000</td>
<td>0</td>
<td>16384</td>
<td></td>
<td>ERWZ</td>
<td>FVS</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>L_DIGSEL1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22.6.3</td>
<td>3304</td>
<td>Visu jeu parma actu</td>
<td>ENUM</td>
<td></td>
<td></td>
<td></td>
<td>Jeu de param</td>
<td>0</td>
<td>0</td>
<td>ER</td>
<td>FVS</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td>Jeu de param</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>Jeu de param</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22.6.4</td>
<td>3306</td>
<td>Copi jeu param 0->1</td>
<td>BIT</td>
<td></td>
<td>0</td>
<td></td>
<td>0</td>
<td>1</td>
<td></td>
<td>ERW</td>
<td>FVS</td>
</tr>
</tbody>
</table>

22.7 - FONCTIONS/SPEED CAPTURE

<table>
<thead>
<tr>
<th>Menu</th>
<th>PAR</th>
<th>Description</th>
<th>UM</th>
<th>Type</th>
<th>FB</th>
<th>BIT</th>
<th>Def</th>
<th>Min</th>
<th>Maxi</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>22.7.1</td>
<td>3350</td>
<td>Reprise à la volée</td>
<td>ENUM</td>
<td></td>
<td></td>
<td></td>
<td>Dévalidé</td>
<td>0</td>
<td>2</td>
<td>ERW</td>
<td>FV_</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td>Dévalidé</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>Alarm restart</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td>Enable restart</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

22.8 - FONCTIONS/POWER LOSS

<table>
<thead>
<tr>
<th>Menu</th>
<th>PAR</th>
<th>Description</th>
<th>UM</th>
<th>Type</th>
<th>FB</th>
<th>BIT</th>
<th>Def</th>
<th>Min</th>
<th>Maxi</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>22.8.1</td>
<td>3400</td>
<td>Fonction Perte Alim</td>
<td>ENUM</td>
<td></td>
<td></td>
<td></td>
<td>Dévalidé</td>
<td>0</td>
<td>1</td>
<td>ERW</td>
<td>FV_</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td>Dévalidé</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>Validé</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22.8.2</td>
<td>3402</td>
<td>Perte Alim tps accel</td>
<td>s</td>
<td>FLOAT</td>
<td></td>
<td>10.0</td>
<td>0.01</td>
<td>100.0</td>
<td></td>
<td>ERW</td>
<td>FV_</td>
</tr>
<tr>
<td>22.8.3</td>
<td>3404</td>
<td>Perte Alim tps decel</td>
<td>s</td>
<td>FLOAT</td>
<td></td>
<td>2.0</td>
<td>0.01</td>
<td>100.0</td>
<td></td>
<td>ERW</td>
<td>FV_</td>
</tr>
<tr>
<td>22.8.4</td>
<td>3410</td>
<td>Perte Alim Vdcref</td>
<td>V</td>
<td>FLOAT</td>
<td></td>
<td>CALCF 0.0</td>
<td>CALCF</td>
<td></td>
<td>ERWS</td>
<td>FV_</td>
<td></td>
</tr>
<tr>
<td>22.8.5</td>
<td>3420</td>
<td>Perte Alim gain P</td>
<td>A/V</td>
<td>FLOAT</td>
<td></td>
<td>0.0</td>
<td>100.000</td>
<td></td>
<td>ERWS</td>
<td>FV_</td>
<td></td>
</tr>
<tr>
<td>22.8.6</td>
<td>3422</td>
<td>Perte Alim Tps I</td>
<td>ms</td>
<td>FLOAT</td>
<td></td>
<td>1.0</td>
<td>1000.0</td>
<td></td>
<td>ERWS</td>
<td>FV_</td>
<td></td>
</tr>
<tr>
<td>22.8.7</td>
<td>3438</td>
<td>Perte Alim mode</td>
<td>ENUM</td>
<td></td>
<td></td>
<td></td>
<td>Ramp down</td>
<td>0</td>
<td>1</td>
<td>ERWZ</td>
<td>FV_</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td>Ramp down</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>Restart</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22.8.8</td>
<td>3440</td>
<td>Perte Alim src</td>
<td>LINK</td>
<td>16</td>
<td></td>
<td>6000</td>
<td>0</td>
<td>16384</td>
<td></td>
<td>ERWZ</td>
<td>FV_</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>L_DIGSEL2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

22.9 - FONCTIONS/COMPARAISON

<table>
<thead>
<tr>
<th>Menu</th>
<th>PAR</th>
<th>Description</th>
<th>UM</th>
<th>Type</th>
<th>FB</th>
<th>BIT</th>
<th>Def</th>
<th>Min</th>
<th>Maxi</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>22.9.1</td>
<td>3650</td>
<td>Valeur compar ED1</td>
<td>perc</td>
<td>FLOAT</td>
<td></td>
<td>32</td>
<td>0.0</td>
<td>-100.0</td>
<td>100.0</td>
<td>ERW</td>
<td>FVS</td>
</tr>
<tr>
<td>22.9.2</td>
<td>3652</td>
<td>Valeur compar ED2</td>
<td>perc</td>
<td>FLOAT</td>
<td></td>
<td>32</td>
<td>0.0</td>
<td>-100.0</td>
<td>100.0</td>
<td>ERW</td>
<td>FVS</td>
</tr>
<tr>
<td>22.9.3</td>
<td>3660</td>
<td>Val comp ED1 src</td>
<td>LINK</td>
<td></td>
<td>32</td>
<td>3650</td>
<td>0</td>
<td>16384</td>
<td></td>
<td>ERW</td>
<td>FVS</td>
</tr>
<tr>
<td>22.9.4</td>
<td>3662</td>
<td>Val comp ED2 src</td>
<td>LINK</td>
<td></td>
<td>32</td>
<td>3652</td>
<td>0</td>
<td>16384</td>
<td></td>
<td>ERW</td>
<td>FVS</td>
</tr>
</tbody>
</table>
Fonctions de Comparaison (L_CMP)

<table>
<thead>
<tr>
<th>Menu</th>
<th>PAR</th>
<th>Description</th>
<th>UM</th>
<th>Type</th>
<th>FB</th>
<th>BIT</th>
<th>Def</th>
<th>Min</th>
<th>Maxi</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>22.9.5</td>
<td>3670</td>
<td>Fonction comparer</td>
<td>ENUM</td>
<td>Aucun</td>
<td>0</td>
<td>8</td>
<td>ERW</td>
<td>FVS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td>Aucun</td>
<td>1</td>
<td>Entré1 = Entré2</td>
<td>CalCF</td>
<td>0.0</td>
<td>100.0</td>
<td>ERW</td>
<td>FVS</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td>Entré1 != Entré2</td>
<td>CalCF</td>
<td>0.0</td>
<td>100.0</td>
<td>ERW</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3</td>
<td>Entré1 < Entré2</td>
<td>CalCF</td>
<td>0.0</td>
<td>100.0</td>
<td>ERW</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>4</td>
<td>Entré1 > Entré2</td>
<td>CalCF</td>
<td>0.0</td>
<td>100.0</td>
<td>ERW</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22.9.6</td>
<td>3672</td>
<td>Fenêtre comparateur</td>
<td>per</td>
<td>0.0</td>
<td>0.0</td>
<td>100.0</td>
<td>ERW</td>
<td>FVS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22.9.7</td>
<td>3674</td>
<td>Retard comparateur</td>
<td>s</td>
<td>0.0</td>
<td>0.0</td>
<td>30.0</td>
<td>ERW</td>
<td>FVS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22.9.8</td>
<td>3676</td>
<td>Sortie comparateur</td>
<td>BIT</td>
<td>16</td>
<td>0</td>
<td>1</td>
<td>ER</td>
<td>FVS</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fonctions/Mot Internes (22.10)

<table>
<thead>
<tr>
<th>Menu</th>
<th>PAR</th>
<th>Description</th>
<th>UM</th>
<th>Type</th>
<th>FB</th>
<th>BIT</th>
<th>Def</th>
<th>Min</th>
<th>Maxi</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>22.10.1</td>
<td>3700</td>
<td>Mot interne 1</td>
<td>INT32</td>
<td>32</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>ERW</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22.10.2</td>
<td>3702</td>
<td>Mot interne 2</td>
<td>INT32</td>
<td>32</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>ERW</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22.10.3</td>
<td>3704</td>
<td>Mot interne 3</td>
<td>INT32</td>
<td>32</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>ERW</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22.10.4</td>
<td>3706</td>
<td>Mot interne 4</td>
<td>INT32</td>
<td>32</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>ERW</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22.10.5</td>
<td>3708</td>
<td>Mot interne 5</td>
<td>INT32</td>
<td>32</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>ERW</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22.10.6</td>
<td>3710</td>
<td>Mot interne 6</td>
<td>INT32</td>
<td>32</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>ERW</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22.10.7</td>
<td>3712</td>
<td>Mot interne 7</td>
<td>INT32</td>
<td>32</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>ERW</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22.10.8</td>
<td>3714</td>
<td>Mot interne 8</td>
<td>INT32</td>
<td>32</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>ERW</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22.10.9</td>
<td>3716</td>
<td>Mot interne 9</td>
<td>INT32</td>
<td>32</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>ERW</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22.10.10</td>
<td>3718</td>
<td>Mot interne 10</td>
<td>INT32</td>
<td>32</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>ERW</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22.10.11</td>
<td>3720</td>
<td>Mot interne 11</td>
<td>INT32</td>
<td>32</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>ERW</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22.10.12</td>
<td>3722</td>
<td>Mot interne 12</td>
<td>INT32</td>
<td>32</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>ERW</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22.10.13</td>
<td>3724</td>
<td>Mot interne 13</td>
<td>INT32</td>
<td>32</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>ERW</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22.10.14</td>
<td>3726</td>
<td>Mot interne 14</td>
<td>INT32</td>
<td>32</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>ERW</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22.10.15</td>
<td>3728</td>
<td>Mot interne 15</td>
<td>INT32</td>
<td>32</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>ERW</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22.10.16</td>
<td>3730</td>
<td>Mot interne 16</td>
<td>INT32</td>
<td>32</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>ERW</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fonctions/Contrôle VDC (22.11)

<table>
<thead>
<tr>
<th>Menu</th>
<th>PAR</th>
<th>Description</th>
<th>UM</th>
<th>Type</th>
<th>FB</th>
<th>BIT</th>
<th>Def</th>
<th>Min</th>
<th>Maxi</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>22.11.1</td>
<td>3450</td>
<td>Contrôle fonct. Vdc</td>
<td>ENUM</td>
<td>Dévalidé</td>
<td>0</td>
<td>1</td>
<td>ERWZ</td>
<td>FVS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>Validé</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22.11.2</td>
<td>3470</td>
<td>Contrôle gain P Vdc</td>
<td>A/V</td>
<td>CALCF</td>
<td>0.0</td>
<td>100.0</td>
<td>ERWS</td>
<td>FVS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22.11.3</td>
<td>3472</td>
<td>Tps. contrôle I Vdc</td>
<td>ms</td>
<td>CALCF</td>
<td>1.0</td>
<td>1000.0</td>
<td>ERWS</td>
<td>FVS</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fonctions/Contrôle Frein (22.12)

<table>
<thead>
<tr>
<th>Menu</th>
<th>PAR</th>
<th>Description</th>
<th>UM</th>
<th>Type</th>
<th>FB</th>
<th>BIT</th>
<th>Def</th>
<th>Min</th>
<th>Maxi</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>22.12.1</td>
<td>3170</td>
<td>Contr. fonct frein</td>
<td>ENUM</td>
<td>Dévalidé</td>
<td>0</td>
<td>3</td>
<td>ERWZ</td>
<td>FVS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>Standard</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td>Mode levage 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3</td>
<td>Mode levage 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22.12.2</td>
<td>3172</td>
<td>Tps. ouv. frein</td>
<td>s</td>
<td>0.0</td>
<td>0.0</td>
<td>60.0</td>
<td>ERW</td>
<td>FVS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22.12.3</td>
<td>3174</td>
<td>Tps. ferm. frein</td>
<td>s</td>
<td>0.20</td>
<td>0.0</td>
<td>60.0</td>
<td>ERW</td>
<td>FVS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22.12.4</td>
<td>3176</td>
<td>Seuil. Vit. Ouv. Frein</td>
<td>rpm</td>
<td>0</td>
<td>0</td>
<td>CALCI</td>
<td>ERW</td>
<td>FVS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22.12.5</td>
<td>3178</td>
<td>Seuil. Vit. Ferm. Frein</td>
<td>rpm</td>
<td>0</td>
<td>0</td>
<td>CALCI</td>
<td>ERW</td>
<td>FVS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22.12.6</td>
<td>3194</td>
<td>Brake ramp freeze</td>
<td>ENUM</td>
<td>Dévalidé</td>
<td>0</td>
<td>1</td>
<td>ERWZ</td>
<td>FVS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>Validé</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Menu</td>
<td>PAR</td>
<td>Description</td>
<td>UM</td>
<td>Type</td>
<td>FB BIT</td>
<td>Def</td>
<td>Min</td>
<td>Maxi</td>
<td>Acc</td>
<td>Mod</td>
<td></td>
</tr>
<tr>
<td>------</td>
<td>-----</td>
<td>------------------------------</td>
<td>-------</td>
<td>--------</td>
<td>--------</td>
<td>-------</td>
<td>------</td>
<td>------</td>
<td>-----</td>
<td>-----</td>
<td></td>
</tr>
<tr>
<td>22.12.7</td>
<td>3182</td>
<td>Sel.Seuil.Ouv.Frein</td>
<td>ENUM</td>
<td>Intens sortie</td>
<td>0</td>
<td>1</td>
<td>ERWZ</td>
<td>FVS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22.12.8</td>
<td>3184</td>
<td>Seuil.Ouv.Frein</td>
<td>perc</td>
<td>FLOAT</td>
<td>10</td>
<td>-200.0</td>
<td>200.0</td>
<td>ERWZS</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22.12.9</td>
<td>3186</td>
<td>Seuil.Ouv.Frein src</td>
<td>LINK</td>
<td>UM</td>
<td>16/32</td>
<td>3184</td>
<td>0</td>
<td>16384</td>
<td>ERWZ</td>
<td>FVS</td>
<td></td>
</tr>
<tr>
<td>22.12.10</td>
<td>3188</td>
<td>Temps couple frein</td>
<td>s</td>
<td>FLOAT</td>
<td>0.10</td>
<td>0.01</td>
<td>60.0</td>
<td>ERWZ</td>
<td>F_S</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22.12.11</td>
<td>3190</td>
<td>Attente ferrm frein</td>
<td>s</td>
<td>FLOAT</td>
<td>2</td>
<td>0.0</td>
<td>60.0</td>
<td>ERWZ</td>
<td>F_S</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

22.13 - FONCTIONS/FACTEUR DIMENS.

<table>
<thead>
<tr>
<th>Menu</th>
<th>PAR</th>
<th>Description</th>
<th>UM</th>
<th>Type</th>
<th>Def</th>
<th>Min</th>
<th>Maxi</th>
</tr>
</thead>
<tbody>
<tr>
<td>22.13.1</td>
<td>3900</td>
<td>Dim facteur num</td>
<td>UINT16</td>
<td>1</td>
<td>1</td>
<td>65535</td>
<td>ERW</td>
</tr>
<tr>
<td>22.13.2</td>
<td>3902</td>
<td>Dim facteur den</td>
<td>UINT16</td>
<td>1</td>
<td>1</td>
<td>65535</td>
<td>ERW</td>
</tr>
<tr>
<td>22.13.3</td>
<td>3904</td>
<td>Dim facteur text</td>
<td>UINT32</td>
<td>7172210</td>
<td>0</td>
<td>0</td>
<td>ERW</td>
</tr>
</tbody>
</table>

22.14 - FONCTIONS/CONTROL MODE

<table>
<thead>
<tr>
<th>Menu</th>
<th>PAR</th>
<th>Description</th>
<th>UM</th>
<th>Type</th>
<th>FB BIT</th>
<th>Def</th>
<th>Min</th>
<th>Maxi</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>22.14.1</td>
<td>556</td>
<td>Mode de pilot sel</td>
<td>ENUM</td>
<td>Couple</td>
<td>0</td>
<td>2</td>
<td>ERWZ</td>
<td>F_S</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22.14.2</td>
<td>6200</td>
<td>Mode Ctrl src</td>
<td>LINK</td>
<td>16</td>
<td>6000</td>
<td>0</td>
<td>16384</td>
<td>ERWZ</td>
<td>F_S</td>
<td></td>
</tr>
<tr>
<td>22.14.3</td>
<td>6202</td>
<td>Mode Ctrl sel 0 src</td>
<td>LINK</td>
<td>16</td>
<td>6000</td>
<td>0</td>
<td>16384</td>
<td>ERWZ</td>
<td>F_S</td>
<td></td>
</tr>
<tr>
<td>22.14.4</td>
<td>6204</td>
<td>Mode Ctrl sel 1 src</td>
<td>LINK</td>
<td>16</td>
<td>6000</td>
<td>0</td>
<td>16384</td>
<td>ERWZ</td>
<td>F_S</td>
<td></td>
</tr>
<tr>
<td>22.14.5</td>
<td>6206</td>
<td>Visu Mode Ctrl sel</td>
<td>UINT32</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>ER</td>
<td>F_S</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22.14.6</td>
<td>6208</td>
<td>Visu mode Ctrl</td>
<td>ENUM</td>
<td>Couple</td>
<td>0</td>
<td>0</td>
<td>ER</td>
<td>F_S</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

22.15 - FONCTIONS/TEMP CONTROL

<table>
<thead>
<tr>
<th>Menu</th>
<th>PAR</th>
<th>Description</th>
<th>UM</th>
<th>Type</th>
<th>FB BIT</th>
<th>Def</th>
<th>Min</th>
<th>Maxi</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>22.15.1</td>
<td>3500</td>
<td>Temp variateur src</td>
<td>LINK</td>
<td>32</td>
<td>6000</td>
<td>0</td>
<td>16384</td>
<td>ERW</td>
<td>FVS</td>
<td></td>
</tr>
<tr>
<td>22.15.2</td>
<td>3504</td>
<td>Seuil temp variateur</td>
<td>degC</td>
<td>INT32</td>
<td>45</td>
<td>1</td>
<td>100</td>
<td>ERW</td>
<td>FVS</td>
<td></td>
</tr>
<tr>
<td>22.15.3</td>
<td>3508</td>
<td>Seuil hys variateur</td>
<td>degC</td>
<td>INT32</td>
<td>2</td>
<td>0</td>
<td>CALCI</td>
<td>ERW</td>
<td>FVS</td>
<td></td>
</tr>
<tr>
<td>22.15.4</td>
<td>3502</td>
<td>Temp moteur src</td>
<td>LINK</td>
<td>32</td>
<td>6000</td>
<td>0</td>
<td>16384</td>
<td>ERW</td>
<td>FVS</td>
<td></td>
</tr>
<tr>
<td>22.15.5</td>
<td>3506</td>
<td>Seuil temp moteur</td>
<td>degC</td>
<td>INT32</td>
<td>45</td>
<td>1</td>
<td>100</td>
<td>ERW</td>
<td>FVS</td>
<td></td>
</tr>
<tr>
<td>22.15.6</td>
<td>3510</td>
<td>Seuil hyst moteur</td>
<td>degC</td>
<td>INT32</td>
<td>2</td>
<td>0</td>
<td>CALCI</td>
<td>ERW</td>
<td>FVS</td>
<td></td>
</tr>
</tbody>
</table>

22.16 - FONCTIONS/CTRL.LIQUIDE

<table>
<thead>
<tr>
<th>Menu</th>
<th>PAR</th>
<th>Description</th>
<th>UM</th>
<th>Type</th>
<th>FB BIT</th>
<th>Def</th>
<th>Min</th>
<th>Maxi</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>22.16.1</td>
<td>6020</td>
<td>Humidité de l’air</td>
<td>perc</td>
<td>FLOAT</td>
<td>0.0</td>
<td>0.0</td>
<td>ER</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22.16.2</td>
<td>6022</td>
<td>Température de l’air</td>
<td>degC</td>
<td>FLOAT</td>
<td>0.0</td>
<td>0.0</td>
<td>ER</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22.16.3</td>
<td>6032</td>
<td>Point Temp.rossé</td>
<td>degC</td>
<td>INT16</td>
<td>0</td>
<td>0</td>
<td>ER</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22.16.4</td>
<td>6034</td>
<td>Offset rosée OFF</td>
<td>degC</td>
<td>INT16</td>
<td>8</td>
<td>2</td>
<td>50</td>
<td>ERW</td>
<td>FVS</td>
<td></td>
</tr>
<tr>
<td>22.16.5</td>
<td>6048</td>
<td>Offset rosée ON</td>
<td>degC</td>
<td>INT16</td>
<td>3</td>
<td>2</td>
<td>50</td>
<td>ERW</td>
<td>FVS</td>
<td></td>
</tr>
<tr>
<td>22.16.6</td>
<td>6036</td>
<td>Consign.temp.liquide</td>
<td>degC</td>
<td>INT16</td>
<td>0</td>
<td>0</td>
<td>ER</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22.16.7</td>
<td>6038</td>
<td>Admin.temp.liquide</td>
<td>degC</td>
<td>INT16</td>
<td>0</td>
<td>0</td>
<td>ER</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22.16.8</td>
<td>6040</td>
<td>Temp.liquide.src</td>
<td>LINK</td>
<td>32</td>
<td>6038</td>
<td>0</td>
<td>16384</td>
<td>ERW</td>
<td>FVS</td>
<td></td>
</tr>
<tr>
<td>22.16.9</td>
<td>6042</td>
<td>Affich.Temp.Liquide</td>
<td>degC</td>
<td>INT16</td>
<td>0</td>
<td>0</td>
<td>ER</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
FONCTIONS/MINUTEUR

<table>
<thead>
<tr>
<th>Menu</th>
<th>PAR</th>
<th>Description</th>
<th>UM</th>
<th>Type</th>
<th>FB</th>
<th>BIT</th>
<th>Def</th>
<th>Min</th>
<th>Maxi</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>22.17</td>
<td>3550</td>
<td>Minut 1 src</td>
<td>LINK</td>
<td>32</td>
<td>6000</td>
<td>0</td>
<td>16384</td>
<td>ERW</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22.17</td>
<td>3552</td>
<td>Minut 1 Tps.Pos</td>
<td>FLOAT</td>
<td>0.10</td>
<td>0.0</td>
<td>30.0</td>
<td>ERW</td>
<td>FVS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22.17</td>
<td>3554</td>
<td>Minut 1 Tps.Neg</td>
<td>FLOAT</td>
<td>0.10</td>
<td>0.0</td>
<td>30.0</td>
<td>ERW</td>
<td>FVS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22.17</td>
<td>3556</td>
<td>Visu.status.temps 1</td>
<td>INT32</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>ER</td>
<td>FVS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22.17</td>
<td>3560</td>
<td>Minut 2 src</td>
<td>LINK</td>
<td>32</td>
<td>6000</td>
<td>0</td>
<td>16384</td>
<td>ERW</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22.17</td>
<td>3562</td>
<td>Minut 2 Tps.Pos</td>
<td>FLOAT</td>
<td>0.10</td>
<td>0.0</td>
<td>30.0</td>
<td>ERW</td>
<td>FVS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22.17</td>
<td>3564</td>
<td>Minut 2 Tps.Neg</td>
<td>FLOAT</td>
<td>0.10</td>
<td>0.0</td>
<td>30.0</td>
<td>ERW</td>
<td>FVS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22.17</td>
<td>3566</td>
<td>Visu.status.temps 2</td>
<td>INT32</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>ER</td>
<td>FVS</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

FONCTIONS/ADAPT.LIM.COUPLE

<table>
<thead>
<tr>
<th>Menu</th>
<th>PAR</th>
<th>Description</th>
<th>UM</th>
<th>Type</th>
<th>FB</th>
<th>BIT</th>
<th>Def</th>
<th>Min</th>
<th>Maxi</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>22.18</td>
<td>2330</td>
<td>Lim.de couple haut</td>
<td>FLOAT</td>
<td>100.0</td>
<td>0.0</td>
<td>CALCF</td>
<td>ERW</td>
<td>F_S</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22.18</td>
<td>2332</td>
<td>Lim. de couple bas</td>
<td>FLOAT</td>
<td>70.0</td>
<td>0.0</td>
<td>CALCF</td>
<td>ERW</td>
<td>F_S</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22.18</td>
<td>2334</td>
<td>Rampe lim. de couple</td>
<td>UINT16</td>
<td>1000</td>
<td>0</td>
<td>60000</td>
<td>ERW</td>
<td>F_S</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22.18</td>
<td>2336</td>
<td>Sel.lim.couple src</td>
<td>LINK</td>
<td>16/32</td>
<td>976</td>
<td>0</td>
<td>16384</td>
<td>ERW</td>
<td>F_S</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22.18</td>
<td>2338</td>
<td>Adapt.lim. de couple</td>
<td>FLOAT</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>ER</td>
<td>F_S</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

COMMUNICATION

COMMUNICATION/RS485

<table>
<thead>
<tr>
<th>Menu</th>
<th>PAR</th>
<th>Description</th>
<th>UM</th>
<th>Type</th>
<th>FB</th>
<th>BIT</th>
<th>Def</th>
<th>Min</th>
<th>Maxi</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>23.1</td>
<td>3800</td>
<td>Adresse variateur</td>
<td>UINT16</td>
<td>1</td>
<td>1</td>
<td>255</td>
<td>ERW</td>
<td>FVS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>23.1</td>
<td>3802</td>
<td>Vitesse de com RS485</td>
<td>ENUM</td>
<td>38400</td>
<td>0</td>
<td>2</td>
<td>ERW</td>
<td>FVS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>23.1</td>
<td>3810</td>
<td>Paramètre série</td>
<td>ENUM</td>
<td>None,8,1</td>
<td>0</td>
<td>3</td>
<td>ERW</td>
<td>FVS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>23.1</td>
<td>3804</td>
<td>Protocol RS485</td>
<td>ENUM</td>
<td>Modbus</td>
<td>0</td>
<td>1</td>
<td>ERW</td>
<td>FVS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>23.1</td>
<td>3806</td>
<td>Retard RS485</td>
<td>UINT16</td>
<td>0</td>
<td>0</td>
<td>1000</td>
<td>ERW</td>
<td>FVS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>23.1</td>
<td>3808</td>
<td>Inversion mots RS485</td>
<td>BIT</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>ERW</td>
<td>FVS</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

COMMUNICATION/BUS CONFIG

<table>
<thead>
<tr>
<th>Menu</th>
<th>PAR</th>
<th>Description</th>
<th>UM</th>
<th>Type</th>
<th>FB</th>
<th>BIT</th>
<th>Def</th>
<th>Min</th>
<th>Maxi</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>23.2</td>
<td>4000</td>
<td>Type Bus de terrain</td>
<td>ENUM</td>
<td>Off</td>
<td>0</td>
<td>6</td>
<td>RW</td>
<td>FVS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>23.2</td>
<td>4004</td>
<td>Vites Bus de terrain</td>
<td>ENUM</td>
<td>500k</td>
<td>0</td>
<td>12</td>
<td>RW</td>
<td>FVS</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
23.2.3 Type Bus de terrain

<table>
<thead>
<tr>
<th>Menu</th>
<th>PAR</th>
<th>Description</th>
<th>UM</th>
<th>Type</th>
<th>FB</th>
<th>BIT</th>
<th>Def Value</th>
<th>Min</th>
<th>Maxi</th>
<th>Accuracy</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>23.2.3</td>
<td>4005</td>
<td>Type Bus de terrain</td>
<td>INT16</td>
<td>3</td>
<td>0</td>
<td>255</td>
<td>RW</td>
<td>FVS</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

23.2.4 Valid bus M->esclave

<table>
<thead>
<tr>
<th>Menu</th>
<th>PAR</th>
<th>Description</th>
<th>UM</th>
<th>Type</th>
<th>FB</th>
<th>BIT</th>
<th>Def Value</th>
<th>Min</th>
<th>Maxi</th>
<th>Accuracy</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>23.2.4</td>
<td>4010</td>
<td>Valid bus M->esclave</td>
<td>ENUM</td>
<td>Validé</td>
<td>0</td>
<td>1</td>
<td>ERWZ</td>
<td>FVS</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

23.2.5 Mode d’alarme Bus

<table>
<thead>
<tr>
<th>Menu</th>
<th>PAR</th>
<th>Description</th>
<th>UM</th>
<th>Type</th>
<th>FB</th>
<th>BIT</th>
<th>Def Value</th>
<th>Min</th>
<th>Maxi</th>
<th>Accuracy</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>23.2.5</td>
<td>4012</td>
<td>Mode d’alarme Bus</td>
<td>INT32</td>
<td>Arrêté</td>
<td>0</td>
<td>9</td>
<td>R</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

23.2.6 Etat Bus de terrain

<table>
<thead>
<tr>
<th>Menu</th>
<th>PAR</th>
<th>Description</th>
<th>UM</th>
<th>Type</th>
<th>FB</th>
<th>BIT</th>
<th>Def Value</th>
<th>Min</th>
<th>Maxi</th>
<th>Accuracy</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>23.2.6</td>
<td>4014</td>
<td>Etat Bus de terrain</td>
<td>ENUM</td>
<td>Arrêté</td>
<td>0</td>
<td>0</td>
<td>ER</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

23.2.7 Protocole RTE

<table>
<thead>
<tr>
<th>Menu</th>
<th>PAR</th>
<th>Description</th>
<th>UM</th>
<th>Type</th>
<th>FB</th>
<th>BIT</th>
<th>Def Value</th>
<th>Min</th>
<th>Maxi</th>
<th>Accuracy</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>23.2.7</td>
<td>4398</td>
<td>Protocole RTE</td>
<td>ENUM</td>
<td>Aucun</td>
<td>0</td>
<td>0</td>
<td>ER</td>
<td>FVS</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

23.3 - COMMUNICATION/BUS M->S

23.3.1 Bus M->Esc1 ipa

<table>
<thead>
<tr>
<th>Menu</th>
<th>PAR</th>
<th>Description</th>
<th>UM</th>
<th>Type</th>
<th>FB</th>
<th>BIT</th>
<th>Def Value</th>
<th>Min</th>
<th>Maxi</th>
<th>Accuracy</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>23.3.1</td>
<td>4020</td>
<td>Bus M->Esc1 ipa</td>
<td>FBM2SIPA</td>
<td>0</td>
<td>0</td>
<td>20000</td>
<td>RW</td>
<td>FVS</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

23.3.2 Bus M->Esc 1 sys

<table>
<thead>
<tr>
<th>Menu</th>
<th>PAR</th>
<th>Description</th>
<th>UM</th>
<th>Type</th>
<th>FB</th>
<th>BIT</th>
<th>Def Value</th>
<th>Min</th>
<th>Maxi</th>
<th>Accuracy</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>23.3.2</td>
<td>4022</td>
<td>Bus M->Esc 1 sys</td>
<td>ENUM</td>
<td>Non attribué</td>
<td>0</td>
<td>10</td>
<td>RW</td>
<td>FVS</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

23.3.3 Bus M->Esc 1 visu

<table>
<thead>
<tr>
<th>Menu</th>
<th>PAR</th>
<th>Description</th>
<th>UM</th>
<th>Type</th>
<th>FB</th>
<th>BIT</th>
<th>Def Value</th>
<th>Min</th>
<th>Maxi</th>
<th>Accuracy</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>23.3.3</td>
<td>4024</td>
<td>Bus M->Esc 1 visu</td>
<td>INT32</td>
<td>16</td>
<td>0</td>
<td>0</td>
<td>ERW</td>
<td>FVS</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

23.3.4 Bus terr M->E1 div

<table>
<thead>
<tr>
<th>Menu</th>
<th>PAR</th>
<th>Description</th>
<th>UM</th>
<th>Type</th>
<th>FB</th>
<th>BIT</th>
<th>Def Value</th>
<th>Min</th>
<th>Maxi</th>
<th>Accuracy</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>23.3.4</td>
<td>4026</td>
<td>Bus terr M->E1 div</td>
<td>FLOAT</td>
<td>1.0</td>
<td>1.0</td>
<td>1000.0</td>
<td>ERW</td>
<td>FVS</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

23.3.5 Bus M->Esc2 ipa

<table>
<thead>
<tr>
<th>Menu</th>
<th>PAR</th>
<th>Description</th>
<th>UM</th>
<th>Type</th>
<th>FB</th>
<th>BIT</th>
<th>Def Value</th>
<th>Min</th>
<th>Maxi</th>
<th>Accuracy</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>23.3.5</td>
<td>4030</td>
<td>Bus M->Esc2 ipa</td>
<td>FBM2SIPA</td>
<td>0</td>
<td>0</td>
<td>20000</td>
<td>RW</td>
<td>FVS</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

23.3.6 Bus M->Esc 2 sys

<table>
<thead>
<tr>
<th>Menu</th>
<th>PAR</th>
<th>Description</th>
<th>UM</th>
<th>Type</th>
<th>FB</th>
<th>BIT</th>
<th>Def Value</th>
<th>Min</th>
<th>Maxi</th>
<th>Accuracy</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>23.3.6</td>
<td>4032</td>
<td>Bus M->Esc 2 sys</td>
<td>ENUM</td>
<td>Non attribué</td>
<td>0</td>
<td>10</td>
<td>RW</td>
<td>FVS</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

23.3.8 IP adresse

<table>
<thead>
<tr>
<th>Menu</th>
<th>PAR</th>
<th>Description</th>
<th>UM</th>
<th>Type</th>
<th>FB</th>
<th>BIT</th>
<th>Def Value</th>
<th>Min</th>
<th>Maxi</th>
<th>Accuracy</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>23.3.8</td>
<td>5608</td>
<td>IP adresse</td>
<td>UINT32</td>
<td>0</td>
<td>0</td>
<td>4294967295</td>
<td>ER</td>
<td>FVS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Menu</td>
<td>PAR</td>
<td>Description</td>
<td>UM</td>
<td>Type</td>
<td>FB BIT</td>
<td>Def</td>
<td>Min</td>
<td>Maxi</td>
<td>Acc</td>
<td>Mod</td>
<td></td>
</tr>
<tr>
<td>------</td>
<td>-----</td>
<td>-------------</td>
<td>----</td>
<td>------</td>
<td>--------</td>
<td>-----</td>
<td>-----</td>
<td>------</td>
<td>-----</td>
<td>-----</td>
<td></td>
</tr>
<tr>
<td>23.3.7</td>
<td>4034</td>
<td>Bus M->Esc 2 visu</td>
<td>INT32</td>
<td>16</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>ERW</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>23.3.8</td>
<td>4036</td>
<td>Bus terr M->E2 div</td>
<td>FLOAT</td>
<td>1.0</td>
<td>1.0</td>
<td>1000.0</td>
<td>ERW</td>
<td>FVS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>23.3.9</td>
<td>4040</td>
<td>Bus M->Esc3 ipa</td>
<td>FBM2SIPA</td>
<td>0</td>
<td>0</td>
<td>20000</td>
<td>RW</td>
<td>FVS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>23.3.10</td>
<td>4042</td>
<td>Bus M->Esc 3 sys</td>
<td>ENUM</td>
<td>Non attribué</td>
<td>0</td>
<td>10</td>
<td>RW</td>
<td>FVS</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Menu</th>
<th>PAR</th>
<th>Description</th>
<th>UM</th>
<th>Type</th>
<th>FB BIT</th>
<th>Def</th>
<th>Min</th>
<th>Maxi</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>23.3.11</td>
<td>4044</td>
<td>Bus M->Esc 3 visu</td>
<td>INT32</td>
<td>16</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>ERW</td>
<td>FVS</td>
<td></td>
</tr>
<tr>
<td>23.3.12</td>
<td>4046</td>
<td>Bus terr M->E3 div</td>
<td>FLOAT</td>
<td>1.0</td>
<td>1.0</td>
<td>1000.0</td>
<td>ERW</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>23.3.13</td>
<td>4050</td>
<td>Bus M->Esc4 ipa</td>
<td>FBM2SIPA</td>
<td>0</td>
<td>0</td>
<td>20000</td>
<td>RW</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>23.3.14</td>
<td>4052</td>
<td>Bus M->Esc 4 sys</td>
<td>ENUM</td>
<td>Non attribué</td>
<td>0</td>
<td>10</td>
<td>RW</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Menu</th>
<th>PAR</th>
<th>Description</th>
<th>UM</th>
<th>Type</th>
<th>FB BIT</th>
<th>Def</th>
<th>Min</th>
<th>Maxi</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>23.3.15</td>
<td>4054</td>
<td>Bus M->Esc 4 visu</td>
<td>INT32</td>
<td>16</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>ERW</td>
<td>FVS</td>
<td></td>
</tr>
<tr>
<td>23.3.16</td>
<td>4056</td>
<td>Bus terr M->E4 div</td>
<td>FLOAT</td>
<td>1.0</td>
<td>1.0</td>
<td>1000.0</td>
<td>ERW</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>23.3.17</td>
<td>4060</td>
<td>Bus M->Esc5 ipa</td>
<td>FBM2SIPA</td>
<td>0</td>
<td>0</td>
<td>20000</td>
<td>RW</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>23.3.18</td>
<td>4062</td>
<td>Bus M->Esc 5 sys</td>
<td>ENUM</td>
<td>Non attribué</td>
<td>0</td>
<td>10</td>
<td>RW</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Menu</th>
<th>PAR</th>
<th>Description</th>
<th>UM</th>
<th>Type</th>
<th>FB BIT</th>
<th>Def</th>
<th>Min</th>
<th>Maxi</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>23.3.19</td>
<td>4064</td>
<td>Bus M->Esc 5 visu</td>
<td>INT32</td>
<td>16</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>ERW</td>
<td>FVS</td>
<td></td>
</tr>
<tr>
<td>Menu</td>
<td>PAR</td>
<td>Description</td>
<td>UM</td>
<td>Type</td>
<td>FB BIT</td>
<td>Def</td>
<td>Min</td>
<td>Maxi</td>
<td>Acc</td>
<td>Mod</td>
</tr>
<tr>
<td>--------</td>
<td>------</td>
<td>------------------</td>
<td>---------</td>
<td>----------</td>
<td>--------</td>
<td>------</td>
<td>--------</td>
<td>---------</td>
<td>-----</td>
<td>-----</td>
</tr>
<tr>
<td>23.3.20</td>
<td>4066</td>
<td>Bus terr M -> E5 div</td>
<td>FLOAT</td>
<td>1.0</td>
<td>1.0</td>
<td>1000.0</td>
<td>ERW</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>23.3.21</td>
<td>4070</td>
<td>Bus M -> Esc6 ipa</td>
<td>FBM2SIPA</td>
<td>0</td>
<td>0</td>
<td>20000</td>
<td>RW</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>23.3.22</td>
<td>4072</td>
<td>Bus M -> Esc 6 sys</td>
<td>ENUM</td>
<td>Non attribué</td>
<td>0</td>
<td>10</td>
<td>RW</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td>Non attribué</td>
<td>1</td>
<td>MotCount 16</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>MotCount 16</td>
<td>2</td>
<td>MotCount 32</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td>MotCount 16</td>
<td>3</td>
<td>MotFill 16</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3</td>
<td>MotFill 16</td>
<td>4</td>
<td>MotFill 3 bit</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>4</td>
<td>MotFill 16</td>
<td>5</td>
<td>Mdplc 16</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>5</td>
<td>Mdplc 16</td>
<td>6</td>
<td>Mdplc 32</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>6</td>
<td>Mdplc 32</td>
<td>7</td>
<td>EU</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>7</td>
<td>EU</td>
<td>8</td>
<td>Eu float</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>8</td>
<td>Eu float</td>
<td>9</td>
<td>Par 16</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>9</td>
<td>Par 16</td>
<td>10</td>
<td>Par 32</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>23.3.23</td>
<td>4074</td>
<td>Bus M -> Esc 6 visu</td>
<td>INT32</td>
<td>16</td>
<td>0</td>
<td>0</td>
<td>ERW</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>23.3.24</td>
<td>4076</td>
<td>Bus terr M -> E6 div</td>
<td>FLOAT</td>
<td>1.0</td>
<td>1.0</td>
<td>1000.0</td>
<td>ERW</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>23.3.25</td>
<td>4080</td>
<td>Bus M -> Esc7 ipa</td>
<td>FBM2SIPA</td>
<td>0</td>
<td>0</td>
<td>20000</td>
<td>RW</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>23.3.26</td>
<td>4082</td>
<td>Bus M -> Esc 7 sys</td>
<td>ENUM</td>
<td>Non attribué</td>
<td>0</td>
<td>10</td>
<td>RW</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td>Non attribué</td>
<td>1</td>
<td>MotCount 16</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>MotCount 16</td>
<td>2</td>
<td>MotCount 32</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td>MotCount 16</td>
<td>3</td>
<td>MotFill 16</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3</td>
<td>MotFill 16</td>
<td>4</td>
<td>MotFill 3 bit</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>4</td>
<td>MotFill 16</td>
<td>5</td>
<td>Mdplc 16</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>5</td>
<td>Mdplc 16</td>
<td>6</td>
<td>Mdplc 32</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>6</td>
<td>Mdplc 32</td>
<td>7</td>
<td>EU</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>7</td>
<td>EU</td>
<td>8</td>
<td>Eu float</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>8</td>
<td>Eu float</td>
<td>9</td>
<td>Par 16</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>9</td>
<td>Par 16</td>
<td>10</td>
<td>Par 32</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>23.3.27</td>
<td>4084</td>
<td>Bus M -> Esc 7 visu</td>
<td>INT32</td>
<td>16</td>
<td>0</td>
<td>0</td>
<td>ERW</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>23.3.28</td>
<td>4086</td>
<td>Bus terr M -> E7 div</td>
<td>FLOAT</td>
<td>1.0</td>
<td>1.0</td>
<td>1000.0</td>
<td>ERW</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>23.3.29</td>
<td>4090</td>
<td>Bus M -> Esc8 ipa</td>
<td>FBM2SIPA</td>
<td>0</td>
<td>0</td>
<td>20000</td>
<td>RW</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>23.3.30</td>
<td>4092</td>
<td>Bus M -> Esc 8 sys</td>
<td>ENUM</td>
<td>Non attribué</td>
<td>0</td>
<td>10</td>
<td>RW</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td>Non attribué</td>
<td>1</td>
<td>MotCount 16</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>MotCount 16</td>
<td>2</td>
<td>MotCount 32</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td>MotCount 16</td>
<td>3</td>
<td>MotFill 16</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3</td>
<td>MotFill 16</td>
<td>4</td>
<td>MotFill 3 bit</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>4</td>
<td>MotFill 16</td>
<td>5</td>
<td>Mdplc 16</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>5</td>
<td>Mdplc 16</td>
<td>6</td>
<td>Mdplc 32</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>6</td>
<td>Mdplc 32</td>
<td>7</td>
<td>EU</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>7</td>
<td>EU</td>
<td>8</td>
<td>Eu float</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>8</td>
<td>Eu float</td>
<td>9</td>
<td>Par 16</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>9</td>
<td>Par 16</td>
<td>10</td>
<td>Par 32</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>23.3.31</td>
<td>4094</td>
<td>Bus M -> Esc 8 visu</td>
<td>INT32</td>
<td>16</td>
<td>0</td>
<td>0</td>
<td>ERW</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>23.3.32</td>
<td>4096</td>
<td>Bus terr M -> E8 div</td>
<td>FLOAT</td>
<td>1.0</td>
<td>1.0</td>
<td>1000.0</td>
<td>ERW</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>23.3.33</td>
<td>4100</td>
<td>Bus M -> Esc 9 ipa</td>
<td>FBM2SIPA</td>
<td>0</td>
<td>0</td>
<td>20000</td>
<td>RW</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>23.3.34</td>
<td>4102</td>
<td>Bus M -> Esc 9 sys</td>
<td>ENUM</td>
<td>Non attribué</td>
<td>0</td>
<td>10</td>
<td>RW</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td>Non attribué</td>
<td>1</td>
<td>MotCount 16</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>MotCount 16</td>
<td>2</td>
<td>MotCount 32</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td>MotCount 16</td>
<td>3</td>
<td>MotFill 16</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3</td>
<td>MotFill 16</td>
<td>4</td>
<td>MotFill 3 bit</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>4</td>
<td>MotFill 16</td>
<td>5</td>
<td>Mdplc 16</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>5</td>
<td>Mdplc 16</td>
<td>6</td>
<td>Mdplc 32</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Menu</td>
<td>PAR</td>
<td>Description</td>
<td>UM</td>
<td>Type</td>
<td>FB BIT</td>
<td>Def</td>
<td>Min</td>
<td>Maxi</td>
<td>Acc</td>
<td>Mod</td>
</tr>
<tr>
<td>-------</td>
<td>------</td>
<td>-------------</td>
<td>---------</td>
<td>----------</td>
<td>--------</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
</tr>
<tr>
<td>7</td>
<td>EU</td>
<td>EU</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>ERW</td>
<td>FVS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>EU float</td>
<td>Eu float</td>
<td>1.0</td>
<td>1.0</td>
<td>1000.0</td>
<td>ERW</td>
<td>FVS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Par 16</td>
<td>Par 16</td>
<td>0</td>
<td>0</td>
<td>20000</td>
<td>RW</td>
<td>FVS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Par 32</td>
<td>Par 32</td>
<td>0</td>
<td>0</td>
<td>20000</td>
<td>RW</td>
<td>FVS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>23.3.35</td>
<td>4104</td>
<td>Bus M->Esc 9 visu</td>
<td>INT32</td>
<td>16</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>ERW</td>
<td>FVS</td>
<td></td>
</tr>
<tr>
<td>23.3.36</td>
<td>4106</td>
<td>Bus terr M->E9 div</td>
<td>FLOAT</td>
<td>1.0</td>
<td>1.0</td>
<td>1000.0</td>
<td>ERW</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>23.3.37</td>
<td>4110</td>
<td>Bus M->Esc 10 ipa</td>
<td>FBM2SIPA</td>
<td>0</td>
<td>0</td>
<td>20000</td>
<td>RW</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>23.3.38</td>
<td>4112</td>
<td>Bus M->Esc 10 sys</td>
<td>ENUM</td>
<td>Non attribué</td>
<td>0</td>
<td>10</td>
<td>RW</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>23.3.39</td>
<td>4114</td>
<td>Bus M->Esc 10 visu</td>
<td>INT32</td>
<td>16</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>ERW</td>
<td>FVS</td>
<td></td>
</tr>
<tr>
<td>23.3.40</td>
<td>4116</td>
<td>Bus terr M->E10 div</td>
<td>FLOAT</td>
<td>1.0</td>
<td>1.0</td>
<td>1000.0</td>
<td>ERW</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>23.3.41</td>
<td>4120</td>
<td>Bus M->Esc 11 ipa</td>
<td>FBM2SIPA</td>
<td>0</td>
<td>0</td>
<td>20000</td>
<td>RW</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>23.3.42</td>
<td>4122</td>
<td>Bus M->Esc 11 sys</td>
<td>ENUM</td>
<td>Non attribué</td>
<td>0</td>
<td>10</td>
<td>RW</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>23.3.43</td>
<td>4124</td>
<td>Bus M->Esc 11 visu</td>
<td>INT32</td>
<td>16</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>ERW</td>
<td>FVS</td>
<td></td>
</tr>
<tr>
<td>23.3.44</td>
<td>4126</td>
<td>Bus terr M->E11 div</td>
<td>FLOAT</td>
<td>1.0</td>
<td>1.0</td>
<td>1000.0</td>
<td>ERW</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>23.3.45</td>
<td>4130</td>
<td>Bus M->Esc 12 ipa</td>
<td>FBM2SIPA</td>
<td>0</td>
<td>0</td>
<td>20000</td>
<td>RW</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>23.3.46</td>
<td>4132</td>
<td>Bus M->Esc 12 sys</td>
<td>ENUM</td>
<td>Non attribué</td>
<td>0</td>
<td>10</td>
<td>RW</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>23.3.47</td>
<td>4134</td>
<td>Bus M->Esc 12 visu</td>
<td>INT32</td>
<td>16</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>ERW</td>
<td>FVS</td>
<td></td>
</tr>
<tr>
<td>23.3.48</td>
<td>4136</td>
<td>Bus terr M->E12 div</td>
<td>FLOAT</td>
<td>1.0</td>
<td>1.0</td>
<td>1000.0</td>
<td>ERW</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>23.3.49</td>
<td>4140</td>
<td>Bus M->Esc 13 ipa</td>
<td>FBM2SIPA</td>
<td>0</td>
<td>0</td>
<td>20000</td>
<td>RW</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>23.3.50</td>
<td>4142</td>
<td>Bus M->Esc 13 sys</td>
<td>ENUM</td>
<td>Non attribué</td>
<td>0</td>
<td>10</td>
<td>RW</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ADV200 • Liste des paramètres

253
<table>
<thead>
<tr>
<th>Menu</th>
<th>PAR</th>
<th>Description</th>
<th>UM</th>
<th>Type</th>
<th>FB BIT</th>
<th>Def</th>
<th>Min</th>
<th>Maxi</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>23.3.51</td>
<td>4144</td>
<td>Bus M->Esc 13 visu</td>
<td>INT32</td>
<td>MotCount 32</td>
<td>16</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>ERW</td>
<td>FVS</td>
</tr>
<tr>
<td>23.3.52</td>
<td>4146</td>
<td>Bus terr M->E13 div</td>
<td>FLOAT</td>
<td>MotFill 16</td>
<td>1.0</td>
<td>1.0</td>
<td>1000.0</td>
<td>ERW</td>
<td>FVS</td>
<td></td>
</tr>
<tr>
<td>23.3.53</td>
<td>4150</td>
<td>Bus M->Esc 14 ipa</td>
<td>FBM2SIPA</td>
<td>MotFill 3 bit</td>
<td>0</td>
<td>0</td>
<td>20000</td>
<td>RW</td>
<td>FVS</td>
<td></td>
</tr>
<tr>
<td>23.3.54</td>
<td>4152</td>
<td>Bus M->Esc 14 sys</td>
<td>ENUM</td>
<td>Non attribué</td>
<td>0</td>
<td>0</td>
<td>10</td>
<td>RW</td>
<td>FVS</td>
<td></td>
</tr>
<tr>
<td>23.3.55</td>
<td>4154</td>
<td>Bus M->Esc 14 visu</td>
<td>INT32</td>
<td>MotCount 16</td>
<td>16</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>ERW</td>
<td>FVS</td>
</tr>
<tr>
<td>23.3.56</td>
<td>4156</td>
<td>Bus terr M->E14 div</td>
<td>FLOAT</td>
<td>MotCount 32</td>
<td>1.0</td>
<td>1.0</td>
<td>1000.0</td>
<td>ERW</td>
<td>FVS</td>
<td></td>
</tr>
<tr>
<td>23.3.57</td>
<td>4160</td>
<td>Bus M->Esc 15 ipa</td>
<td>FBM2SIPA</td>
<td>MotFill 16</td>
<td>0</td>
<td>0</td>
<td>20000</td>
<td>RW</td>
<td>FVS</td>
<td></td>
</tr>
<tr>
<td>23.3.58</td>
<td>4162</td>
<td>Bus M->Esc 15 sys</td>
<td>ENUM</td>
<td>MotCount 32</td>
<td>0</td>
<td>0</td>
<td>10</td>
<td>RW</td>
<td>FVS</td>
<td></td>
</tr>
<tr>
<td>23.3.59</td>
<td>4164</td>
<td>Bus M->Esc 15 visu</td>
<td>INT32</td>
<td>MotFill 3 bit</td>
<td>16</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>ERW</td>
<td>FVS</td>
</tr>
<tr>
<td>23.3.60</td>
<td>4166</td>
<td>Bus terr M->E15 div</td>
<td>FLOAT</td>
<td>Mdplc 16</td>
<td>1.0</td>
<td>1.0</td>
<td>1000.0</td>
<td>ERW</td>
<td>FVS</td>
<td></td>
</tr>
<tr>
<td>23.3.61</td>
<td>4170</td>
<td>Bus M->Esc 16 ipa</td>
<td>FBM2SIPA</td>
<td>Mdplc 32</td>
<td>0</td>
<td>0</td>
<td>20000</td>
<td>RW</td>
<td>FVS</td>
<td></td>
</tr>
<tr>
<td>23.3.62</td>
<td>4172</td>
<td>Bus M->Esc 16 sys</td>
<td>ENUM</td>
<td>Mdplc 32</td>
<td>0</td>
<td>0</td>
<td>10</td>
<td>RW</td>
<td>FVS</td>
<td></td>
</tr>
<tr>
<td>23.3.63</td>
<td>4174</td>
<td>Bus M->Esc 16 visu</td>
<td>INT32</td>
<td>EU</td>
<td>16</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>ERW</td>
<td>FVS</td>
</tr>
<tr>
<td>Menu</td>
<td>PAR</td>
<td>Description</td>
<td>UM</td>
<td>Type</td>
<td>FB BIT Def</td>
<td>Min</td>
<td>Maxi</td>
<td>Acc</td>
<td>Mod</td>
<td></td>
</tr>
<tr>
<td>------</td>
<td>-----</td>
<td>-------------</td>
<td>--------</td>
<td>--------</td>
<td>------------</td>
<td>-----</td>
<td>------</td>
<td>-----</td>
<td>-----</td>
<td></td>
</tr>
<tr>
<td>23.3.64</td>
<td>4176</td>
<td>Bus terr M -> E16 div</td>
<td>FLOAT</td>
<td>1.0</td>
<td>1.0</td>
<td>1000.0</td>
<td>ERW</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

23.4 - COMMUNICATION/BUS S->M

<p>| | | | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>23.4.1</td>
<td>4180</td>
<td>Bus Esc -> M 1 ipa</td>
<td>FBS2MIPA</td>
<td>0</td>
<td>0</td>
<td>20000</td>
<td>RW</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>23.4.2</td>
<td>4182</td>
<td>Bus Esc -> M 1 sys</td>
<td>ENUM</td>
<td>Non attribué</td>
<td>0</td>
<td>10</td>
<td>RW</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>23.4.3</td>
<td>4184</td>
<td>Bus Esc -> M 1 valeur</td>
<td>INT32</td>
<td>16</td>
<td>0</td>
<td>0</td>
<td>ERW</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>23.4.4</td>
<td>4186</td>
<td>Bus terr E -> M1 mul</td>
<td>FLOAT</td>
<td>1.0</td>
<td>1.0</td>
<td>1000.0</td>
<td>ERW</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>23.4.5</td>
<td>4190</td>
<td>Bus Esc -> M 2 ipa</td>
<td>FBS2MIPA</td>
<td>0</td>
<td>0</td>
<td>20000</td>
<td>RW</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>23.4.6</td>
<td>4192</td>
<td>Bus Esc -> M 2 sys</td>
<td>ENUM</td>
<td>Non attribué</td>
<td>0</td>
<td>10</td>
<td>RW</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>23.4.7</td>
<td>4194</td>
<td>Bus Esc -> M 2 valeur</td>
<td>INT32</td>
<td>16</td>
<td>0</td>
<td>0</td>
<td>ERW</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>23.4.8</td>
<td>4196</td>
<td>Bus terr E -> M2 mul</td>
<td>FLOAT</td>
<td>1.0</td>
<td>1.0</td>
<td>1000.0</td>
<td>ERW</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>23.4.9</td>
<td>4200</td>
<td>Bus Esc -> M 3 ipa</td>
<td>FBS2MIPA</td>
<td>0</td>
<td>0</td>
<td>20000</td>
<td>RW</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>23.4.10</td>
<td>4202</td>
<td>Bus Esc -> M 3 sys</td>
<td>ENUM</td>
<td>Non attribué</td>
<td>0</td>
<td>10</td>
<td>RW</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>23.4.11</td>
<td>4204</td>
<td>Bus Esc -> M 3 valeur</td>
<td>INT32</td>
<td>16</td>
<td>0</td>
<td>0</td>
<td>ERW</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>23.4.12</td>
<td>4206</td>
<td>Bus terr E -> M3 mul</td>
<td>FLOAT</td>
<td>1.0</td>
<td>1.0</td>
<td>1000.0</td>
<td>ERW</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>23.4.13</td>
<td>4210</td>
<td>Bus Esc -> M 4 ipa</td>
<td>FBS2MIPA</td>
<td>0</td>
<td>0</td>
<td>20000</td>
<td>RW</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>23.4.14</td>
<td>4212</td>
<td>Bus Esc -> M 4 sys</td>
<td>ENUM</td>
<td>Non attribué</td>
<td>0</td>
<td>10</td>
<td>RW</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Menu</td>
<td>PAR</td>
<td>Description</td>
<td>UM</td>
<td>Type</td>
<td>FB</td>
<td>BIT</td>
<td>Def</td>
<td>Min</td>
<td>Maxi</td>
<td>Acc</td>
</tr>
<tr>
<td>------</td>
<td>-----</td>
<td>-------------</td>
<td>----------</td>
<td>--------</td>
<td>----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>------</td>
<td>-----</td>
</tr>
<tr>
<td>23.4.15</td>
<td>4214</td>
<td>Bus Esc->M 4 valeur</td>
<td>INT32</td>
<td>16</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>ERW</td>
<td>FVS</td>
</tr>
<tr>
<td>23.4.16</td>
<td>4216</td>
<td>Bus terr E->M4 mul</td>
<td>FLOAT</td>
<td>4216</td>
<td>1.0</td>
<td>1.0</td>
<td>1000.0</td>
<td>1.0</td>
<td>ERW</td>
<td>FVS</td>
</tr>
<tr>
<td>23.4.17</td>
<td>4220</td>
<td>Bus Esc->M 5 ipa</td>
<td>FBS2MIPA</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>20000</td>
<td>0</td>
<td>RW</td>
<td>FVS</td>
</tr>
<tr>
<td>23.4.18</td>
<td>4222</td>
<td>Bus Esc->M 5 sys</td>
<td>ENUM</td>
<td>Non attribué</td>
<td>0</td>
<td>10</td>
<td>RW</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Menu</th>
<th>PAR</th>
<th>Description</th>
<th>UM</th>
<th>Type</th>
<th>FB</th>
<th>BIT</th>
<th>Def</th>
<th>Min</th>
<th>Maxi</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>23.4.19</td>
<td>4224</td>
<td>Bus Esc->M 5 valeur</td>
<td>INT32</td>
<td>16</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>ERW</td>
<td>FVS</td>
<td></td>
</tr>
<tr>
<td>23.4.20</td>
<td>4226</td>
<td>Bus terr E->M5 mul</td>
<td>FLOAT</td>
<td>4226</td>
<td>1.0</td>
<td>1.0</td>
<td>1000.0</td>
<td>1.0</td>
<td>ERW</td>
<td>FVS</td>
<td></td>
</tr>
<tr>
<td>23.4.21</td>
<td>4230</td>
<td>Bus Esc->M 6 ipa</td>
<td>FBS2MIPA</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>20000</td>
<td>0</td>
<td>RW</td>
<td>FVS</td>
<td></td>
</tr>
<tr>
<td>23.4.22</td>
<td>4232</td>
<td>Bus Esc->M 6 sys</td>
<td>ENUM</td>
<td>Non attribué</td>
<td>0</td>
<td>10</td>
<td>RW</td>
<td>FVS</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Menu</th>
<th>PAR</th>
<th>Description</th>
<th>UM</th>
<th>Type</th>
<th>FB</th>
<th>BIT</th>
<th>Def</th>
<th>Min</th>
<th>Maxi</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>23.4.23</td>
<td>4234</td>
<td>Bus Esc->M 6 valeur</td>
<td>INT32</td>
<td>16</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>ERW</td>
<td>FVS</td>
<td></td>
</tr>
<tr>
<td>23.4.24</td>
<td>4236</td>
<td>Bus terr E->M6 mul</td>
<td>FLOAT</td>
<td>4236</td>
<td>1.0</td>
<td>1.0</td>
<td>1000.0</td>
<td>1.0</td>
<td>ERW</td>
<td>FVS</td>
<td></td>
</tr>
<tr>
<td>23.4.25</td>
<td>4240</td>
<td>Bus Esc->M 7 ipa</td>
<td>FBS2MIPA</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>20000</td>
<td>0</td>
<td>RW</td>
<td>FVS</td>
<td></td>
</tr>
<tr>
<td>23.4.26</td>
<td>4242</td>
<td>Bus Esc->M 7 sys</td>
<td>ENUM</td>
<td>Non attribué</td>
<td>0</td>
<td>10</td>
<td>RW</td>
<td>FVS</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Menu</th>
<th>PAR</th>
<th>Description</th>
<th>UM</th>
<th>Type</th>
<th>FB</th>
<th>BIT</th>
<th>Def</th>
<th>Min</th>
<th>Maxi</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>23.4.27</td>
<td>4244</td>
<td>Bus Esc->M 7 valeur</td>
<td>INT32</td>
<td>16</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>ERW</td>
<td>FVS</td>
<td></td>
</tr>
<tr>
<td>23.4.28</td>
<td>4246</td>
<td>Bus terr E->M7 mul</td>
<td>FLOAT</td>
<td>4246</td>
<td>1.0</td>
<td>1.0</td>
<td>1000.0</td>
<td>1.0</td>
<td>ERW</td>
<td>FVS</td>
<td></td>
</tr>
<tr>
<td>23.4.29</td>
<td>4250</td>
<td>Bus Esc->M 8 ipa</td>
<td>FBS2MIPA</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>20000</td>
<td>0</td>
<td>RW</td>
<td>FVS</td>
<td></td>
</tr>
<tr>
<td>23.4.30</td>
<td>4252</td>
<td>Bus Esc->M 8 sys</td>
<td>ENUM</td>
<td>Non attribué</td>
<td>0</td>
<td>10</td>
<td>RW</td>
<td>FVS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Menu</td>
<td>PAR</td>
<td>Description</td>
<td>UM</td>
<td>Type</td>
<td>FB</td>
<td>BIT</td>
<td>Def</td>
<td>Min</td>
<td>Maxi</td>
<td>Acc</td>
<td>Mod</td>
</tr>
<tr>
<td>------</td>
<td>------</td>
<td>----------------------</td>
<td>----</td>
<td>---------</td>
<td>----</td>
<td>-----</td>
<td>-----</td>
<td>------</td>
<td>-------</td>
<td>-----</td>
<td>-----</td>
</tr>
<tr>
<td>0</td>
<td>Non attribué</td>
<td></td>
<td>0</td>
<td>INT32</td>
<td>16</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>ERW</td>
<td>FVS</td>
</tr>
<tr>
<td>1</td>
<td>MotCount 16</td>
<td></td>
<td>1</td>
<td>FLOAT</td>
<td>1.0</td>
<td>1.0</td>
<td>1000.0</td>
<td>ERW</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>MotCount 32</td>
<td></td>
<td>2</td>
<td>FBS2MIPA</td>
<td>0</td>
<td>0</td>
<td>20000</td>
<td>RW</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>MotFill 16</td>
<td></td>
<td>3</td>
<td>ENUM</td>
<td>Non attribué</td>
<td>0</td>
<td>10</td>
<td>RW</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>MotFill 3 bit</td>
<td></td>
<td>4</td>
<td>ENUM</td>
<td>Non attribué</td>
<td>0</td>
<td>10</td>
<td>RW</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Mdplc 16</td>
<td></td>
<td>5</td>
<td>ENUM</td>
<td>Non attribué</td>
<td>0</td>
<td>10</td>
<td>RW</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Mdplc 32</td>
<td></td>
<td>6</td>
<td>ENUM</td>
<td>Non attribué</td>
<td>0</td>
<td>10</td>
<td>RW</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>EU</td>
<td></td>
<td>7</td>
<td>ENUM</td>
<td>Non attribué</td>
<td>0</td>
<td>10</td>
<td>RW</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Eu float</td>
<td></td>
<td>8</td>
<td>ENUM</td>
<td>Non attribué</td>
<td>0</td>
<td>10</td>
<td>RW</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Par 16</td>
<td></td>
<td>9</td>
<td>ENUM</td>
<td>Non attribué</td>
<td>0</td>
<td>10</td>
<td>RW</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Par 32</td>
<td></td>
<td>10</td>
<td>ENUM</td>
<td>Non attribué</td>
<td>0</td>
<td>10</td>
<td>RW</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

23.4.31 4234 Bus Esc->M 8 valeur
23.4.32 4256 Bus terr E->M8 mul
23.4.33 4260 Bus Esc->M 9 ipa
23.4.34 4262 Bus Esc->M 9 sys
23.4.35 4264 Bus Esc->M 9 valeur
23.4.36 4266 Bus terr E->M9 mul
23.4.37 4270 Bus Esc->M 10 ipa
23.4.38 4272 Bus Esc->M 10 sys
23.4.39 4274 Bus Esc->M 10 valeur
23.4.40 4276 Bus terr E->M10 mul
23.4.41 4280 Bus Esc->M 11 ipa
23.4.42 4282 Bus Esc->M 11 sys
<table>
<thead>
<tr>
<th>Menu</th>
<th>PAR</th>
<th>Description</th>
<th>UM</th>
<th>Type</th>
<th>FB</th>
<th>BIT</th>
<th>Def</th>
<th>Min</th>
<th>Maxi</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>23.4.43</td>
<td>4284</td>
<td>Bus Esc->M 11 valeur</td>
<td>INT32</td>
<td>16</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td>ERW</td>
<td>FVS</td>
</tr>
<tr>
<td>23.4.44</td>
<td>4286</td>
<td>Bus terr E->M11 mul</td>
<td>FLOAT</td>
<td>1.0</td>
<td>1.0</td>
<td>1000.0</td>
<td></td>
<td>ERW</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>23.4.45</td>
<td>4290</td>
<td>Bus Esc->M 12 ipa</td>
<td>FBS2MIPA</td>
<td>0</td>
<td>0</td>
<td>20000</td>
<td></td>
<td>RW</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>23.4.46</td>
<td>4292</td>
<td>Bus Esc->M 12 sys</td>
<td>ENUM</td>
<td>Non attribué</td>
<td>0</td>
<td>10</td>
<td>RW</td>
<td>FVS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>23.4.47</td>
<td>4294</td>
<td>Bus Esc->M 12 valeur</td>
<td>INT32</td>
<td>16</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td>ERW</td>
<td>FVS</td>
</tr>
<tr>
<td>23.4.48</td>
<td>4296</td>
<td>Bus terr E->M12 mul</td>
<td>FLOAT</td>
<td>1.0</td>
<td>1.0</td>
<td>1000.0</td>
<td></td>
<td>ERW</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>23.4.49</td>
<td>4300</td>
<td>Bus Esc->M 13 ipa</td>
<td>FBS2MIPA</td>
<td>0</td>
<td>0</td>
<td>20000</td>
<td></td>
<td>RW</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>23.4.50</td>
<td>4302</td>
<td>Bus Esc->M 13 sys</td>
<td>ENUM</td>
<td>Non attribué</td>
<td>0</td>
<td>10</td>
<td>RW</td>
<td>FVS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>23.4.51</td>
<td>4304</td>
<td>Bus Esc->M 13 valeur</td>
<td>INT32</td>
<td>16</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td>ERW</td>
<td>FVS</td>
</tr>
<tr>
<td>23.4.52</td>
<td>4306</td>
<td>Bus terr E->M13 mul</td>
<td>FLOAT</td>
<td>1.0</td>
<td>1.0</td>
<td>1000.0</td>
<td></td>
<td>ERW</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>23.4.53</td>
<td>4310</td>
<td>Bus Esc->M 14 ipa</td>
<td>FBS2MIPA</td>
<td>0</td>
<td>0</td>
<td>20000</td>
<td></td>
<td>RW</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>23.4.54</td>
<td>4312</td>
<td>Bus Esc->M 14 sys</td>
<td>ENUM</td>
<td>Non attribué</td>
<td>0</td>
<td>10</td>
<td>RW</td>
<td>FVS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>23.4.55</td>
<td>4314</td>
<td>Bus Esc->M 14 valeur</td>
<td>INT32</td>
<td>16</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td>ERW</td>
<td>FVS</td>
</tr>
<tr>
<td>23.4.56</td>
<td>4316</td>
<td>Bus terr E->M14 mul</td>
<td>FLOAT</td>
<td>1.0</td>
<td>1.0</td>
<td>1000.0</td>
<td></td>
<td>ERW</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>23.4.57</td>
<td>4320</td>
<td>Bus Esc->M 15 ipa</td>
<td>FBS2MIPA</td>
<td>0</td>
<td>0</td>
<td>20000</td>
<td></td>
<td>RW</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>23.4.58</td>
<td>4322</td>
<td>Bus Esc->M 15 sys</td>
<td>ENUM</td>
<td>Non attribué</td>
<td>0</td>
<td>10</td>
<td>RW</td>
<td>FVS</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

0 Non attribué
1 MotCount 16
2 MotCount 32
3 MotFill 16
4 MotFill 3 bit
5 Mdplc 16
6 Mdplc 32
7 EU
8 Eu float
9 Par 16
10 Par 32

EU
Eu float
Par 16
Par 32
<table>
<thead>
<tr>
<th>Menu</th>
<th>PAR</th>
<th>Description</th>
<th>UM</th>
<th>Type</th>
<th>FB BIT</th>
<th>Def Min</th>
<th>Maxi</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>23.4.59</td>
<td>4324</td>
<td>Bus Esc->M 15 valeur</td>
<td>INT32</td>
<td>16</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>23.4.60</td>
<td>4326</td>
<td>Bus terr E->M15 mul</td>
<td>FLOAT</td>
<td>1.0</td>
<td>1.0</td>
<td>1000.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>23.4.61</td>
<td>4330</td>
<td>Bus Esc->M 16 ipa</td>
<td>FBS2MIPA</td>
<td>0</td>
<td>0</td>
<td>20000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>23.4.62</td>
<td>4332</td>
<td>Bus Esc->M 16 sys</td>
<td>ENUM</td>
<td>Non attribué</td>
<td>0</td>
<td>10</td>
<td>RW</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

23.5 - COMMUNICATION/WORD COMP

<table>
<thead>
<tr>
<th>Menu</th>
<th>PAR</th>
<th>Description</th>
<th>UM</th>
<th>Type</th>
<th>FB BIT</th>
<th>Def Min</th>
<th>Maxi</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>23.5.1</td>
<td>4400</td>
<td>Mot bit0 src</td>
<td>LINK</td>
<td>L_DIGSEL1</td>
<td>16</td>
<td>6000</td>
<td>0</td>
<td>16384</td>
<td>ERW</td>
</tr>
<tr>
<td>23.5.2</td>
<td>4402</td>
<td>Mot bit1 src</td>
<td>LINK</td>
<td>L_DIGSEL1</td>
<td>16</td>
<td>6000</td>
<td>0</td>
<td>16384</td>
<td>ERW</td>
</tr>
<tr>
<td>23.5.3</td>
<td>4404</td>
<td>Mot bit2 src</td>
<td>LINK</td>
<td>L_DIGSEL1</td>
<td>16</td>
<td>6000</td>
<td>0</td>
<td>16384</td>
<td>ERW</td>
</tr>
<tr>
<td>23.5.4</td>
<td>4406</td>
<td>Mot bit3 src</td>
<td>LINK</td>
<td>L_DIGSEL1</td>
<td>16</td>
<td>6000</td>
<td>0</td>
<td>16384</td>
<td>ERW</td>
</tr>
<tr>
<td>23.5.5</td>
<td>4408</td>
<td>Mot bit4 src</td>
<td>LINK</td>
<td>L_DIGSEL1</td>
<td>16</td>
<td>6000</td>
<td>0</td>
<td>16384</td>
<td>ERW</td>
</tr>
<tr>
<td>23.5.6</td>
<td>4410</td>
<td>Mot bit5 src</td>
<td>LINK</td>
<td>L_DIGSEL1</td>
<td>16</td>
<td>6000</td>
<td>0</td>
<td>16384</td>
<td>ERW</td>
</tr>
<tr>
<td>23.5.7</td>
<td>4412</td>
<td>Mot bit6 src</td>
<td>LINK</td>
<td>L_DIGSEL1</td>
<td>16</td>
<td>6000</td>
<td>0</td>
<td>16384</td>
<td>ERW</td>
</tr>
<tr>
<td>23.5.8</td>
<td>4414</td>
<td>Mot bit7 src</td>
<td>LINK</td>
<td>L_DIGSEL1</td>
<td>16</td>
<td>6000</td>
<td>0</td>
<td>16384</td>
<td>ERW</td>
</tr>
<tr>
<td>23.5.9</td>
<td>4416</td>
<td>Mot bit8 src</td>
<td>LINK</td>
<td>L_DIGSEL1</td>
<td>16</td>
<td>6000</td>
<td>0</td>
<td>16384</td>
<td>ERW</td>
</tr>
<tr>
<td>23.5.10</td>
<td>4418</td>
<td>Mot bit9 src</td>
<td>LINK</td>
<td>L_DIGSEL1</td>
<td>16</td>
<td>6000</td>
<td>0</td>
<td>16384</td>
<td>ERW</td>
</tr>
<tr>
<td>23.5.11</td>
<td>4420</td>
<td>Mot bit10 src</td>
<td>LINK</td>
<td>L_DIGSEL1</td>
<td>16</td>
<td>6000</td>
<td>0</td>
<td>16384</td>
<td>ERW</td>
</tr>
<tr>
<td>23.5.12</td>
<td>4422</td>
<td>Mot bit11 src</td>
<td>LINK</td>
<td>L_DIGSEL1</td>
<td>16</td>
<td>6000</td>
<td>0</td>
<td>16384</td>
<td>ERW</td>
</tr>
<tr>
<td>23.5.13</td>
<td>4424</td>
<td>Mot bit12 src</td>
<td>LINK</td>
<td>L_DIGSEL1</td>
<td>16</td>
<td>6000</td>
<td>0</td>
<td>16384</td>
<td>ERW</td>
</tr>
<tr>
<td>23.5.14</td>
<td>4426</td>
<td>Mot bit13 src</td>
<td>LINK</td>
<td>L_DIGSEL1</td>
<td>16</td>
<td>6000</td>
<td>0</td>
<td>16384</td>
<td>ERW</td>
</tr>
<tr>
<td>23.5.15</td>
<td>4428</td>
<td>Mot bit14 src</td>
<td>LINK</td>
<td>L_DIGSEL1</td>
<td>16</td>
<td>6000</td>
<td>0</td>
<td>16384</td>
<td>ERW</td>
</tr>
<tr>
<td>Menu</td>
<td>PAR</td>
<td>Description</td>
<td>UM</td>
<td>Type</td>
<td>FB</td>
<td>BIT</td>
<td>Def</td>
<td>Min</td>
<td>Maxi</td>
</tr>
<tr>
<td>------</td>
<td>-----</td>
<td>-------------</td>
<td>---------------</td>
<td>-------</td>
<td>----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
</tr>
<tr>
<td>23.5.16</td>
<td>4430</td>
<td>Mot bit15 src</td>
<td>L_DIGSEL1</td>
<td>LINK</td>
<td>16</td>
<td>6000</td>
<td>0</td>
<td>16384</td>
<td>ERW</td>
</tr>
<tr>
<td>23.5.17</td>
<td>4432</td>
<td>Mot comp visu</td>
<td>L_DIGSEL1</td>
<td>UINT32</td>
<td>16</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>ER</td>
</tr>
</tbody>
</table>

23.6 - COMMUNICATION/WORD DECOMP

<table>
<thead>
<tr>
<th>Menu</th>
<th>PAR</th>
<th>Description</th>
<th>UM</th>
<th>Type</th>
<th>FB</th>
<th>BIT</th>
<th>Def</th>
<th>Min</th>
<th>Maxi</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>23.6.1</td>
<td>4450</td>
<td>Mot Dig decomp</td>
<td>L_WDECOMP</td>
<td>UINT32</td>
<td>16</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>ERW</td>
<td>FVS</td>
<td></td>
</tr>
<tr>
<td>23.6.2</td>
<td>4452</td>
<td>Mot decomp src</td>
<td>L_WDECOMP</td>
<td>LINK</td>
<td>16</td>
<td>4450</td>
<td>0</td>
<td>16384</td>
<td>ERW</td>
<td>FVS</td>
<td></td>
</tr>
<tr>
<td>23.6.3</td>
<td>4454</td>
<td>Visu decomp Bit0</td>
<td>L_WDECOMP</td>
<td>BIT</td>
<td>16</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>ER</td>
<td>FVS</td>
<td></td>
</tr>
<tr>
<td>23.6.4</td>
<td>4456</td>
<td>Visu decomp Bit1</td>
<td>L_WDECOMP</td>
<td>BIT</td>
<td>16</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>ER</td>
<td>FVS</td>
<td></td>
</tr>
<tr>
<td>23.6.5</td>
<td>4458</td>
<td>Visu decomp Bit2</td>
<td>L_WDECOMP</td>
<td>BIT</td>
<td>16</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>ER</td>
<td>FVS</td>
<td></td>
</tr>
<tr>
<td>23.6.6</td>
<td>4460</td>
<td>Visu decomp Bit3</td>
<td>L_WDECOMP</td>
<td>BIT</td>
<td>16</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>ER</td>
<td>FVS</td>
<td></td>
</tr>
<tr>
<td>23.6.7</td>
<td>4462</td>
<td>Visu decomp Bit4</td>
<td>L_WDECOMP</td>
<td>BIT</td>
<td>16</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>ER</td>
<td>FVS</td>
<td></td>
</tr>
<tr>
<td>23.6.8</td>
<td>4464</td>
<td>Visu decomp Bit5</td>
<td>L_WDECOMP</td>
<td>BIT</td>
<td>16</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>ER</td>
<td>FVS</td>
<td></td>
</tr>
<tr>
<td>23.6.9</td>
<td>4466</td>
<td>Visu decomp Bit6</td>
<td>L_WDECOMP</td>
<td>BIT</td>
<td>16</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>ER</td>
<td>FVS</td>
<td></td>
</tr>
<tr>
<td>23.6.10</td>
<td>4468</td>
<td>Visu decomp Bit7</td>
<td>L_WDECOMP</td>
<td>BIT</td>
<td>16</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>ER</td>
<td>FVS</td>
<td></td>
</tr>
<tr>
<td>23.6.11</td>
<td>4470</td>
<td>Visu decomp Bit8</td>
<td>L_WDECOMP</td>
<td>BIT</td>
<td>16</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>ER</td>
<td>FVS</td>
<td></td>
</tr>
<tr>
<td>23.6.12</td>
<td>4472</td>
<td>Visu decomp Bit9</td>
<td>L_WDECOMP</td>
<td>BIT</td>
<td>16</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>ER</td>
<td>FVS</td>
<td></td>
</tr>
<tr>
<td>23.6.13</td>
<td>4474</td>
<td>Visu decomp Bit10</td>
<td>L_WDECOMP</td>
<td>BIT</td>
<td>16</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>ER</td>
<td>FVS</td>
<td></td>
</tr>
<tr>
<td>23.6.14</td>
<td>4476</td>
<td>Visu decomp Bit11</td>
<td>L_WDECOMP</td>
<td>BIT</td>
<td>16</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>ER</td>
<td>FVS</td>
<td></td>
</tr>
<tr>
<td>23.6.15</td>
<td>4478</td>
<td>Visu decomp Bit12</td>
<td>L_WDECOMP</td>
<td>BIT</td>
<td>16</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>ER</td>
<td>FVS</td>
<td></td>
</tr>
<tr>
<td>23.6.16</td>
<td>4480</td>
<td>Visu decomp Bit13</td>
<td>L_WDECOMP</td>
<td>BIT</td>
<td>16</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>ER</td>
<td>FVS</td>
<td></td>
</tr>
<tr>
<td>23.6.17</td>
<td>4482</td>
<td>Visu decomp Bit14</td>
<td>L_WDECOMP</td>
<td>BIT</td>
<td>16</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>ER</td>
<td>FVS</td>
<td></td>
</tr>
<tr>
<td>23.6.18</td>
<td>4484</td>
<td>Visu decomp Bit15</td>
<td>L_WDECOMP</td>
<td>BIT</td>
<td>16</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>ER</td>
<td>FVS</td>
<td></td>
</tr>
</tbody>
</table>

23.7 - COMMUNICATION/ENT/SORT EXTERNE

<table>
<thead>
<tr>
<th>Menu</th>
<th>PAR</th>
<th>Description</th>
<th>UM</th>
<th>Type</th>
<th>FB</th>
<th>BIT</th>
<th>Def</th>
<th>Min</th>
<th>Maxi</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>23.7.1</td>
<td>5480</td>
<td>Valid.Ent/Sort.Ext</td>
<td>ENUM</td>
<td>Dévalidé</td>
<td>0</td>
<td>1</td>
<td>ERW</td>
<td>FVS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>23.7.2</td>
<td>5482</td>
<td>Info.Ent/Sort.Ext</td>
<td>UINT32</td>
<td>4294967295</td>
<td>ER</td>
<td>FVS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>23.7.3</td>
<td>5484</td>
<td>Etat Ent/Sort.Ext</td>
<td>BIT</td>
<td>1</td>
<td>32767</td>
<td>ERW</td>
<td>FVS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>23.7.4</td>
<td>5486</td>
<td>CodeDéf Ent/Sort.Ext</td>
<td>UINT32</td>
<td>4294967295</td>
<td>ER</td>
<td>FVS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

23.8 - COMMUNICATION/FAST LINK

<table>
<thead>
<tr>
<th>Menu</th>
<th>PAR</th>
<th>Description</th>
<th>UM</th>
<th>Type</th>
<th>FB</th>
<th>BIT</th>
<th>Def</th>
<th>Min</th>
<th>Maxi</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>23.8.1</td>
<td>5702</td>
<td>Adresse FastLink</td>
<td>UINT16</td>
<td>16</td>
<td>0</td>
<td>0</td>
<td>32767</td>
<td>ERW</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>23.8.2</td>
<td>5818</td>
<td>FL bidirectionnel</td>
<td>ENUM</td>
<td>Valide</td>
<td>0</td>
<td>1</td>
<td>ERW</td>
<td>FVS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>23.8.3</td>
<td>5820</td>
<td>FL N esclave</td>
<td>UINT16</td>
<td>0</td>
<td>0</td>
<td>16</td>
<td>ERW</td>
<td>FVS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>23.8.4</td>
<td>5710</td>
<td>Type Sync.Esclave FL</td>
<td>ENUM</td>
<td>Off</td>
<td>0</td>
<td>2</td>
<td>ERW</td>
<td>FVS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>23.8.5</td>
<td>5712</td>
<td>FL N Fw Chgt.Esclave</td>
<td>UINT16</td>
<td>0</td>
<td>0</td>
<td>16384</td>
<td>ERW</td>
<td>FVS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>23.8.6</td>
<td>5714</td>
<td>Déf.Valid.FL.src</td>
<td>LINK</td>
<td>16</td>
<td>6000</td>
<td>0</td>
<td>16384</td>
<td>ERW</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>23.8.7</td>
<td>5730</td>
<td>FL Fwd 1 src</td>
<td>L_FLWORD</td>
<td>16/32</td>
<td>6000</td>
<td>0</td>
<td>16384</td>
<td>ERW</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>23.8.8</td>
<td>5732</td>
<td>FL Fwd 2 src</td>
<td>L_FLWORD</td>
<td>16/32</td>
<td>6000</td>
<td>0</td>
<td>16384</td>
<td>ERW</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>23.8.9</td>
<td>5734</td>
<td>FL Fwd 3 src</td>
<td>L_FLWORD</td>
<td>16/32</td>
<td>6000</td>
<td>0</td>
<td>16384</td>
<td>ERW</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Menu</td>
<td>PAR</td>
<td>Description</td>
<td>UM</td>
<td>Type</td>
<td>FB</td>
<td>BIT</td>
<td>Def</td>
<td>Min</td>
<td>Maxi</td>
<td>Acc</td>
<td>Mod</td>
</tr>
<tr>
<td>------</td>
<td>-----</td>
<td>-------------------</td>
<td>--------</td>
<td>--------</td>
<td>----</td>
<td>-----</td>
<td>-----</td>
<td>------</td>
<td>------</td>
<td>-----</td>
<td>-----</td>
</tr>
<tr>
<td>23.8.10</td>
<td>5736</td>
<td>FL Fwd 4 src</td>
<td>LINK</td>
<td>16/32</td>
<td>6000</td>
<td>0</td>
<td>16384</td>
<td>ERW</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>23.8.11</td>
<td>5830</td>
<td>FL Don 1 src</td>
<td>LINK</td>
<td>16/32</td>
<td>6000</td>
<td>0</td>
<td>16384</td>
<td>ERW</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>23.8.12</td>
<td>5832</td>
<td>FL Don 2 src</td>
<td>LINK</td>
<td>16/32</td>
<td>6000</td>
<td>0</td>
<td>16384</td>
<td>ERW</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>23.8.13</td>
<td>5750</td>
<td>Visu FL Fwd 1</td>
<td>INT32</td>
<td>32</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>ER</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>23.8.14</td>
<td>5752</td>
<td>Visu FL Fwd 2</td>
<td>INT32</td>
<td>32</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>ER</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>23.8.15</td>
<td>5754</td>
<td>Visu FL Fwd 3</td>
<td>INT32</td>
<td>32</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>ER</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>23.8.16</td>
<td>5756</td>
<td>Visu FL Fwd 4</td>
<td>INT32</td>
<td>32</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>ER</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>23.8.17</td>
<td>5758</td>
<td>Visu FL Fwd 5</td>
<td>INT32</td>
<td>32</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>ER</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>23.8.18</td>
<td>5760</td>
<td>Visu FL Fwd 6</td>
<td>INT32</td>
<td>32</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>ER</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>23.8.19</td>
<td>5762</td>
<td>Visu FL Fwd 7</td>
<td>INT32</td>
<td>32</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>ER</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>23.8.20</td>
<td>5764</td>
<td>Visu FL Fwd 8</td>
<td>INT32</td>
<td>32</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>ER</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>23.8.21</td>
<td>5850</td>
<td>FL Don 1 visu</td>
<td>INT32</td>
<td>32</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>ER</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>23.8.22</td>
<td>5852</td>
<td>FL Don 2 visu</td>
<td>INT32</td>
<td>32</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>ER</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>23.8.23</td>
<td>5854</td>
<td>FL Don 3 visu</td>
<td>INT32</td>
<td>32</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>ER</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>23.8.24</td>
<td>5856</td>
<td>FL Don 4 visu</td>
<td>INT32</td>
<td>32</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>ER</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>23.8.25</td>
<td>5822</td>
<td>FL Don 1 esclave sel</td>
<td>UINT16</td>
<td>0</td>
<td>0</td>
<td>31</td>
<td>ERWZ</td>
<td>FVS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>23.8.26</td>
<td>5824</td>
<td>FL Don 2 esclave sel</td>
<td>UINT16</td>
<td>0</td>
<td>0</td>
<td>31</td>
<td>ERWZ</td>
<td>FVS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>23.8.27</td>
<td>5826</td>
<td>FL Don 3 esclave sel</td>
<td>UINT16</td>
<td>0</td>
<td>0</td>
<td>31</td>
<td>ERWZ</td>
<td>FVS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>23.8.28</td>
<td>5828</td>
<td>FL Don 4 esclave sel</td>
<td>UINT16</td>
<td>0</td>
<td>0</td>
<td>31</td>
<td>ERWZ</td>
<td>FVS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>23.8.29</td>
<td>5720</td>
<td>Visu Sync.Esclave</td>
<td>BIT</td>
<td>16</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>ER</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>23.8.30</td>
<td>5722</td>
<td>Code Défaut FastLink</td>
<td>UINT32</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>ER</td>
<td>FVS</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

24 - ALARM CONFIG

<table>
<thead>
<tr>
<th>Menu</th>
<th>PAR</th>
<th>Description</th>
<th>UM</th>
<th>Type</th>
<th>FB</th>
<th>BIT</th>
<th>Def</th>
<th>Min</th>
<th>Maxi</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>24.1</td>
<td>4500</td>
<td>Acquit alarme src</td>
<td>LINK</td>
<td>16</td>
<td>1120</td>
<td>0</td>
<td>16384</td>
<td>RW</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>24.2</td>
<td>4502</td>
<td>Alarme extern src</td>
<td>LINK</td>
<td>16</td>
<td>6000</td>
<td>0</td>
<td>16384</td>
<td>RW</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>24.3</td>
<td>4504</td>
<td>Action Alarme ext</td>
<td>ENUM</td>
<td>Dévalidé</td>
<td>0</td>
<td>4</td>
<td>RW</td>
<td>FVS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>24.4</td>
<td>4506</td>
<td>Redem Alarme ext</td>
<td>ENUM</td>
<td>Dévalidé</td>
<td>0</td>
<td>1</td>
<td>RW</td>
<td>FVS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>24.5</td>
<td>4508</td>
<td>Temps redem Al ext</td>
<td>ms</td>
<td>UINT16</td>
<td>1000</td>
<td>120</td>
<td>30000</td>
<td>RW</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>24.6</td>
<td>4510</td>
<td>Filtre Alarme extern</td>
<td>ms</td>
<td>UINT16</td>
<td>0</td>
<td>0</td>
<td>10000</td>
<td>RW</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>24.7</td>
<td>4516</td>
<td>Actv.surtemp moteur</td>
<td>ENUM</td>
<td>Ignore</td>
<td>0</td>
<td>4</td>
<td>ERW</td>
<td>FVS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>24.8</td>
<td>4518</td>
<td>Res.sonde mot %</td>
<td>perc</td>
<td>UINT16</td>
<td>60</td>
<td>0</td>
<td>100</td>
<td>ERW</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>24.9</td>
<td>4520</td>
<td>Moteur chaud src</td>
<td>LINK</td>
<td>16</td>
<td>6000</td>
<td>0</td>
<td>16384</td>
<td>RW</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>24.10</td>
<td>4522</td>
<td>Action moteur chaud</td>
<td>ENUM</td>
<td>Avertissement</td>
<td>0</td>
<td>4</td>
<td>RW</td>
<td>FVS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Menu</td>
<td>PAR</td>
<td>Description</td>
<td>UM</td>
<td>Type</td>
<td>FB BIT</td>
<td>Def</td>
<td>Min</td>
<td>Max</td>
<td>Acc</td>
<td>Mod</td>
<td></td>
</tr>
<tr>
<td>------</td>
<td>-----</td>
<td>------------------------------------</td>
<td>-----</td>
<td>------</td>
<td>--------</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td></td>
</tr>
<tr>
<td>24.11</td>
<td>4524</td>
<td>Redem moteur chaud</td>
<td>ENUM</td>
<td>Déval</td>
<td>0</td>
<td>1</td>
<td>RW</td>
<td>FVS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Déval</td>
<td>0</td>
<td>1</td>
<td>RW</td>
<td>FVS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>24.12</td>
<td>4526</td>
<td>Temp redem mot chaud</td>
<td>ms</td>
<td>UINT</td>
<td>1000</td>
<td>120</td>
<td>30000</td>
<td>RW</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>24.13</td>
<td>4528</td>
<td>Filtre moteur chaud</td>
<td>ms</td>
<td>UINT</td>
<td>1000</td>
<td>0</td>
<td>30000</td>
<td>RW</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>24.14</td>
<td>4530</td>
<td>Choix sonde moteur</td>
<td>ENUM</td>
<td>SRC</td>
<td>0</td>
<td>13</td>
<td>ERW</td>
<td>FVS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>ohm</td>
<td>0</td>
<td>1</td>
<td>ERW</td>
<td>FVS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>°C</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>24.15</td>
<td>4514</td>
<td>Unit.sonde mot.KTY84</td>
<td>ENUM</td>
<td>ohm</td>
<td>0</td>
<td>1</td>
<td>ERW</td>
<td>FVS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>°C</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>24.16</td>
<td>4532</td>
<td>Seuil res.sonde mot</td>
<td>cnt</td>
<td>UINT</td>
<td>0</td>
<td>0</td>
<td>32767</td>
<td>ER</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>24.17</td>
<td>4536</td>
<td>Res.sonde mot visu</td>
<td>cnt</td>
<td>INT16</td>
<td>16/32</td>
<td>0</td>
<td>32767</td>
<td>ER</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>24.18</td>
<td>4540</td>
<td>Seuil Survitesse</td>
<td>rpm</td>
<td>INT32</td>
<td>CALCI</td>
<td>0</td>
<td>CALCI</td>
<td>RW</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>24.19</td>
<td>4542</td>
<td>Action survitesse</td>
<td>ENUM</td>
<td>Déval</td>
<td>0</td>
<td>4</td>
<td>RW</td>
<td>FVS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Ignore</td>
<td>0</td>
<td>4</td>
<td>RW</td>
<td>FVS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Avertissement</td>
<td>0</td>
<td>4</td>
<td>RW</td>
<td>FVS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Déval</td>
<td>0</td>
<td>4</td>
<td>RW</td>
<td>FVS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Arrêt</td>
<td>0</td>
<td>4</td>
<td>RW</td>
<td>FVS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>24.20</td>
<td>4544</td>
<td>Filtre Survitesse</td>
<td>ms</td>
<td>UINT</td>
<td>0</td>
<td>0</td>
<td>5000</td>
<td>RW</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>24.21</td>
<td>4550</td>
<td>Seuil Erreur consign</td>
<td>rpm</td>
<td>INT16</td>
<td>100</td>
<td>0</td>
<td>CALCI</td>
<td>RW</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>24.22</td>
<td>4552</td>
<td>Action Erreur consig</td>
<td>ENUM</td>
<td>Ignore</td>
<td>0</td>
<td>4</td>
<td>RW</td>
<td>FVS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Ignore</td>
<td>0</td>
<td>4</td>
<td>RW</td>
<td>FVS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Avertissement</td>
<td>0</td>
<td>4</td>
<td>RW</td>
<td>FVS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Déval</td>
<td>0</td>
<td>4</td>
<td>RW</td>
<td>FVS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Arrêt</td>
<td>0</td>
<td>4</td>
<td>RW</td>
<td>FVS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>24.23</td>
<td>4554</td>
<td>Filtre Erreur consig</td>
<td>ms</td>
<td>UINT</td>
<td>1000</td>
<td>0</td>
<td>10000</td>
<td>RW</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>24.24</td>
<td>4556</td>
<td>SpdRefLoss max spdOL</td>
<td>rpm</td>
<td>INT16</td>
<td>CALCI</td>
<td>0</td>
<td>CALCI</td>
<td>RW</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>24.25</td>
<td>4558</td>
<td>Seu.Min.pert.ref.vit</td>
<td>BIT</td>
<td>CALCI</td>
<td>0</td>
<td>1</td>
<td>ERW</td>
<td>FVS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>24.26</td>
<td>4560</td>
<td>Action PB Retour vit</td>
<td>ENUM</td>
<td>Déval</td>
<td>0</td>
<td>4</td>
<td>RW</td>
<td>FVS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Ignore</td>
<td>0</td>
<td>4</td>
<td>RW</td>
<td>FVS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Avertissement</td>
<td>0</td>
<td>4</td>
<td>RW</td>
<td>FVS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Déval</td>
<td>0</td>
<td>4</td>
<td>RW</td>
<td>FVS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Arrêt</td>
<td>0</td>
<td>4</td>
<td>RW</td>
<td>FVS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>24.27</td>
<td>4562</td>
<td>Filtre PB Retour vit</td>
<td>ms</td>
<td>UINT</td>
<td>200</td>
<td>0</td>
<td>10000</td>
<td>RW</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>24.28</td>
<td>4564</td>
<td>SpdFbkLoss threshold</td>
<td>rpm</td>
<td>INT16</td>
<td>100</td>
<td>5</td>
<td>CALCI</td>
<td>RW</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>24.29</td>
<td>4570</td>
<td>Action Drive surchg</td>
<td>ENUM</td>
<td>Ignore</td>
<td>0</td>
<td>4</td>
<td>ERW</td>
<td>FVS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Ignore</td>
<td>0</td>
<td>4</td>
<td>ERW</td>
<td>FVS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Menu</td>
<td>PAR</td>
<td>Description</td>
<td>UM</td>
<td>Type</td>
<td>FB BIT Def</td>
<td>Min</td>
<td>Maxi</td>
<td>Acc</td>
<td>Mod</td>
<td></td>
<td></td>
</tr>
<tr>
<td>------</td>
<td>-----</td>
<td>-------------</td>
<td>----</td>
<td>------</td>
<td>------------</td>
<td>-----</td>
<td>------</td>
<td>-----</td>
<td>-----</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td>Avertissement</td>
<td>2</td>
<td></td>
<td>Avertissement</td>
<td>0</td>
<td>4</td>
<td>ERW</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>Dévalide</td>
<td>3</td>
<td></td>
<td>Dévalide</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>Arrêté</td>
<td>4</td>
<td></td>
<td>Arrêt Rapide</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>24.30</td>
<td>4572</td>
<td>Action Moteur surchg</td>
<td>ENUM</td>
<td>Avertissement</td>
<td>0</td>
<td>4</td>
<td>ERW</td>
<td>FVS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td></td>
<td>Ignore</td>
<td>1</td>
<td></td>
<td>Avertissement</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>Dévalide</td>
<td>3</td>
<td></td>
<td>Arrêté</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>24.31</td>
<td>4574</td>
<td>Action ResFrein srch</td>
<td>ENUM</td>
<td>Dévalide</td>
<td>0</td>
<td>4</td>
<td>ERW</td>
<td>FVS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td></td>
<td>Ignore</td>
<td>1</td>
<td></td>
<td>Avertissement</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>Dévalide</td>
<td>3</td>
<td></td>
<td>Arrêté</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>24.32</td>
<td>4582</td>
<td>Redem Drive chaud</td>
<td>ENUM</td>
<td>Dévalide</td>
<td>0</td>
<td>1</td>
<td>ERW</td>
<td>FVS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td></td>
<td>Dévalide</td>
<td>1</td>
<td></td>
<td>Valide</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>24.33</td>
<td>4584</td>
<td>Temp redem drv chaud</td>
<td>ms</td>
<td>UINT16</td>
<td>20000</td>
<td>120</td>
<td>60000</td>
<td>ERW</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>24.34</td>
<td>4600</td>
<td>Action Air entrant</td>
<td>ENUM</td>
<td>Arrêté</td>
<td>0</td>
<td>4</td>
<td>ERW</td>
<td>FVS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td></td>
<td>Ignore</td>
<td>1</td>
<td></td>
<td>Avertissement</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>Dévalide</td>
<td>3</td>
<td></td>
<td>Arrêté</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>24.35</td>
<td>4602</td>
<td>Redem Air entrant</td>
<td>ENUM</td>
<td>Dévalide</td>
<td>0</td>
<td>1</td>
<td>ERW</td>
<td>FVS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td></td>
<td>Dévalide</td>
<td>1</td>
<td></td>
<td>Valide</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>24.36</td>
<td>4604</td>
<td>Temps redem Air ent</td>
<td>ms</td>
<td>UINT16</td>
<td>1000</td>
<td>120</td>
<td>30000</td>
<td>ERW</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>24.37</td>
<td>4606</td>
<td>Filtre Air entrant</td>
<td>ms</td>
<td>UINT16</td>
<td>10000</td>
<td>1000</td>
<td>30000</td>
<td>ERW</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>24.38</td>
<td>4610</td>
<td>Redem Desaturat°</td>
<td>ENUM</td>
<td>Dévalide</td>
<td>0</td>
<td>1</td>
<td>ERW</td>
<td>FVS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td></td>
<td>Dévalide</td>
<td>1</td>
<td></td>
<td>Valide</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>24.39</td>
<td>4612</td>
<td>Temps redem Desat</td>
<td>ms</td>
<td>UINT16</td>
<td>2000</td>
<td>1000</td>
<td>10000</td>
<td>ERW</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>24.40</td>
<td>4620</td>
<td>Redem Surintensité</td>
<td>ENUM</td>
<td>Dévalide</td>
<td>0</td>
<td>1</td>
<td>ERW</td>
<td>FVS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td></td>
<td>Dévalide</td>
<td>1</td>
<td></td>
<td>Valide</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>24.41</td>
<td>4622</td>
<td>Tps redem Surintens</td>
<td>ms</td>
<td>UINT16</td>
<td>2000</td>
<td>1000</td>
<td>10000</td>
<td>ERW</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>24.42</td>
<td>4630</td>
<td>Redem Surtension</td>
<td>ENUM</td>
<td>Dévalide</td>
<td>0</td>
<td>1</td>
<td>ERW</td>
<td>FVS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td></td>
<td>Dévalide</td>
<td>1</td>
<td></td>
<td>Valide</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>24.43</td>
<td>4632</td>
<td>Tps redem surtension</td>
<td>ms</td>
<td>UINT16</td>
<td>2000</td>
<td>1000</td>
<td>10000</td>
<td>ERW</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>24.44</td>
<td>4640</td>
<td>Redem soustension</td>
<td>ENUM</td>
<td>Validé</td>
<td>0</td>
<td>1</td>
<td>ERW</td>
<td>FVS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td></td>
<td>Dévalide</td>
<td>1</td>
<td></td>
<td>Valide</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>24.45</td>
<td>4642</td>
<td>Tps redem sstension</td>
<td>ms</td>
<td>UINT16</td>
<td>1000</td>
<td>120</td>
<td>10000</td>
<td>ERW</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>24.46</td>
<td>4650</td>
<td>Tentat redem sstens</td>
<td>ms</td>
<td>UINT16</td>
<td>5</td>
<td>0</td>
<td>1000</td>
<td>ERW</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>24.47</td>
<td>4652</td>
<td>Attente tentat ssten</td>
<td>s</td>
<td>UINT16</td>
<td>240</td>
<td>0</td>
<td>300</td>
<td>ERW</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>24.48</td>
<td>4660</td>
<td>Action Manque phase</td>
<td>ENUM</td>
<td>Dévalide</td>
<td>0</td>
<td>4</td>
<td>ERW</td>
<td>FVS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td></td>
<td>Ignore</td>
<td>1</td>
<td></td>
<td>Avertissement</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>Dévalide</td>
<td>3</td>
<td></td>
<td>Arrêté</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Menu PAR</td>
<td>Description</td>
<td>UM</td>
<td>Type</td>
<td>FB BIT Def</td>
<td>Min</td>
<td>Maxi</td>
<td>Acc</td>
<td>Mod</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>----------</td>
<td>--------------</td>
<td>-------</td>
<td>--------</td>
<td>------------</td>
<td>-----</td>
<td>------</td>
<td>-----</td>
<td>-----</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>24.49</td>
<td>Redem Manque phase</td>
<td>ENUM</td>
<td>Dévalide</td>
<td>0</td>
<td>1</td>
<td>ERW</td>
<td>FVS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>24.50</td>
<td>Tps redem Manque ph</td>
<td>ms</td>
<td>1000</td>
<td>120</td>
<td>10000</td>
<td>ERW</td>
<td>FVS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>24.51</td>
<td>Action bus optionnel</td>
<td>ENUM</td>
<td>Dévalide</td>
<td>0</td>
<td>4</td>
<td>ERW</td>
<td>FVS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>24.52</td>
<td>Dfault Optbus src</td>
<td>LINK</td>
<td>16</td>
<td>6002</td>
<td>0</td>
<td>16384</td>
<td>ERW</td>
<td>FVS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>24.53</td>
<td>Seuil Défaut terre</td>
<td>perc</td>
<td>10.0</td>
<td>0.0</td>
<td>150.0</td>
<td>ERWS</td>
<td>FVS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>24.54</td>
<td>Action défaut frein</td>
<td>ENUM</td>
<td>Dévalide</td>
<td>0</td>
<td>4</td>
<td>ERW</td>
<td>FVS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>24.55</td>
<td>Action ExtIO</td>
<td>ENUM</td>
<td>Dévalide</td>
<td>0</td>
<td>4</td>
<td>ERW</td>
<td>FVS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>24.56</td>
<td>Action défaut FL</td>
<td>ENUM</td>
<td>Dévalide</td>
<td>0</td>
<td>4</td>
<td>ERW</td>
<td>FVS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>24.57</td>
<td>Actv.perte phase mot</td>
<td>ENUM</td>
<td>Dévalide</td>
<td>0</td>
<td>4</td>
<td>ERW</td>
<td>FVS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>24.58</td>
<td>Tps perte phase mot</td>
<td>ms</td>
<td>800</td>
<td>400</td>
<td>10000</td>
<td>ERW</td>
<td>FVS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>24.59</td>
<td>Seuil perte phas.mot</td>
<td>A</td>
<td>0.20</td>
<td>0</td>
<td>32000</td>
<td>ERW</td>
<td>FVS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>24.60</td>
<td>Mot PhLoss speed thr</td>
<td>rpm</td>
<td>10</td>
<td>5</td>
<td>32000</td>
<td>ERW</td>
<td>FVS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>24.61</td>
<td>Code.Perte phase mot</td>
<td>UINT32</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>ER</td>
<td>FVS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>24.62</td>
<td>Action condensation</td>
<td>ENUM</td>
<td>Dévalide</td>
<td>0</td>
<td>4</td>
<td>ERW</td>
<td>FVS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>24.63</td>
<td>Temp.condensation</td>
<td>s</td>
<td>30</td>
<td>0</td>
<td>500</td>
<td>ERW</td>
<td>FVS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>24.64</td>
<td>Retard condensation</td>
<td>s</td>
<td>5</td>
<td>0</td>
<td>50</td>
<td>ERW</td>
<td>FVS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>24.65</td>
<td>Seuil plus humidité</td>
<td>perc</td>
<td>85.0</td>
<td>0.0</td>
<td>100</td>
<td>ERW</td>
<td>FVS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>24.66</td>
<td>Retard plus humidité</td>
<td>s</td>
<td>5</td>
<td>0</td>
<td>50</td>
<td>ERW</td>
<td>FVS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>24.67</td>
<td>Code err.sonde Humid</td>
<td>UINT32</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>ER</td>
<td>FVS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>24.68</td>
<td>Perte Ent.Ana.Act</td>
<td>ENUM</td>
<td>Avertissement</td>
<td>0</td>
<td>4</td>
<td>ERW</td>
<td>FVS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Menu</td>
<td>PAR</td>
<td>Description</td>
<td>UM</td>
<td>Type</td>
<td>FB</td>
<td>BIT</td>
<td>Def Min</td>
<td>Maxi</td>
<td>Acc</td>
<td>Mod</td>
<td></td>
</tr>
<tr>
<td>------</td>
<td>-----</td>
<td>-----------------------------------</td>
<td>-----</td>
<td>------</td>
<td>----</td>
<td>-----</td>
<td>---------</td>
<td>------</td>
<td>-----</td>
<td>-----</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td></td>
<td>Ignore</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td>Avertissement</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>Dévalide</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>Arrêté</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>Arrêt Rapide</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

| 24.69 | 4548 | Tps.Perte.Ent.Ana | ms | UINT16 | 1000 | 0 | 30000 | ERW | FVS |
| 24.70 | 4568 | Code perte analog. | | UINT32 | 0 | 0 | 0 | ER | FVS |

24.71	4700	Sel Alarme digit 1	ENUM	Pas d’alarme 0	ERW	FVS
24.72	4702	Sel Alarme digit 2	ENUM	Pas d’alarme 0	ERW	FVS
24.73	4704	Sel Alarme digit 3	ENUM	Pas d’alarme 0	ERW	FVS
24.74	4706	Sel Alarme digit 4	ENUM	Pas d’alarme 0	ERW	FVS

0 | Pas d’alarme |
1 | Surtension |
2 | Sous tension|
3 | Défaut terre|
4 | Surintensité|
5 | Desaturation|
6 | Multi sousTens|
7 | Multi SurlInten|
8 | Multi désatur|
9 | Var trop chaud|
10 | HeatsinkS OTUT|
11 | Air trop chaud|
12 | Mot trop chaud|
13 | Surcharge Var|
14 | Surcharge Mot|
15 | ResFrein schar|
16 | Manque Phase|
17 | Alarm BusOptio|
18 | Alarme Opt 1ES|
19 | Alarme Opt 2ES|
20 | Alarm Opt Cod|
21 | Alarme Externe|
22 | Alar RetVitess|
23 | Survitesse |
24 | Pert Csign Vit |
25 | Alarm Arr Urg |
26 | Coupure Puiss |
27 | Déf.EntSortExt |
28 | Déf FastLink |
29 | Défaut frein |
30 | Motor pre OT |
31 | Mot phase loss |
32 | Condensation |
33 | Alarme PLC1 |
34 | Alarme PLC2 |
35 | Alarme PLC3 |
36 | Alarme PLC4 |
37 | Alarme PLC5 |
38 | Alarme PLC6 |
39 | Alarme PLC7 |
40 | Alarme PLC8 |
41 | Watchdog |
42 | Erreur Trapp |
43 | Erreur système |
44 | Err Utilisat |
45 | Err Paramétrag |
46 | Ret CFG Usine |
47 | Err config plc |
48 | Charg CFG usin |
<table>
<thead>
<tr>
<th>Menu</th>
<th>PAR</th>
<th>Description</th>
<th>UM</th>
<th>Type</th>
<th>FB</th>
<th>BIT</th>
<th>Def</th>
<th>Min</th>
<th>Maxi</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>49</td>
<td></td>
<td>Key failed</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>50</td>
<td></td>
<td>Erreur codeur</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>51</td>
<td></td>
<td>Opt chg config</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>52</td>
<td></td>
<td>Capt.Humid.Err</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>53</td>
<td></td>
<td>Alarme PLC9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>54</td>
<td></td>
<td>Alarme PLC10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>55</td>
<td></td>
<td>Alarme PLC11</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>56</td>
<td></td>
<td>Alarme PLC12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>57</td>
<td></td>
<td>Alarme PLC13</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>58</td>
<td></td>
<td>Alarme PLC14</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>59</td>
<td></td>
<td>Alarme PLC15</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>60</td>
<td></td>
<td>Alarme PLC16</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>61</td>
<td></td>
<td>Not used1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>62</td>
<td></td>
<td>Ala.PerEnt.Ania</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

24.75 4720 Temps auto aquit Alm s FLOAT 0.0 0.0 60.0 ERW FVS
24.76 4722 Nb auto aquit Alm UINT16 20 0 100 ERW FVS

25 - REGITRE ALARMES

26 - APPLICATION

27 - SERVICE

27.1 - SERVICE/TEST GENERATEUR

27.1.1 5000 Dest generateur test ENUM Off 0 4 ERWZ FVS

27.1.2 5002 Gen test niveau haut perc INT16 0 -200 200 ERW FVS
27.1.3 5004 Gen test niveau bas perc INT16 0 -200 200 ERW FVS
27.1.4 5006 Période Gen test s FLOAT 1.0 0.01 10.0 ERW FVS
27.1.5 5008 Sortie Gen test perc INT16 16/32 0 0 0 ER FVS

27.2 - SERVICE/POSITION

27.2.1 2152 Impuls.Virtuelle E1 UINT32 CALCI 0 0 ERW FVS
27.2.2 2154 Posit.Virtuelle E1 cnt UINT32 32 0 0 0 ER FVS
27.2.3 2156 Nb.tours E1 INT32 32 0 0 0 ER FVS
27.2.4 2168 Impulsions Abs E1 UINT32 CALCI 0 0 ER FVS
27.2.5 2164 Position Abs E1 cnt UINT32 32 0 0 0 ER FVS
27.2.6 2166 Nb.tours Abs E1 INT32 32 0 0 0 ER FVS
27.2.7 2174 Offset absolu E1 cnt UINT32 32 775480206 0 0 ERW FVS
27.2.8 2178 E1 Abs offset memory ENUM Drive memory 0 1 ERWZ FVS

27.2.9 2180 E1 Abs offset deg deg FLOAT 32 65 0.0 0.0 ERW FVS
27.2.10 5152 Impuls.Virtuelle E2 UINT32 CALCI 0 0 ERW FVS
27.2.11 5154 Posit.Virtuelle E2 cnt UINT32 32 0 0 0 ER FVS
27.2.12 5156 Nb.tours E2 INT32 32 0 0 0 ER FVS
27.2.13 5168 Impulsions Abs E2 UINT32 CALCI 0 0 ER FVS
27.2.14 5164 Position Abs E2 cnt UINT32 32 0 0 0 ER FVS
27.2.15 5166 Nb.tours Abs E2 INT32 32 0 0 0 ER FVS
27.2.16 5174 Offset absolu E2 cnt UINT32 32 775480206 0 0 ERW FVS
27.2.17 5178 Abs offset memory E2 ENUM Drive memory 0 1 ERWZ FVS
<table>
<thead>
<tr>
<th>Menu</th>
<th>PAR</th>
<th>Description</th>
<th>UM</th>
<th>Type</th>
<th>FB</th>
<th>BIT</th>
<th>Def</th>
<th>Min</th>
<th>Maxi</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>27.2.18</td>
<td>5180</td>
<td>Abs offset deg E2</td>
<td>deg</td>
<td>FLOAT</td>
<td>32</td>
<td>65</td>
<td>0.0</td>
<td>0.0</td>
<td>ERW</td>
<td>FVS</td>
<td></td>
</tr>
<tr>
<td>27.2.19</td>
<td>5252</td>
<td>Impuls.Virtuelle E3</td>
<td>UINT32</td>
<td>CALCI</td>
<td>0</td>
<td>0</td>
<td>ERW</td>
<td>FVS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>27.2.20</td>
<td>5254</td>
<td>Posit.Virtuelle E3</td>
<td>cnt</td>
<td>UINT32</td>
<td>32</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>ER</td>
<td>FVS</td>
<td></td>
</tr>
<tr>
<td>27.2.21</td>
<td>5256</td>
<td>Nb.tours E3</td>
<td>INT32</td>
<td>32</td>
<td>0</td>
<td>0</td>
<td>ER</td>
<td>FVS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>27.2.22</td>
<td>2126</td>
<td>Seuil champ sup</td>
<td>V</td>
<td>FLOAT</td>
<td>4.820</td>
<td>0.000</td>
<td>4.820</td>
<td>ERWZ</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>27.2.23</td>
<td>2136</td>
<td>INC.Seuil max.Resolv</td>
<td>V</td>
<td>FLOAT</td>
<td>2.280</td>
<td>0.000</td>
<td>4.820</td>
<td>ERWZ</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>27.2.24</td>
<td>2138</td>
<td>INC.Seuil min.Resolv</td>
<td>V</td>
<td>FLOAT</td>
<td>3.990</td>
<td>0.000</td>
<td>4.820</td>
<td>ERWZ</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>27.2.25</td>
<td>2140</td>
<td>Seuil per.Voie.Resol</td>
<td>deg</td>
<td>FLOAT</td>
<td>4</td>
<td>0</td>
<td>9</td>
<td>ERWZ</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>27.2.26</td>
<td>2142</td>
<td>Perte per.Voie.Hys</td>
<td>deg</td>
<td>FLOAT</td>
<td>0.5</td>
<td>0</td>
<td>9</td>
<td>ERWZ</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>27.2.27</td>
<td>2144</td>
<td>Resolver get reg</td>
<td>UINT16</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>ERWZ</td>
<td>FVS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>27.2.28</td>
<td>2146</td>
<td>Resolver reg mon</td>
<td>UINT16</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>ERZ</td>
<td>FVS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>27.2.29</td>
<td>2086</td>
<td>Resolver resolution</td>
<td>ENUM</td>
<td>16</td>
<td>2</td>
<td>3</td>
<td>ERWZ</td>
<td>FVS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>27.2.30</td>
<td>5312</td>
<td>Encoder fbk mon</td>
<td>ENUM</td>
<td>E1 Abs</td>
<td>0</td>
<td>0</td>
<td>ER</td>
<td>FVS</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

27.3 - SERVICE/FIELDBUS SERV

<table>
<thead>
<tr>
<th>Menu</th>
<th>PAR</th>
<th>Description</th>
<th>UM</th>
<th>Type</th>
<th>FB</th>
<th>BIT</th>
<th>Def</th>
<th>Min</th>
<th>Maxi</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>27.3.1</td>
<td>4016</td>
<td>Fieldbus float order</td>
<td>BIT</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>ERW</td>
<td>FVS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>27.3.2</td>
<td>4018</td>
<td>Profibus byte order</td>
<td>BIT</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>ERW</td>
<td>FVS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>27.3.3</td>
<td>5604</td>
<td>InputSize</td>
<td>UINT16</td>
<td>0</td>
<td>0</td>
<td>65535</td>
<td>ER</td>
<td>FVS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>27.3.4</td>
<td>5614</td>
<td>PN diagnostic</td>
<td>UINT32</td>
<td>0</td>
<td>0</td>
<td>4294967295</td>
<td>ERW</td>
<td>FVS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>27.3.5</td>
<td>5616</td>
<td>MdPlc direct map</td>
<td>INT32</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>ERWZ</td>
<td>FVS</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

27.4 - SERVICE/EXT IO SERV

<table>
<thead>
<tr>
<th>Menu</th>
<th>PAR</th>
<th>Description</th>
<th>UM</th>
<th>Type</th>
<th>FB</th>
<th>BIT</th>
<th>Def</th>
<th>Min</th>
<th>Maxi</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>27.4.1</td>
<td>5488</td>
<td>External IO period</td>
<td>UINT16</td>
<td>8</td>
<td>8</td>
<td>64</td>
<td>ERW</td>
<td>FVS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>27.4.2</td>
<td>5492</td>
<td>External IO baudrate</td>
<td>ENUM</td>
<td>500k</td>
<td>0</td>
<td>12</td>
<td>ERW</td>
<td>FVS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>27.4.3</td>
<td>5490</td>
<td>External IO address</td>
<td>INT16</td>
<td>1</td>
<td>1</td>
<td>255</td>
<td>ERW</td>
<td>FVS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>27.4.4</td>
<td>5494</td>
<td>External IO lifetime</td>
<td>UINT16</td>
<td>3</td>
<td>1</td>
<td>100</td>
<td>ERW</td>
<td>FVS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>27.4.5</td>
<td>5496</td>
<td>External IO err cnt</td>
<td>UINT16</td>
<td>0</td>
<td>0</td>
<td>65535</td>
<td>ERW</td>
<td>FVS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>27.4.6</td>
<td>4980</td>
<td>ExtIO holdoff</td>
<td>ms</td>
<td>1</td>
<td>1</td>
<td>10000</td>
<td>ERW</td>
<td>FVS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>27.4.7</td>
<td>4982</td>
<td>External IO pdo time</td>
<td>UINT16</td>
<td>4</td>
<td>1</td>
<td>10000</td>
<td>ERW</td>
<td>FVS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>27.4.8</td>
<td>4984</td>
<td>External IO HB time</td>
<td>ms</td>
<td>100</td>
<td>8</td>
<td>10000</td>
<td>ERW</td>
<td>FVS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Menu</td>
<td>PAR</td>
<td>Description</td>
<td>UM</td>
<td>Type</td>
<td>FB</td>
<td>BIT</td>
<td>Def</td>
<td>Min</td>
<td>Maxi</td>
<td>Acc</td>
<td>Mod</td>
</tr>
<tr>
<td>------</td>
<td>-----</td>
<td>----------------------------------</td>
<td>------</td>
<td>-------</td>
<td>-----</td>
<td>-----</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
</tr>
<tr>
<td>27.5</td>
<td>SERVICE/FAST LINK SERV</td>
<td></td>
</tr>
<tr>
<td></td>
<td>27.5.1</td>
<td>FL fault holdoff</td>
<td>us</td>
<td>UINT16</td>
<td></td>
<td></td>
<td></td>
<td>250</td>
<td>125</td>
<td>10000</td>
<td></td>
</tr>
<tr>
<td></td>
<td>27.5.2</td>
<td>FLRxTimeoutHoldOff</td>
<td>UINT16</td>
<td></td>
<td>4</td>
<td></td>
<td>0</td>
<td>4000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>27.5.3</td>
<td>FLRxTimeoutCnt</td>
<td>UINT16</td>
<td></td>
<td>0</td>
<td></td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>27.5.4</td>
<td>FLSyncSlaveEHoldOff</td>
<td>UINT16</td>
<td></td>
<td>4</td>
<td></td>
<td>0</td>
<td>4000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>27.5.5</td>
<td>FLSyncSlaveErrCnt</td>
<td>UINT16</td>
<td></td>
<td>0</td>
<td></td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>27.6</td>
<td>SERVICE/SERIAL NUMBERS</td>
<td></td>
</tr>
<tr>
<td></td>
<td>27.6.1</td>
<td>Numéro de série drv</td>
<td>UINT32</td>
<td></td>
<td>520</td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>27.6.2</td>
<td>Numéro série régul</td>
<td>UINT32</td>
<td></td>
<td>522</td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>27.6.3</td>
<td>Numéro série Power</td>
<td>UINT32</td>
<td></td>
<td>524</td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>27.6.4</td>
<td>Slot1 carte S/N</td>
<td>UINT32</td>
<td></td>
<td>536</td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>27.6.5</td>
<td>Slot2 carte S/N</td>
<td>UINT32</td>
<td></td>
<td>538</td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>27.6.6</td>
<td>Slot3 carte S/N</td>
<td>UINT32</td>
<td></td>
<td>540</td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>27.7</td>
<td>SERVICE/SENSORLESS SERV</td>
<td></td>
</tr>
<tr>
<td></td>
<td>27.7.1</td>
<td>SLS Ctrl.Mode Actuel</td>
<td>UINT16</td>
<td></td>
<td>7000</td>
<td></td>
<td>8210</td>
<td>0</td>
<td>65535</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>27.7.2</td>
<td>SLS Corr. RS</td>
<td>ohm</td>
<td>FLOAT</td>
<td></td>
<td>7036</td>
<td></td>
<td>CALCF</td>
<td>CALCF</td>
<td>CALCF</td>
<td>ERWZ</td>
</tr>
<tr>
<td></td>
<td>27.7.3</td>
<td>SLS Corr. Lsig</td>
<td>mH</td>
<td>FLOAT</td>
<td></td>
<td>7038</td>
<td></td>
<td>CALCF</td>
<td>CALCF</td>
<td>CALCF</td>
<td>ERWZ</td>
</tr>
<tr>
<td></td>
<td>27.7.4</td>
<td>SLS Seuil.Inf.AbsErr</td>
<td>rpm</td>
<td>FLOAT</td>
<td></td>
<td>7002</td>
<td></td>
<td>CALCF</td>
<td>0.0</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td></td>
<td>27.7.5</td>
<td>SLS Seuil.Sup.AbsErr</td>
<td>rpm</td>
<td>FLOAT</td>
<td></td>
<td>7004</td>
<td></td>
<td>CALCF</td>
<td>0.0</td>
<td>100.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>27.7.6</td>
<td>SLS Seuil.Max.AbsErr</td>
<td>rpm</td>
<td>FLOAT</td>
<td></td>
<td>7006</td>
<td></td>
<td>CALCF</td>
<td>0.0</td>
<td>200.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>27.7.7</td>
<td>SLS PI-D reg I time</td>
<td>ms</td>
<td>FLOAT</td>
<td></td>
<td>7052</td>
<td></td>
<td>100</td>
<td>0.125</td>
<td>500</td>
<td></td>
</tr>
<tr>
<td></td>
<td>27.7.8</td>
<td>SLS PLL AdpGain Up</td>
<td>FLOAT</td>
<td></td>
<td>7054</td>
<td></td>
<td>3</td>
<td>1</td>
<td>50</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>27.7.9</td>
<td>SLS PLL AdpSpd Up</td>
<td>rpm</td>
<td>FLOAT</td>
<td></td>
<td>7056</td>
<td></td>
<td>300</td>
<td>1</td>
<td>3000</td>
<td></td>
</tr>
<tr>
<td></td>
<td>27.7.10</td>
<td>SLS_PM_FluxEstim</td>
<td>Wb</td>
<td>FLOAT</td>
<td></td>
<td>7058</td>
<td></td>
<td>CALCF</td>
<td>0.001</td>
<td>8.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>27.7.11</td>
<td>Offset absolu SLS</td>
<td>cnt</td>
<td>UINT32</td>
<td>7060</td>
<td></td>
<td>32BIT</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>27.8</td>
<td>SERVICE/CORRENTI</td>
<td></td>
</tr>
<tr>
<td></td>
<td>27.8.1</td>
<td>Phase current U</td>
<td>A</td>
<td>FLOAT</td>
<td></td>
<td>80</td>
<td></td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>27.8.2</td>
<td>Phase current V</td>
<td>A</td>
<td>FLOAT</td>
<td></td>
<td>82</td>
<td></td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>27.8.3</td>
<td>Phase current W</td>
<td>A</td>
<td>FLOAT</td>
<td></td>
<td>84</td>
<td></td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>27.8.4</td>
<td>Tension eff phase U</td>
<td>A</td>
<td>FLOAT</td>
<td></td>
<td>90</td>
<td></td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>27.8.5</td>
<td>Tension eff phase V</td>
<td>A</td>
<td>FLOAT</td>
<td></td>
<td>92</td>
<td></td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>27.8.6</td>
<td>Tension eff phase W</td>
<td>A</td>
<td>FLOAT</td>
<td></td>
<td>94</td>
<td></td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>27.8.7</td>
<td>Phase current filter</td>
<td>ms</td>
<td>UINT16</td>
<td>78</td>
<td></td>
<td>0</td>
<td>0</td>
<td>20</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>27.8.8</td>
<td>Enable 3TA</td>
<td>BIT</td>
<td></td>
<td>154</td>
<td></td>
<td>1</td>
<td>0</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>27.9</td>
<td>SERVICE/MOTOR PHLOSS</td>
<td></td>
</tr>
<tr>
<td></td>
<td>27.9.1</td>
<td>Mot PhLoss scale</td>
<td>FLOAT</td>
<td></td>
<td>4686</td>
<td></td>
<td>0.5</td>
<td>0</td>
<td>0.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>27.9.2</td>
<td>Mot PhLoss SRL delay</td>
<td>ms</td>
<td>UINT16</td>
<td>4694</td>
<td></td>
<td>300</td>
<td>0</td>
<td>1000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>27.10</td>
<td>SERVICE/LC SERV</td>
<td></td>
</tr>
<tr>
<td></td>
<td>27.10.1</td>
<td>Thermal resistance1</td>
<td>degC/W</td>
<td>FLOAT</td>
<td></td>
<td>200</td>
<td></td>
<td>0.02</td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>27.10.2</td>
<td>Thermal resistance2</td>
<td>degC/W</td>
<td>FLOAT</td>
<td></td>
<td>202</td>
<td></td>
<td>0</td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>27.10.3</td>
<td>Powerloss factor1</td>
<td>FLOAT</td>
<td></td>
<td>206</td>
<td></td>
<td>0.005</td>
<td>0</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>27.10.4</td>
<td>Filtre.temp. liquide</td>
<td>ms</td>
<td>UINT16</td>
<td>210</td>
<td></td>
<td>1000</td>
<td>0</td>
<td>10000</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>27.10.5</td>
<td>Powerloss factor2</td>
<td>FLOAT</td>
<td></td>
<td>212</td>
<td></td>
<td>0</td>
<td>0</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>27.10.6</td>
<td>HumTSensErr activity</td>
<td>ENUM</td>
<td></td>
<td>4594</td>
<td></td>
<td>0</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Menu PAR Description UM Type FB BIT Def Min Maxi Acc Mod

| 27.10.7 | 4580 | HumTSensErr holdoff | s | UINT16 | 3 | 1 | 50 | ERW | FVS |
| 27.10.8 | 6052 | LC sens err enable | s | UINT16 | 2 | 0 | 0 | ERW | FVS |

27.11 - SERVICE/FILTERS

| 27.11.1 | 30 | Display spd filter | ms | UINT16 | 200 | 10 | 1000 | ERW | FVS |
| 27.11.2 | 32 | Display trq filter | ms | UINT16 | 200 | 10 | 1000 | ERW | FVS |

27.12 - SERVICE/TEST VAR

27.12.1	5060	Var 1 addr	UINT32	3759169536	0	0	ERW	FVS
27.12.2	5062	Var 2 addr	UINT32	3759169536	0	0	ERW	FVS
27.12.3	5070	Var 1 type	ENUM	Non attribué	2	ERW	FVS	
27.12.4	5072	Var 2 type	ENUM	Non attribué	2	ERW	FVS	

27.13 - SERVICE/SD CARD

| 27.13.1 | 598 | Chgt<-carte SD | BIT | 0 | 0 | 1 | ERWZ | FVS |

27.14 - CONTROL

| 27.14.1 | 2500 | DSP enabler code | UINT32 | 0 | 0 | 4294967295 | ERW | FVS |

28 - RECETTE CONF

28.1	6300	Config.recette 1	UINT16	0	0	0	RW	FVS
28.2	6302	Config.recette 2	UINT16	0	0	0	RW	FVS
28.3	6304	Config.recette 3	UINT16	0	0	0	RW	FVS
28.4	6306	Config.recette 4	UINT16	0	0	0	RW	FVS
28.5	6308	Config.recette 5	UINT16	0	0	0	RW	FVS
28.6	6310	Config.recette 6	UINT16	0	0	0	RW	FVS
28.7	6312	Config.recette 7	UINT16	0	0	0	RW	FVS
28.8	6314	Config.recette 8	UINT16	0	0	0	RW	FVS
28.9	6316	Config.recette 9	UINT16	0	0	0	RW	FVS
28.10	6318	Config.recette 10	UINT16	0	0	0	RW	FVS
28.11	6320	Config.recette 11	UINT16	0	0	0	RW	FVS
28.12	6322	Config.recette 12	UINT16	0	0	0	RW	FVS
28.13	6324	Config.recette 13	UINT16	0	0	0	RW	FVS
28.14	6326	Config.recette 14	UINT16	0	0	0	RW	FVS
28.15	6328	Config.recette 15	UINT16	0	0	0	RW	FVS
28.16	6330	Config.recette 16	UINT16	0	0	0	RW	FVS
28.17	6332	Config.recette 17	UINT16	0	0	0	RW	FVS
28.18	6334	Config.recette 18	UINT16	0	0	0	RW	FVS
28.19	6336	Config.recette 19	UINT16	0	0	0	RW	FVS
28.20	6338	Config.recette 20	UINT16	0	0	0	RW	FVS
PARAMÈTRES NON PRÉSENTS DANS LE MENU

<table>
<thead>
<tr>
<th>No.</th>
<th>Description</th>
<th>UM</th>
<th>Type</th>
<th>FB</th>
<th>BIT</th>
<th>Def</th>
<th>Min</th>
<th>Maxi</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>262</td>
<td>Vitess mot ss filtre</td>
<td>FF</td>
<td>INT16</td>
<td>16</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>ER</td>
<td>FVS</td>
</tr>
<tr>
<td>362</td>
<td>Alarm surcharge drv</td>
<td>BIT</td>
<td>16</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>ER</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>366</td>
<td>Surcharge drive drv</td>
<td>BIT</td>
<td>16</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>ER</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>626</td>
<td>Ramp ref total visu</td>
<td>FF</td>
<td>INT16</td>
<td>16</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>ER</td>
<td>FVS</td>
<td></td>
</tr>
<tr>
<td>760</td>
<td>Sortie Ramp Visu</td>
<td>FF</td>
<td>INT16</td>
<td>16</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>ER</td>
<td>FVS</td>
<td></td>
</tr>
<tr>
<td>764</td>
<td>Accélérat° en cours</td>
<td>BIT</td>
<td>16</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>ER</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>766</td>
<td>Décélérat° en cours</td>
<td>BIT</td>
<td>16</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>ER</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>934</td>
<td>Consigne=0</td>
<td>BIT</td>
<td>16</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>ER</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>936</td>
<td>Consigne=0 retard</td>
<td>BIT</td>
<td>16</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>ER</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>944</td>
<td>Vitesse=0</td>
<td>BIT</td>
<td>16</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>ER</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>946</td>
<td>Vitesse=0 retard</td>
<td>BIT</td>
<td>16</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>ER</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>956</td>
<td>Seuil vit.1_2 mon</td>
<td>BIT</td>
<td>16</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>ER</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>966</td>
<td>Vitesse atteinte</td>
<td>BIT</td>
<td>16</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>ER</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>976</td>
<td>Seuil vitesse 3 mon</td>
<td>BIT</td>
<td>16</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>ER</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>986</td>
<td>Seuil courant mon</td>
<td>BIT</td>
<td>16</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>ER</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>988</td>
<td>Local/remote mon</td>
<td>BIT</td>
<td>16</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>ER</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1060</td>
<td>Etat séquence</td>
<td>UINT16</td>
<td>16BIT</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>ER</td>
<td>FVS</td>
<td></td>
</tr>
<tr>
<td>1062</td>
<td>Drive OK</td>
<td>BIT</td>
<td>16BIT</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>ER</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1064</td>
<td>Variateur prêt</td>
<td>BIT</td>
<td>16BIT</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>ER</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1110</td>
<td>Visu entré dig E</td>
<td>BIT</td>
<td>16BIT</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>ER</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1112</td>
<td>Visu entré dig 1</td>
<td>BIT</td>
<td>16BIT</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>ER</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1114</td>
<td>Visu entré dig 2</td>
<td>BIT</td>
<td>16BIT</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>ER</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1116</td>
<td>Visu entré dig 3</td>
<td>BIT</td>
<td>16BIT</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>ER</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1118</td>
<td>Visu entré dig 4</td>
<td>BIT</td>
<td>16BIT</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>ER</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1120</td>
<td>Visu entré dig 5</td>
<td>BIT</td>
<td>16BIT</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>ER</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1122</td>
<td>Visu entrée dig 1X</td>
<td>BIT</td>
<td>16BIT</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>ER</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1124</td>
<td>Visu entrée dig 2X</td>
<td>BIT</td>
<td>16BIT</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>ER</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1214</td>
<td>Visu entrée dig 3X</td>
<td>BIT</td>
<td>16BIT</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>ER</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1216</td>
<td>Visu entrée dig 4X</td>
<td>BIT</td>
<td>16BIT</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>ER</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1218</td>
<td>Visu entrée dig 5X</td>
<td>BIT</td>
<td>16BIT</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>ER</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1220</td>
<td>Visu entrée dig 6X</td>
<td>BIT</td>
<td>16BIT</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>ER</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1222</td>
<td>Visu entrée dig 7X</td>
<td>BIT</td>
<td>16BIT</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>ER</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1224</td>
<td>Visu entrée dig 8X</td>
<td>BIT</td>
<td>16BIT</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>ER</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1530</td>
<td>E ana 1 < seuil</td>
<td>BIT</td>
<td>16BIT</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>ER</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1540</td>
<td>Visu.Err.Ent.Ana1</td>
<td>BIT</td>
<td>16BIT</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>ER</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1542</td>
<td>E ana 1 > seuil</td>
<td>BIT</td>
<td>16BIT</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>ER</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1580</td>
<td>E ana 2 < seuil</td>
<td>BIT</td>
<td>16BIT</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>ER</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1590</td>
<td>Visu.Err.Ent.Ana2</td>
<td>BIT</td>
<td>16BIT</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>ER</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1592</td>
<td>E ana 2 > seuil</td>
<td>BIT</td>
<td>16BIT</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>ER</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1640</td>
<td>Visu.Err.Ent.Ana1X</td>
<td>BIT</td>
<td>16BIT</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>ER</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1690</td>
<td>Visu.Err.Ent.Ana2X</td>
<td>BIT</td>
<td>16BIT</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>ER</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2038</td>
<td>Etat autophase</td>
<td>UINT32</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>ERW</td>
<td>FVS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2040</td>
<td>Autophase OK</td>
<td>UINT32</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>ER</td>
<td>FVS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2388</td>
<td>Cons couple ssFiltre</td>
<td>perc</td>
<td>FLOAT</td>
<td>16BIT</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>ER</td>
<td>FVS</td>
<td></td>
</tr>
<tr>
<td>2396</td>
<td>Couple sans filtre</td>
<td>perc</td>
<td>FLOAT</td>
<td>16BIT</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>ER</td>
<td>FVS</td>
<td></td>
</tr>
<tr>
<td>3006</td>
<td>Srtie Rap vitesse</td>
<td>rpm</td>
<td>INT16</td>
<td>16BIT</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>ER</td>
<td>FVS</td>
<td></td>
</tr>
<tr>
<td>3180</td>
<td>Contr.frein mon</td>
<td>BIT</td>
<td>16BIT</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>ER</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3192</td>
<td>Visu.Seuil.Ouv.Frein</td>
<td>perc</td>
<td>FLOAT</td>
<td>0</td>
<td>0.0</td>
<td>0</td>
<td>ERS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Menu</td>
<td>PAR</td>
<td>Description</td>
<td>UM</td>
<td>Type</td>
<td>FB</td>
<td>BIT</td>
<td>Def</td>
<td>Min</td>
<td>Maxi</td>
<td>Acc</td>
</tr>
<tr>
<td>------</td>
<td>-----</td>
<td>-----------------------------------</td>
<td>------</td>
<td>------</td>
<td>----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
</tr>
<tr>
<td>-</td>
<td>3214</td>
<td>Alarme surcharge mot</td>
<td>BIT</td>
<td>16BIT</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>ER</td>
<td>FVS</td>
<td></td>
</tr>
<tr>
<td>-</td>
<td>3262</td>
<td>Alarme surch R frein</td>
<td>BIT</td>
<td>16BIT</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>ER</td>
<td>FVS</td>
<td></td>
</tr>
<tr>
<td>-</td>
<td>3442</td>
<td>Perte Alim Fin ramp</td>
<td>BIT</td>
<td>16BIT</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>ER</td>
<td>FVS</td>
<td></td>
</tr>
<tr>
<td>-</td>
<td>3446</td>
<td>Perte Alim Ratio</td>
<td>INT32</td>
<td>32BIT</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>ER</td>
<td>FVS</td>
<td></td>
</tr>
<tr>
<td>-</td>
<td>3448</td>
<td>P Alim activ suivant</td>
<td>BIT</td>
<td>16BIT</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>ER</td>
<td>FVS</td>
<td></td>
</tr>
<tr>
<td>-</td>
<td>3480</td>
<td>Contr.bloc.rampe Vdc</td>
<td>BIT</td>
<td>16BIT</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>ER</td>
<td>FVS</td>
<td></td>
</tr>
<tr>
<td>-</td>
<td>3512</td>
<td>Seuil surtp.var visu</td>
<td>UINT32</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>ER</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-</td>
<td>3514</td>
<td>Seuil surtp.mot visu</td>
<td>UINT32</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>ER</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-</td>
<td>4372</td>
<td>Mot d’etat DS402</td>
<td>UINT16</td>
<td>16BIT</td>
<td>0</td>
<td>0</td>
<td>65535</td>
<td>ER</td>
<td>FVS</td>
<td></td>
</tr>
<tr>
<td>-</td>
<td>4394</td>
<td>PFdrv Mot d’etat 1</td>
<td>UINT16</td>
<td>16BIT</td>
<td>0</td>
<td>0</td>
<td>65535</td>
<td>ER</td>
<td>FVS</td>
<td></td>
</tr>
<tr>
<td>-</td>
<td>4396</td>
<td>PFdrv Mot d’etat 2</td>
<td>UINT16</td>
<td>16BIT</td>
<td>0</td>
<td>0</td>
<td>65535</td>
<td>ER</td>
<td>FVS</td>
<td></td>
</tr>
<tr>
<td>-</td>
<td>4538</td>
<td>Courant KTY/PTC</td>
<td>UINT32</td>
<td>2</td>
<td>1</td>
<td>10</td>
<td>ERWS</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-</td>
<td>4708</td>
<td>Visu alarme digit 1</td>
<td>BIT</td>
<td>16BIT</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>ER</td>
<td>FVS</td>
<td></td>
</tr>
<tr>
<td>-</td>
<td>4710</td>
<td>Visu alarme digit 2</td>
<td>BIT</td>
<td>16BIT</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>ER</td>
<td>FVS</td>
<td></td>
</tr>
<tr>
<td>-</td>
<td>4712</td>
<td>Visu alarme digit 3</td>
<td>BIT</td>
<td>16BIT</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>ER</td>
<td>FVS</td>
<td></td>
</tr>
<tr>
<td>-</td>
<td>4714</td>
<td>Visu alarme digit 4</td>
<td>BIT</td>
<td>16BIT</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>ER</td>
<td>FVS</td>
<td></td>
</tr>
<tr>
<td>-</td>
<td>4770</td>
<td>Première Alarme</td>
<td>UINT32</td>
<td>16BIT</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>ER</td>
<td>FVS</td>
<td></td>
</tr>
<tr>
<td>-</td>
<td>4780</td>
<td>Alarme PLC</td>
<td>UINT16</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>ER</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-</td>
<td>4840</td>
<td>Etat d’alarme basse</td>
<td>UINT32</td>
<td>32BIT</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>ER</td>
<td>FVS</td>
<td></td>
</tr>
<tr>
<td>-</td>
<td>4842</td>
<td>Etat d’alarme haute</td>
<td>UINT32</td>
<td>32BIT</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>ER</td>
<td>FVS</td>
<td></td>
</tr>
<tr>
<td>-</td>
<td>5510</td>
<td>Visu entrée dig 9X</td>
<td>BIT</td>
<td>16BIT</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>ER</td>
<td>FVS</td>
<td></td>
</tr>
<tr>
<td>-</td>
<td>5512</td>
<td>Visu entrée dig10X</td>
<td>BIT</td>
<td>16BIT</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>ER</td>
<td>FVS</td>
<td></td>
</tr>
<tr>
<td>-</td>
<td>5514</td>
<td>Visu entrée dig11X</td>
<td>BIT</td>
<td>16BIT</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>ER</td>
<td>FVS</td>
<td></td>
</tr>
<tr>
<td>-</td>
<td>5516</td>
<td>Visu entrée dig12X</td>
<td>BIT</td>
<td>16BIT</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>ER</td>
<td>FVS</td>
<td></td>
</tr>
<tr>
<td>-</td>
<td>5518</td>
<td>Visu entrée dig13X</td>
<td>BIT</td>
<td>16BIT</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>ER</td>
<td>FVS</td>
<td></td>
</tr>
<tr>
<td>-</td>
<td>5520</td>
<td>Visu entrée dig14X</td>
<td>BIT</td>
<td>16BIT</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>ER</td>
<td>FVS</td>
<td></td>
</tr>
<tr>
<td>-</td>
<td>5522</td>
<td>Visu entrée dig15X</td>
<td>BIT</td>
<td>16BIT</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>ER</td>
<td>FVS</td>
<td></td>
</tr>
<tr>
<td>-</td>
<td>5524</td>
<td>Visu entrée dig16X</td>
<td>BIT</td>
<td>16BIT</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>ER</td>
<td>FVS</td>
<td></td>
</tr>
<tr>
<td>-</td>
<td>5800</td>
<td>Visu Inv FL Fwd 1</td>
<td>INT32</td>
<td>32BIT</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>ER</td>
<td>FVS</td>
<td></td>
</tr>
<tr>
<td>-</td>
<td>5802</td>
<td>Visu Inv FL Fwd 2</td>
<td>INT32</td>
<td>32BIT</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>ER</td>
<td>FVS</td>
<td></td>
</tr>
<tr>
<td>-</td>
<td>5804</td>
<td>Visu Inv FL Fwd 3</td>
<td>INT32</td>
<td>32BIT</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>ER</td>
<td>FVS</td>
<td></td>
</tr>
<tr>
<td>-</td>
<td>5806</td>
<td>Visu Inv FL Fwd 4</td>
<td>INT32</td>
<td>32BIT</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>ER</td>
<td>FVS</td>
<td></td>
</tr>
<tr>
<td>-</td>
<td>5808</td>
<td>Visu Inv FL Fwd 5</td>
<td>INT32</td>
<td>32BIT</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>ER</td>
<td>FVS</td>
<td></td>
</tr>
<tr>
<td>-</td>
<td>5810</td>
<td>Visu Inv FL Fwd 6</td>
<td>INT32</td>
<td>32BIT</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>ER</td>
<td>FVS</td>
<td></td>
</tr>
<tr>
<td>-</td>
<td>5812</td>
<td>Visu Inv FL Fwd 7</td>
<td>INT32</td>
<td>32BIT</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>ER</td>
<td>FVS</td>
<td></td>
</tr>
<tr>
<td>-</td>
<td>5814</td>
<td>Visu Inv FL Fwd 8</td>
<td>INT32</td>
<td>32BIT</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>ER</td>
<td>FVS</td>
<td></td>
</tr>
<tr>
<td>-</td>
<td>6000</td>
<td>OFF</td>
<td>UINT32</td>
<td>32BIT</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>ER</td>
<td>FVS</td>
<td></td>
</tr>
<tr>
<td>-</td>
<td>6002</td>
<td>ON</td>
<td>UINT32</td>
<td>32BIT</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>ER</td>
<td>FVS</td>
<td></td>
</tr>
<tr>
<td>-</td>
<td>6004</td>
<td>Vitesse limitée</td>
<td>BIT</td>
<td>16BIT</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>ER</td>
<td>FVS</td>
<td></td>
</tr>
<tr>
<td>-</td>
<td>6006</td>
<td>Courant limité</td>
<td>BIT</td>
<td>16BIT</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>ER</td>
<td>FVS</td>
<td></td>
</tr>
<tr>
<td>-</td>
<td>6044</td>
<td>Etat condensation</td>
<td>UINT32</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>ER</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-</td>
<td>6046</td>
<td>Etat plus d’humidité</td>
<td>UINT32</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>ER</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
G - LISTES DE SELECTION

<table>
<thead>
<tr>
<th>PAR</th>
<th>Description</th>
<th>Menu</th>
</tr>
</thead>
<tbody>
<tr>
<td>L_ANOUT</td>
<td>(*)</td>
<td></td>
</tr>
<tr>
<td>L_CMP</td>
<td>(*)</td>
<td></td>
</tr>
</tbody>
</table>

L_ANOUT

<table>
<thead>
<tr>
<th>PAR</th>
<th>Description</th>
<th>Menu</th>
</tr>
</thead>
<tbody>
<tr>
<td>600</td>
<td>OFF</td>
<td></td>
</tr>
<tr>
<td>626</td>
<td>Ramp ref total visu</td>
<td>(*)</td>
</tr>
<tr>
<td>628</td>
<td>Gestion des rampes</td>
<td>1.5</td>
</tr>
<tr>
<td>760</td>
<td>Sortie Ramp Visu</td>
<td>(*)</td>
</tr>
<tr>
<td>664</td>
<td>Vitesse ref totale</td>
<td>1.6</td>
</tr>
<tr>
<td>260</td>
<td>Vitesse moteur</td>
<td>1.7</td>
</tr>
<tr>
<td>262</td>
<td>Vitesse mot ss filtre</td>
<td>(*)</td>
</tr>
<tr>
<td>2150</td>
<td>Vitesse codeur 1</td>
<td>17.2.13</td>
</tr>
<tr>
<td>5150</td>
<td>Vitesse codeur 2</td>
<td>17.3.13</td>
</tr>
<tr>
<td>250</td>
<td>Intensité de sortie</td>
<td>1.1</td>
</tr>
<tr>
<td>252</td>
<td>Tension de sortie</td>
<td>1.2</td>
</tr>
<tr>
<td>254</td>
<td>Fréquence de sortie</td>
<td>1.3</td>
</tr>
<tr>
<td>256</td>
<td>Puissance de sortie</td>
<td>1.4</td>
</tr>
<tr>
<td>280</td>
<td>Consigne Couple</td>
<td>1.17</td>
</tr>
<tr>
<td>281</td>
<td>Consigne I magnet</td>
<td>1.18</td>
</tr>
<tr>
<td>284</td>
<td>Courant de couple</td>
<td>1.19</td>
</tr>
<tr>
<td>286</td>
<td>Courant magnétisant</td>
<td>1.20</td>
</tr>
<tr>
<td>2360</td>
<td>Lim couple pos actu</td>
<td>20.9</td>
</tr>
<tr>
<td>2382</td>
<td>Lim couple reg actu</td>
<td>20.10</td>
</tr>
<tr>
<td>2386</td>
<td>Consigne de couple %</td>
<td>20.18</td>
</tr>
<tr>
<td>2388</td>
<td>Cons couple ssFiltre</td>
<td>(*)</td>
</tr>
<tr>
<td>2394</td>
<td>Couple %</td>
<td>20.20</td>
</tr>
<tr>
<td>2396</td>
<td>Couple sans filtre</td>
<td>(*)</td>
</tr>
<tr>
<td>270</td>
<td>Tension circuit DC</td>
<td>1.8</td>
</tr>
<tr>
<td>3006</td>
<td>Srtie Rap vitesse</td>
<td></td>
</tr>
<tr>
<td>3070</td>
<td>Visu Comp inertia</td>
<td>22.3.3</td>
</tr>
<tr>
<td>1500</td>
<td>Visu entré Ana 1</td>
<td>14.1</td>
</tr>
<tr>
<td>1550</td>
<td>Visu entré Ana 2</td>
<td>14.17</td>
</tr>
<tr>
<td>1600</td>
<td>Visu entré Ana 1X</td>
<td>14.33</td>
</tr>
<tr>
<td>1650</td>
<td>Visu entré Ana 2X</td>
<td>14.45</td>
</tr>
<tr>
<td>368</td>
<td>Drive surcharge cum</td>
<td>1.22</td>
</tr>
<tr>
<td>3212</td>
<td>Cumul surchg moteur</td>
<td>1.21</td>
</tr>
<tr>
<td>3260</td>
<td>Cumul surch R frein</td>
<td>1.23</td>
</tr>
<tr>
<td>2232</td>
<td>Reg N actuel P</td>
<td>18.11</td>
</tr>
<tr>
<td>2234</td>
<td>Reg N actuel I</td>
<td>18.12</td>
</tr>
<tr>
<td>2246</td>
<td>Reg Vitesse P Coef</td>
<td>18.16</td>
</tr>
<tr>
<td>2248</td>
<td>Reg Vitesse I Coef</td>
<td>18.17</td>
</tr>
<tr>
<td>3446</td>
<td>Perte Alim Ratio</td>
<td>(*)</td>
</tr>
<tr>
<td>4024</td>
<td>Bus M->Esc 1 visu</td>
<td>23.3.3</td>
</tr>
<tr>
<td>4034</td>
<td>Bus M->Esc 2 visu</td>
<td>23.3.7</td>
</tr>
<tr>
<td>4044</td>
<td>Bus M->Esc 3 visu</td>
<td>23.3.11</td>
</tr>
<tr>
<td>4054</td>
<td>Bus M->Esc 4 visu</td>
<td>23.3.15</td>
</tr>
<tr>
<td>4064</td>
<td>Bus M->Esc 5 visu</td>
<td>23.3.19</td>
</tr>
<tr>
<td>4074</td>
<td>Bus M->Esc 6 visu</td>
<td>23.3.23</td>
</tr>
<tr>
<td>4084</td>
<td>Bus M->Esc 7 visu</td>
<td>23.3.27</td>
</tr>
<tr>
<td>4094</td>
<td>Bus M->Esc 8 visu</td>
<td>23.3.31</td>
</tr>
<tr>
<td>4104</td>
<td>Bus M->Esc 9 visu</td>
<td>23.3.35</td>
</tr>
<tr>
<td>4114</td>
<td>Bus M->Esc 10 visu</td>
<td>23.3.39</td>
</tr>
<tr>
<td>4124</td>
<td>Bus M->Esc 11 visu</td>
<td>23.3.43</td>
</tr>
<tr>
<td>4134</td>
<td>Bus M->Esc 12 visu</td>
<td>23.3.47</td>
</tr>
<tr>
<td>4144</td>
<td>Bus M->Esc 13 visu</td>
<td>23.3.51</td>
</tr>
<tr>
<td>4154</td>
<td>Bus M->Esc 14 visu</td>
<td>23.3.55</td>
</tr>
<tr>
<td>4164</td>
<td>Bus M->Esc 15 visu</td>
<td>23.3.59</td>
</tr>
<tr>
<td>4174</td>
<td>Bus M->Esc 16 visu</td>
<td>23.3.63</td>
</tr>
<tr>
<td>3700</td>
<td>Mot interne 1</td>
<td>22.10.1</td>
</tr>
<tr>
<td>3702</td>
<td>Mot interne 2</td>
<td>22.10.2</td>
</tr>
</tbody>
</table>

L_CMP

<table>
<thead>
<tr>
<th>PAR</th>
<th>Description</th>
<th>Menu</th>
</tr>
</thead>
<tbody>
<tr>
<td>3704</td>
<td>Mot interne 3</td>
<td>22.10.3</td>
</tr>
<tr>
<td>3706</td>
<td>Mot interne 4</td>
<td>22.10.4</td>
</tr>
<tr>
<td>3708</td>
<td>Mot interne 5</td>
<td>22.10.5</td>
</tr>
<tr>
<td>3710</td>
<td>Mot interne 6</td>
<td>22.10.6</td>
</tr>
<tr>
<td>3712</td>
<td>Mot interne 7</td>
<td>22.10.7</td>
</tr>
<tr>
<td>3714</td>
<td>Mot interne 8</td>
<td>22.10.8</td>
</tr>
<tr>
<td>3716</td>
<td>Mot interne 9</td>
<td>22.10.9</td>
</tr>
<tr>
<td>3718</td>
<td>Mot interne 10</td>
<td>22.10.10</td>
</tr>
<tr>
<td>3720</td>
<td>Mot interne 11</td>
<td>22.10.11</td>
</tr>
<tr>
<td>3722</td>
<td>Mot interne 12</td>
<td>22.10.12</td>
</tr>
<tr>
<td>3724</td>
<td>Mot interne 13</td>
<td>22.10.13</td>
</tr>
<tr>
<td>3726</td>
<td>Mot interne 14</td>
<td>22.10.14</td>
</tr>
<tr>
<td>3728</td>
<td>Mot interne 15</td>
<td>22.10.15</td>
</tr>
<tr>
<td>3730</td>
<td>Mot interne 16</td>
<td>22.10.16</td>
</tr>
<tr>
<td>5008</td>
<td>Sortie Gen test</td>
<td>27.1.5</td>
</tr>
<tr>
<td>5750</td>
<td>Visu FL Fwd 1</td>
<td>23.8.13</td>
</tr>
<tr>
<td>5752</td>
<td>Visu FL Fwd 2</td>
<td>23.8.14</td>
</tr>
<tr>
<td>5754</td>
<td>Visu FL Fwd 3</td>
<td>23.8.15</td>
</tr>
<tr>
<td>5756</td>
<td>Visu FL Fwd 4</td>
<td>23.8.16</td>
</tr>
<tr>
<td>5758</td>
<td>Visu FL Fwd 5</td>
<td>23.8.17</td>
</tr>
<tr>
<td>5760</td>
<td>Visu FL Fwd 6</td>
<td>23.8.18</td>
</tr>
<tr>
<td>5762</td>
<td>Visu FL Fwd 7</td>
<td>23.8.19</td>
</tr>
<tr>
<td>5764</td>
<td>Visu FL Fwd 8</td>
<td>23.8.20</td>
</tr>
<tr>
<td>5800</td>
<td>Visu Inv FL Fwd 1</td>
<td>(*)</td>
</tr>
<tr>
<td>5802</td>
<td>Visu Inv FL Fwd 2</td>
<td>(*)</td>
</tr>
<tr>
<td>5804</td>
<td>Visu Inv FL Fwd 3</td>
<td>(*)</td>
</tr>
<tr>
<td>5806</td>
<td>Visu Inv FL Fwd 4</td>
<td>(*)</td>
</tr>
<tr>
<td>5808</td>
<td>Visu Inv FL Fwd 5</td>
<td>(*)</td>
</tr>
<tr>
<td>5810</td>
<td>Visu Inv FL Fwd 6</td>
<td>(*)</td>
</tr>
<tr>
<td>5812</td>
<td>Visu Inv FL Fwd 7</td>
<td>(*)</td>
</tr>
<tr>
<td>5814</td>
<td>Visu Inv FL Fwd 8</td>
<td>(*)</td>
</tr>
<tr>
<td>4538</td>
<td>Courant KTY/PTC</td>
<td>20.15</td>
</tr>
<tr>
<td>2346</td>
<td>Consigne Couple 1</td>
<td>1.16</td>
</tr>
<tr>
<td>2342</td>
<td>Charge actu elle %</td>
<td></td>
</tr>
</tbody>
</table>

(1) XXXX change en fonction du paramètre "Source" qui l’utilise:
L_CTRLMODE

<table>
<thead>
<tr>
<th>PAR</th>
<th>Description</th>
<th>Menu</th>
</tr>
</thead>
<tbody>
<tr>
<td>960</td>
<td>Vit atteinte src</td>
<td>Menu</td>
</tr>
<tr>
<td>(1) = 968</td>
<td>Seuil fixe vit_ref</td>
<td>10.11</td>
</tr>
<tr>
<td>3660</td>
<td>Val comp ED1 src</td>
<td>Menu</td>
</tr>
<tr>
<td>(1) = 3650</td>
<td>Valeur compar ED1</td>
<td>22.9.1</td>
</tr>
<tr>
<td>3662</td>
<td>Val comp ED2 src</td>
<td>Menu</td>
</tr>
<tr>
<td>(1) = 3652</td>
<td>Valeur compar ED2</td>
<td>22.9.2</td>
</tr>
</tbody>
</table>

(2) le paramètre XXXX change en fonction du paramètre “Source” qui l’utilise:

6206	Visu Mode Ctrl sel	22.14.5
4024	Bus M->Esc 1 visu	23.3.3
4034	Bus M->Esc 2 visu	23.3.7
4044	Bus M->Esc 3 visu	23.3.11
4054	Bus M->Esc 4 visu	23.3.15
4064	Bus M->Esc 5 visu	23.3.19
4074	Bus M->Esc 6 visu	23.3.23
4084	Bus M->Esc 7 visu	23.3.27
4094	Bus M->Esc 8 visu	23.3.31
4104	Bus M->Esc 9 visu	23.3.35
4114	Bus M->Esc 10 visu	23.3.39
4124	Bus M->Esc 11 visu	23.3.43
4134	Bus M->Esc 12 visu	23.3.47
4144	Bus M->Esc 13 visu	23.3.51
4154	Bus M->Esc 14 visu	23.3.55
4164	Bus M->Esc 15 visu	23.3.59
4174	Bus M->Esc 16 visu	23.3.63
3700	Mot interne 1	22.10.1
3702	Mot interne 2	22.10.2
3704	Mot interne 3	22.10.3
3706	Mot interne 4	22.10.4
3708	Mot interne 5	22.10.5
3710	Mot interne 6	22.10.6
3712	Mot interne 7	22.10.7
3714	Mot interne 8	22.10.8
3716	Mot interne 9	22.10.9
3718	Mot interne 10	22.10.10
3720	Mot interne 11	22.10.11
3722	Mot interne 12	22.10.12
3724	Mot interne 13	22.10.13
3726	Mot interne 14	22.10.14
3728	Mot interne 15	22.10.15
3730	Mot interne 16	22.10.16

L_DIGSEL2

<table>
<thead>
<tr>
<th>PAR</th>
<th>Description</th>
<th>Menu</th>
</tr>
</thead>
<tbody>
<tr>
<td>6000</td>
<td>OFF</td>
<td>Menu</td>
</tr>
<tr>
<td>6002</td>
<td>ON</td>
<td>Menu</td>
</tr>
<tr>
<td>1110</td>
<td>Visu entré dig E</td>
<td>Menu</td>
</tr>
<tr>
<td>1112</td>
<td>Visu entré dig 1</td>
<td>Menu</td>
</tr>
<tr>
<td>1114</td>
<td>Visu entré dig 2</td>
<td>Menu</td>
</tr>
<tr>
<td>1116</td>
<td>Visu entré dig 3</td>
<td>Menu</td>
</tr>
<tr>
<td>1118</td>
<td>Visu entré dig 4</td>
<td>Menu</td>
</tr>
<tr>
<td>1120</td>
<td>Visu entré dig 5</td>
<td>Menu</td>
</tr>
<tr>
<td>1121</td>
<td>Visu entré dig 1X</td>
<td>Menu</td>
</tr>
<tr>
<td>6000</td>
<td>OFF</td>
<td>Menu</td>
</tr>
<tr>
<td>6002</td>
<td>ON</td>
<td>Menu</td>
</tr>
<tr>
<td>1110</td>
<td>Visu entré dig E</td>
<td>Menu</td>
</tr>
<tr>
<td>1112</td>
<td>Visu entré dig 1</td>
<td>Menu</td>
</tr>
<tr>
<td>1114</td>
<td>Visu entré dig 2</td>
<td>Menu</td>
</tr>
<tr>
<td>1116</td>
<td>Visu entré dig 3</td>
<td>Menu</td>
</tr>
<tr>
<td>1118</td>
<td>Visu entré dig 4</td>
<td>Menu</td>
</tr>
<tr>
<td>1120</td>
<td>Visu entré dig 5</td>
<td>Menu</td>
</tr>
<tr>
<td>1121</td>
<td>Visu entré dig 1X</td>
<td>Menu</td>
</tr>
</tbody>
</table>

L_DIGSEL1

<table>
<thead>
<tr>
<th>PAR</th>
<th>Description</th>
<th>Menu</th>
</tr>
</thead>
<tbody>
<tr>
<td>1212</td>
<td>Visu entré dig 2X</td>
<td>(*)</td>
</tr>
<tr>
<td>1214</td>
<td>Visu entré dig 3X</td>
<td>(*)</td>
</tr>
<tr>
<td>1216</td>
<td>Visu entré dig 4X</td>
<td>(*)</td>
</tr>
<tr>
<td>1218</td>
<td>Visu entré dig 5X</td>
<td>(*)</td>
</tr>
<tr>
<td>1220</td>
<td>Visu entré dig 6X</td>
<td>(*)</td>
</tr>
<tr>
<td>1222</td>
<td>Visu entré dig 7X</td>
<td>(*)</td>
</tr>
<tr>
<td>1224</td>
<td>Visu entré dig 8X</td>
<td>(*)</td>
</tr>
<tr>
<td>5510</td>
<td>Visu entré dig 9X</td>
<td>(*)</td>
</tr>
<tr>
<td>5512</td>
<td>Visu entré dig10X</td>
<td>(*)</td>
</tr>
<tr>
<td>5514</td>
<td>Visu entré dig11X</td>
<td>(*)</td>
</tr>
<tr>
<td>5516</td>
<td>Visu entré dig12X</td>
<td>(*)</td>
</tr>
<tr>
<td>5518</td>
<td>Visu entré dig13X</td>
<td>(*)</td>
</tr>
<tr>
<td>5520</td>
<td>Visu entré dig14X</td>
<td>(*)</td>
</tr>
<tr>
<td>5522</td>
<td>Visu entré dig15X</td>
<td>(*)</td>
</tr>
<tr>
<td>5524</td>
<td>Visu entré dig16X</td>
<td>(*)</td>
</tr>
<tr>
<td>1062</td>
<td>Drive OK</td>
<td>(*)</td>
</tr>
<tr>
<td>1064</td>
<td>Variateur prêt</td>
<td>(*)</td>
</tr>
<tr>
<td>934</td>
<td>Consigne=0</td>
<td>(*)</td>
</tr>
<tr>
<td>944</td>
<td>Vitesse=0</td>
<td>(*)</td>
</tr>
<tr>
<td>946</td>
<td>Vitesse=0 retard</td>
<td>(*)</td>
</tr>
<tr>
<td>956</td>
<td>Seuil vit.1_2_mon</td>
<td>(*)</td>
</tr>
<tr>
<td>966</td>
<td>Vitesse atteinte</td>
<td>(*)</td>
</tr>
<tr>
<td>976</td>
<td>Seuil vitesse 3_mon</td>
<td>(*)</td>
</tr>
<tr>
<td>986</td>
<td>Seuil courant mon</td>
<td>(*)</td>
</tr>
<tr>
<td>1066</td>
<td>Visu état validé</td>
<td>1.24</td>
</tr>
<tr>
<td>1068</td>
<td>Visu état Start</td>
<td>1.25</td>
</tr>
<tr>
<td>1070</td>
<td>Visu état Arr rapid</td>
<td>1.26</td>
</tr>
<tr>
<td>1024</td>
<td>Validat* _ cmd visu</td>
<td>11.13</td>
</tr>
<tr>
<td>1026</td>
<td>Start cmd visu</td>
<td>11.15</td>
</tr>
<tr>
<td>1028</td>
<td>Arrêt rapid cmd visu</td>
<td>11.16</td>
</tr>
<tr>
<td>1034</td>
<td>Visu.Verrouil.Var</td>
<td>11.25</td>
</tr>
<tr>
<td>4708</td>
<td>Visu alarme digit 1</td>
<td>(*)</td>
</tr>
<tr>
<td>4710</td>
<td>Visu alarme digit 2</td>
<td>(*)</td>
</tr>
<tr>
<td>4712</td>
<td>Visu alarme digit 3</td>
<td>(*)</td>
</tr>
<tr>
<td>4714</td>
<td>Visu alarme digit 4</td>
<td>(*)</td>
</tr>
<tr>
<td>1530</td>
<td>E ana 1 < seuil</td>
<td>(*)</td>
</tr>
<tr>
<td>1542</td>
<td>E ana 1 > seuil</td>
<td>(*)</td>
</tr>
<tr>
<td>1580</td>
<td>E ana 2 < seuil</td>
<td>(*)</td>
</tr>
<tr>
<td>1592</td>
<td>E ana 2 > seuil</td>
<td>(*)</td>
</tr>
<tr>
<td>362</td>
<td>Alarm surcharge drv</td>
<td>(*)</td>
</tr>
<tr>
<td>3214</td>
<td>Alarme surcharge mot</td>
<td>(*)</td>
</tr>
<tr>
<td>3262</td>
<td>Alarme surch R frein</td>
<td>(*)</td>
</tr>
<tr>
<td>366</td>
<td>Surcharge drive 80%</td>
<td>(*)</td>
</tr>
<tr>
<td>1048</td>
<td>FR start visu</td>
<td>11.21</td>
</tr>
<tr>
<td>1050</td>
<td>FR reverse visu</td>
<td>11.22</td>
</tr>
<tr>
<td>4454</td>
<td>Visu compéd Bt0</td>
<td>23.6.3</td>
</tr>
<tr>
<td>4456</td>
<td>Visu compéd Bt1</td>
<td>23.6.4</td>
</tr>
<tr>
<td>4458</td>
<td>Visu compéd Bt2</td>
<td>23.6.5</td>
</tr>
<tr>
<td>4460</td>
<td>Visu compéd Bt3</td>
<td>23.6.6</td>
</tr>
<tr>
<td>4462</td>
<td>Visu compéd Bt4</td>
<td>23.6.7</td>
</tr>
<tr>
<td>4464</td>
<td>Visu compéd Bt5</td>
<td>23.6.8</td>
</tr>
<tr>
<td>4466</td>
<td>Visu compéd Bt6</td>
<td>23.6.9</td>
</tr>
<tr>
<td>4468</td>
<td>Visu compéd Bt7</td>
<td>23.6.10</td>
</tr>
<tr>
<td>4470</td>
<td>Visu compéd Bt8</td>
<td>23.6.11</td>
</tr>
<tr>
<td>4472</td>
<td>Visu compéd Bt9</td>
<td>23.6.12</td>
</tr>
<tr>
<td>4474</td>
<td>Visu compéd Bt10</td>
<td>23.6.13</td>
</tr>
<tr>
<td>4476</td>
<td>Visu compéd Bt11</td>
<td>23.6.14</td>
</tr>
<tr>
<td>4478</td>
<td>Visu compéd Bt12</td>
<td>23.6.15</td>
</tr>
<tr>
<td>4480</td>
<td>Visu compéd Bt13</td>
<td>23.6.16</td>
</tr>
<tr>
<td>4482</td>
<td>Visu compéd Bt14</td>
<td>23.6.17</td>
</tr>
<tr>
<td>4484</td>
<td>Visu compéd Bt15</td>
<td>23.6.18</td>
</tr>
</tbody>
</table>

(2) = 556 Mode de pilot sel 22.14.1
L_DIGSEL3

<table>
<thead>
<tr>
<th>PAR</th>
<th>Description</th>
<th>Menu</th>
</tr>
</thead>
<tbody>
<tr>
<td>5510</td>
<td>Visu entrée dig 9X(*)</td>
<td></td>
</tr>
<tr>
<td>5512</td>
<td>Visu entrée dig10X(*)</td>
<td></td>
</tr>
<tr>
<td>5514</td>
<td>Visu entrée dig11X(*)</td>
<td></td>
</tr>
<tr>
<td>5516</td>
<td>Visu entrée dig12X(*)</td>
<td></td>
</tr>
<tr>
<td>5518</td>
<td>Visu entrée dig13X(*)</td>
<td></td>
</tr>
<tr>
<td>5520</td>
<td>Visu entrée dig14X(*)</td>
<td></td>
</tr>
<tr>
<td>5522</td>
<td>Visu entrée dig15X(*)</td>
<td></td>
</tr>
<tr>
<td>5524</td>
<td>Visu entrée dig16X(*)</td>
<td></td>
</tr>
<tr>
<td>4454</td>
<td>Visu decomp Bit0</td>
<td>23.6.3</td>
</tr>
<tr>
<td>4456</td>
<td>Visu decomp Bit1</td>
<td>23.6.4</td>
</tr>
<tr>
<td>4458</td>
<td>Visu decomp Bit2</td>
<td>23.6.5</td>
</tr>
<tr>
<td>4460</td>
<td>Visu decomp Bit3</td>
<td>23.6.6</td>
</tr>
<tr>
<td>4462</td>
<td>Visu decomp Bit4</td>
<td>23.6.7</td>
</tr>
<tr>
<td>4464</td>
<td>Visu decomp Bit5</td>
<td>23.6.8</td>
</tr>
<tr>
<td>4466</td>
<td>Visu decomp Bit6</td>
<td>23.6.9</td>
</tr>
<tr>
<td>4468</td>
<td>Visu decomp Bit7</td>
<td>23.6.10</td>
</tr>
<tr>
<td>4470</td>
<td>Visu decomp Bit8</td>
<td>23.6.11</td>
</tr>
<tr>
<td>4472</td>
<td>Visu decomp Bit9</td>
<td>23.6.12</td>
</tr>
<tr>
<td>4474</td>
<td>Visu decomp Bit10</td>
<td>23.6.13</td>
</tr>
<tr>
<td>4476</td>
<td>Visu decomp Bit11</td>
<td>23.6.14</td>
</tr>
<tr>
<td>4478</td>
<td>Visu decomp Bit12</td>
<td>23.6.15</td>
</tr>
<tr>
<td>4480</td>
<td>Visu decomp Bit13</td>
<td>23.6.16</td>
</tr>
<tr>
<td>4482</td>
<td>Visu decomp Bit14</td>
<td>23.6.17</td>
</tr>
<tr>
<td>4484</td>
<td>Visu decomp Bit15</td>
<td>23.6.18</td>
</tr>
</tbody>
</table>

L_FBS2M

<table>
<thead>
<tr>
<th>PAR</th>
<th>Description</th>
<th>Menu</th>
</tr>
</thead>
<tbody>
<tr>
<td>6000</td>
<td>OFF</td>
<td></td>
</tr>
<tr>
<td>6002</td>
<td>ON</td>
<td></td>
</tr>
<tr>
<td>1110</td>
<td>Visu entré dig E(*)</td>
<td></td>
</tr>
<tr>
<td>1112</td>
<td>Visu entré dig 1(*)</td>
<td></td>
</tr>
<tr>
<td>1114</td>
<td>Visu entré dig 2(*)</td>
<td></td>
</tr>
<tr>
<td>1116</td>
<td>Visu entré dig 3(*)</td>
<td></td>
</tr>
<tr>
<td>1118</td>
<td>Visu entré dig 4(*)</td>
<td></td>
</tr>
<tr>
<td>1120</td>
<td>Visu entré dig 5(*)</td>
<td></td>
</tr>
</tbody>
</table>

(3) = 1012 Dig local/Distance src

(3) le paramètre XXXX change en fonction du paramètre "Source" qui l’utilise:

1014 Local/Distance src

1014 = 1012 Dig local/Distance

(4) XXXX

<table>
<thead>
<tr>
<th>PAR</th>
<th>Description</th>
<th>Menu</th>
</tr>
</thead>
<tbody>
<tr>
<td>6000</td>
<td>OFF</td>
<td></td>
</tr>
<tr>
<td>6002</td>
<td>ON</td>
<td></td>
</tr>
<tr>
<td>626</td>
<td>Ramp ref total visu(*)</td>
<td></td>
</tr>
<tr>
<td>628</td>
<td>Gestion des rampes</td>
<td>1.5</td>
</tr>
<tr>
<td>760</td>
<td>Sortie Ramp Visu(*)</td>
<td></td>
</tr>
<tr>
<td>664</td>
<td>Vitesse ref totale</td>
<td>1.6</td>
</tr>
<tr>
<td>260</td>
<td>Vitesse moteur</td>
<td>1.7</td>
</tr>
<tr>
<td>262</td>
<td>Vitesse mot ss filtre(*)</td>
<td></td>
</tr>
<tr>
<td>2150</td>
<td>Vitesse codeur 1</td>
<td>17.2.13</td>
</tr>
<tr>
<td>5150</td>
<td>Vitesse codeur 2</td>
<td>17.3.13</td>
</tr>
<tr>
<td>250</td>
<td>Intensité de sortie</td>
<td>1.1</td>
</tr>
<tr>
<td>252</td>
<td>Tension de sortie</td>
<td>1.2</td>
</tr>
<tr>
<td>254</td>
<td>Fréquence de sortie</td>
<td>1.3</td>
</tr>
<tr>
<td>280</td>
<td>Consigne Couple</td>
<td>1.17</td>
</tr>
<tr>
<td>282</td>
<td>Consigne I magnet</td>
<td>1.18</td>
</tr>
<tr>
<td>284</td>
<td>Courant de couple</td>
<td>1.19</td>
</tr>
<tr>
<td>286</td>
<td>Courant magnétisant</td>
<td>1.20</td>
</tr>
<tr>
<td>2360</td>
<td>Lim couple pos actu</td>
<td>20.9</td>
</tr>
<tr>
<td>2362</td>
<td>Lim couple neg actu</td>
<td>20.10</td>
</tr>
<tr>
<td>2388</td>
<td>Consigne de couple %</td>
<td>20.18</td>
</tr>
<tr>
<td>2388</td>
<td>Cons couple ssFilter(*)</td>
<td></td>
</tr>
<tr>
<td>2394</td>
<td>Couple %</td>
<td>20.20</td>
</tr>
<tr>
<td>2396</td>
<td>Couple sans filtre(*)</td>
<td></td>
</tr>
<tr>
<td>270</td>
<td>Tension circuit DC</td>
<td>1.8</td>
</tr>
<tr>
<td>2162</td>
<td>Position codeur 1</td>
<td>17.2.14</td>
</tr>
<tr>
<td>2154</td>
<td>Posit.Virtuelle E1</td>
<td>27.2.2</td>
</tr>
<tr>
<td>2156</td>
<td>Nb.tours E1</td>
<td>27.2.3</td>
</tr>
</tbody>
</table>
3006 Srtie Rap vitesse (*)
3070 Equil T result visu 22.2.5
852 Multi vit actuelle 7.24
870 Mpot vit départ 8.1
894 Mpot sortie visu 8.13
920 Jog sortie visu 9.6
3104 Visu Comp inertie 22.3.3
1500 Visu entré Ana 1 14.1
1550 Visu entré Ana 2 14.17
1600 Visu entré Ana 1X 14.33
1650 Visu entré Ana 2X 14.45
368 Drive surcharge cum 1.22
3260 Cumul surch R frein 1.23
1060 Etat séquence (*)
4432 Mot comp visu 23.5.17
3446 Perte Alim Ratio (*)
4372 Mot d'etat DS402 (*)
4394 PFdrv Mot d'etat 1 (*)
4396 PFdrv Mot d'etat 2 (*)
2246 Reg Vitesse P Coef 18.16
2248 Reg Vitesse I Coef 18.17
4024 Bus M->Esc 1 visu 23.3.3
4034 Bus M->Esc 2 visu 23.3.7
4044 Bus M->Esc 3 visu 23.3.11
4054 Bus M->Esc 4 visu 23.3.15
4064 Bus M->Esc 5 visu 23.3.19
4074 Bus M->Esc 6 visu 23.3.23
4084 Bus M->Esc 7 visu 23.3.27
4094 Bus M->Esc 8 visu 23.3.31
4104 Bus M->Esc 9 visu 23.3.35
4114 Bus M->Esc 10 visu 23.3.39
4124 Bus M->Esc 11 visu 23.3.43
4134 Bus M->Esc 12 visu 23.3.47
4144 Bus M->Esc 13 visu 23.3.51
4154 Bus M->Esc 14 visu 23.3.55
4164 Bus M->Esc 15 visu 23.3.59
4174 Bus M->Esc 16 visu 23.3.63
3700 Mot interne 1 22.10.1
3702 Mot interne 2 22.10.2
3704 Mot interne 3 22.10.3
3706 Mot interne 4 22.10.4
3708 Mot interne 5 22.10.5
3710 Mot interne 6 22.10.6
3712 Mot interne 7 22.10.7
3714 Mot interne 8 22.10.8
3716 Mot interne 9 22.10.9
3718 Mot interne 10 22.10.10
3720 Mot interne 11 22.10.11
3722 Mot interne 12 22.10.12
3724 Mot interne 13 22.10.13
3726 Mot interne 14 22.10.14
3728 Mot interne 15 22.10.15
3730 Mot interne 16 22.10.16
4770 Première Alarme (*)
4840 Etat d’alarme basse (*)
4842 Etat d’alarme haute (*)
1100 Visu entrées digit 1.26
1200 Visu entrée dig X 1.28
5008 Sortie Gen test 27.1.5
5750 Visu FL Fwd 1 23.8.13
5752 Visu FL Fwd 2 23.8.14

ADV200 • Listes de sélection
L_MLTREF

(5) le paramètre XXX change en fonction du paramètre “Source” qui l’utilise:

- 610 Ramp ref 1 src
 - (5) = 600 Dig ramp ref 1
 - 5.1
- 612 Ramp ref 2 src
 - (5) = 602 Dig ramp ref 2
 - 5.2
- 614 Ramp ref 3 src
 - (5) = 604 Dig ramp ref 3
 - 5.3
- 650 Vitesse ref 1 src
 - (5) = Dig vitesse ref 1
 - 5.15
- 652 Vitesse ref 2 src
 - (5) = Dig vitesse ref 2
 - 5.16
- 832 Multi vitesse 0 src
 - (5) = 800 Multi vitesse 0
 - 7.1
- 834 Multi vitesse 1 src
 - (5) = 802 Multi vitesse 1
 - 7.2

L_LIM

6000 OFF
(5)
1500 Visu entré Ana 1 14.1
1550 Visu entré Ana 2 14.17
2380 Consigne couple 1 20.12
1600 Visu entré Ana 1X 14.33
1650 Visu entré Ana 2X 14.45
4024 Bus M->Esc 1 visu 23.3
4034 Bus M->Esc 2 visu 23.7
4044 Bus M->Esc 3 visu 23.11
4054 Bus M->Esc 4 visu 23.15
4064 Bus M->Esc 5 visu 23.19
4074 Bus M->Esc 6 visu 23.23
4084 Bus M->Esc 7 visu 23.27
4094 Bus M->Esc 8 visu 23.31
4114 Bus M->Esc 9 visu 23.35
4144 Bus M->Esc 10 visu 23.39
4124 Bus M->Esc 11 visu 23.43
4134 Bus M->Esc 12 visu 23.47
4144 Bus M->Esc 13 visu 23.51
4154 Bus M->Esc 14 visu 23.55
4164 Bus M->Esc 15 visu 23.59
4174 Bus M->Esc 16 visu 23.63
3700 Mot interne 1 22.10.1
3702 Mot interne 2 22.10.2
3704 Mot interne 3 22.10.3
3706 Mot interne 4 22.10.4
3708 Mot interne 5 22.10.5
3710 Mot interne 6 22.10.6
3712 Mot interne 7 22.10.7
3714 Mot interne 8 22.10.8
3716 Mot interne 9 22.10.9
3718 Mot interne 10 22.10.10
3720 Mot interne 11 22.10.11
3722 Mot interne 12 22.10.12
3724 Mot interne 13 22.10.13
3726 Mot interne 14 22.10.14
3728 Mot interne 15 22.10.15
3730 Mot interne 16 22.10.16
5008 Sortie Gen test 27.1.5
5750 Visu FL Fwd 1 23.8.13
5752 Visu FL Fwd 2 23.8.14
<table>
<thead>
<tr>
<th>PAR</th>
<th>Description</th>
<th>Menu</th>
<th>PAR</th>
<th>Description</th>
<th>Menu</th>
</tr>
</thead>
<tbody>
<tr>
<td>4094</td>
<td>Bus M->Esc 8 visu</td>
<td>23.3.31</td>
<td>3702</td>
<td>Mot interne 2</td>
<td>22.10.2</td>
</tr>
<tr>
<td>4104</td>
<td>Bus M->Esc 9 visu</td>
<td>23.3.35</td>
<td>3704</td>
<td>Mot interne 3</td>
<td>22.10.3</td>
</tr>
<tr>
<td>4114</td>
<td>Bus M->Esc 10 visu</td>
<td>23.3.39</td>
<td>3706</td>
<td>Mot interne 4</td>
<td>22.10.4</td>
</tr>
<tr>
<td>4124</td>
<td>Bus M->Esc 11 visu</td>
<td>23.3.43</td>
<td>3708</td>
<td>Mot interne 5</td>
<td>22.10.5</td>
</tr>
<tr>
<td>4134</td>
<td>Bus M->Esc 12 visu</td>
<td>23.3.47</td>
<td>3710</td>
<td>Mot interne 6</td>
<td>22.10.6</td>
</tr>
<tr>
<td>4144</td>
<td>Bus M->Esc 13 visu</td>
<td>23.3.51</td>
<td>3712</td>
<td>Mot interne 7</td>
<td>22.10.7</td>
</tr>
<tr>
<td>4154</td>
<td>Bus M->Esc 14 visu</td>
<td>23.3.55</td>
<td>3714</td>
<td>Mot interne 8</td>
<td>22.10.8</td>
</tr>
<tr>
<td>4164</td>
<td>Bus M->Esc 15 visu</td>
<td>23.3.59</td>
<td>3716</td>
<td>Mot interne 9</td>
<td>22.10.9</td>
</tr>
<tr>
<td>4174</td>
<td>Bus M->Esc 16 visu</td>
<td>23.3.63</td>
<td>3718</td>
<td>Mot interne 10</td>
<td>22.10.10</td>
</tr>
<tr>
<td>4184</td>
<td>Bus M->Esc 17 visu</td>
<td>23.3.67</td>
<td>3720</td>
<td>Mot interne 11</td>
<td>22.10.11</td>
</tr>
<tr>
<td>4194</td>
<td>Bus M->Esc 18 visu</td>
<td>23.3.71</td>
<td>3722</td>
<td>Mot interne 12</td>
<td>22.10.12</td>
</tr>
<tr>
<td>4204</td>
<td>Bus M->Esc 19 visu</td>
<td>23.3.75</td>
<td>3724</td>
<td>Mot interne 13</td>
<td>22.10.13</td>
</tr>
<tr>
<td>4214</td>
<td>Bus M->Esc 20 visu</td>
<td>23.3.79</td>
<td>3726</td>
<td>Mot interne 14</td>
<td>22.10.14</td>
</tr>
<tr>
<td>4224</td>
<td>Bus M->Esc 21 visu</td>
<td>23.3.83</td>
<td>3728</td>
<td>Mot interne 15</td>
<td>22.10.15</td>
</tr>
<tr>
<td>4234</td>
<td>Bus M->Esc 22 visu</td>
<td>23.3.87</td>
<td>3730</td>
<td>Mot interne 16</td>
<td>22.10.16</td>
</tr>
</tbody>
</table>

L_VREF

<table>
<thead>
<tr>
<th>XXXX (7)</th>
<th>Visu Comp inertié</th>
<th>22.3.3</th>
<th>1500 Visu entré Ana 1</th>
<th>14.1</th>
<th>1550 Visu entré Ana 2</th>
<th>14.17</th>
<th>1600 Visu entré Ana 1X</th>
<th>14.33</th>
<th>1650 Visu entré Ana 2X</th>
<th>14.45</th>
</tr>
</thead>
<tbody>
<tr>
<td>4024</td>
<td>Bus M->Esc 1 visu</td>
<td>23.3.3</td>
<td>4034 Bus M->Esc 2 visu</td>
<td>23.3.7</td>
<td>4044 Bus M->Esc 3 visu</td>
<td>23.3.11</td>
<td>4054 Bus M->Esc 4 visu</td>
<td>23.3.15</td>
<td>4064 Bus M->Esc 5 visu</td>
<td>23.3.19</td>
</tr>
<tr>
<td>4074</td>
<td>Bus M->Esc 6 visu</td>
<td>23.3.23</td>
<td>4084 Bus M->Esc 7 visu</td>
<td>23.3.27</td>
<td>4094 Bus M->Esc 8 visu</td>
<td>23.3.31</td>
<td>4104 Bus M->Esc 9 visu</td>
<td>23.3.35</td>
<td>4114 Bus M->Esc 10 visu</td>
<td>23.3.39</td>
</tr>
<tr>
<td>4124</td>
<td>Bus M->Esc 11 visu</td>
<td>23.3.43</td>
<td>4134 Bus M->Esc 12 visu</td>
<td>23.3.47</td>
<td>4144 Bus M->Esc 13 visu</td>
<td>23.3.51</td>
<td>4154 Bus M->Esc 14 visu</td>
<td>23.3.55</td>
<td>4164 Bus M->Esc 15 visu</td>
<td>23.3.59</td>
</tr>
<tr>
<td>4174</td>
<td>Bus M->Esc 16 visu</td>
<td>23.3.63</td>
<td>3700 Mot interne 1</td>
<td>22.10.1</td>
<td>3702 Mot interne 2</td>
<td>22.10.2</td>
<td>3704 Mot interne 3</td>
<td>22.10.3</td>
<td>3706 Mot interne 4</td>
<td>22.10.4</td>
</tr>
<tr>
<td>3708</td>
<td>Mot interne 5</td>
<td>22.10.5</td>
<td>3710 Mot interne 6</td>
<td>22.10.6</td>
<td>3712 Mot interne 7</td>
<td>22.10.7</td>
<td>3714 Mot interne 8</td>
<td>22.10.8</td>
<td>3716 Mot interne 9</td>
<td>22.10.9</td>
</tr>
<tr>
<td>3718</td>
<td>Mot interne 10</td>
<td>22.10.10</td>
<td>3720 Mot interne 11</td>
<td>22.10.11</td>
<td>3722 Mot interne 12</td>
<td>22.10.12</td>
<td>3724 Mot interne 13</td>
<td>22.10.13</td>
<td>3726 Mot interne 14</td>
<td>22.10.14</td>
</tr>
<tr>
<td>3730</td>
<td>Mot interne 16</td>
<td>22.10.16</td>
<td>4024 Bus M->Esc 1 visu</td>
<td>23.3.3</td>
<td>4034 Bus M->Esc 2 visu</td>
<td>23.3.7</td>
<td>4044 Bus M->Esc 3 visu</td>
<td>23.3.11</td>
<td>4054 Bus M->Esc 4 visu</td>
<td>23.3.15</td>
</tr>
</tbody>
</table>

L_WDECOMP

<table>
<thead>
<tr>
<th>XXXX (8)</th>
<th>Visu Comp inertié</th>
<th>22.3.3</th>
</tr>
</thead>
<tbody>
<tr>
<td>4024</td>
<td>Bus M->Esc 1 visu</td>
<td>23.3.3</td>
</tr>
<tr>
<td>4034</td>
<td>Bus M->Esc 2 visu</td>
<td>23.3.7</td>
</tr>
<tr>
<td>4044</td>
<td>Bus M->Esc 3 visu</td>
<td>23.3.11</td>
</tr>
<tr>
<td>4054</td>
<td>Bus M->Esc 4 visu</td>
<td>23.3.15</td>
</tr>
<tr>
<td>4064</td>
<td>Bus M->Esc 5 visu</td>
<td>23.3.19</td>
</tr>
<tr>
<td>4074</td>
<td>Bus M->Esc 6 visu</td>
<td>23.3.23</td>
</tr>
<tr>
<td>4084</td>
<td>Bus M->Esc 7 visu</td>
<td>23.3.27</td>
</tr>
<tr>
<td>4094</td>
<td>Bus M->Esc 8 visu</td>
<td>23.3.31</td>
</tr>
<tr>
<td>4104</td>
<td>Bus M->Esc 9 visu</td>
<td>23.3.35</td>
</tr>
<tr>
<td>4114</td>
<td>Bus M->Esc 10 visu</td>
<td>23.3.39</td>
</tr>
<tr>
<td>4124</td>
<td>Bus M->Esc 11 visu</td>
<td>23.3.43</td>
</tr>
<tr>
<td>4134</td>
<td>Bus M->Esc 12 visu</td>
<td>23.3.47</td>
</tr>
<tr>
<td>4144</td>
<td>Bus M->Esc 13 visu</td>
<td>23.3.51</td>
</tr>
<tr>
<td>4154</td>
<td>Bus M->Esc 14 visu</td>
<td>23.3.55</td>
</tr>
<tr>
<td>4164</td>
<td>Bus M->Esc 15 visu</td>
<td>23.3.59</td>
</tr>
<tr>
<td>4174</td>
<td>Bus M->Esc 16 visu</td>
<td>23.3.63</td>
</tr>
</tbody>
</table>

L_TEMPCTRL

6000	OFF	22.10.1
272	Temperatur radiateur	1.9
6038	Admin.temp.liquide	22.16.7
292	Visu.entrée sonde X	1.11
1544	Visu.temp.Ent.ana 1	1.12
1594	Visu.temp.Ent.ana 2	1.13
1610	E ana 1X temp visu	1.14
1680	E ana 2X temp visu	1.15
290	Température moteur	1.10
3700	Mot interne 1	22.10.1

(6) e paramètre XXXX change en fonction du paramètre “Source” qui l’utilise.

3186 Seuil.Ouv.Frein src

(6) = 3184 Seuil.Ouv.Frein 22.12.8
<table>
<thead>
<tr>
<th>PAR</th>
<th>Description</th>
<th>Menu</th>
</tr>
</thead>
<tbody>
<tr>
<td>5752</td>
<td>Visu FL Fwd 2</td>
<td>23.8.14</td>
</tr>
<tr>
<td>5754</td>
<td>Visu FL Fwd 3</td>
<td>23.8.15</td>
</tr>
<tr>
<td>5756</td>
<td>Visu FL Fwd 4</td>
<td>23.8.16</td>
</tr>
<tr>
<td>5758</td>
<td>Visu FL Fwd 5</td>
<td>23.8.17</td>
</tr>
<tr>
<td>5760</td>
<td>Visu FL Fwd 6</td>
<td>23.8.18</td>
</tr>
<tr>
<td>5762</td>
<td>Visu FL Fwd 7</td>
<td>23.8.19</td>
</tr>
<tr>
<td>5764</td>
<td>Visu FL Fwd 8</td>
<td>23.8.20</td>
</tr>
<tr>
<td>5800</td>
<td>Visu Inv FL Fwd 1</td>
<td>(*)</td>
</tr>
<tr>
<td>5802</td>
<td>Visu Inv FL Fwd 2</td>
<td>(*)</td>
</tr>
<tr>
<td>5804</td>
<td>Visu Inv FL Fwd 3</td>
<td>(*)</td>
</tr>
<tr>
<td>5806</td>
<td>Visu Inv FL Fwd 4</td>
<td>(*)</td>
</tr>
<tr>
<td>5808</td>
<td>Visu Inv FL Fwd 5</td>
<td>(*)</td>
</tr>
<tr>
<td>5810</td>
<td>Visu Inv FL Fwd 6</td>
<td>(*)</td>
</tr>
<tr>
<td>5812</td>
<td>Visu Inv FL Fwd 7</td>
<td>(*)</td>
</tr>
<tr>
<td>5814</td>
<td>Visu Inv FL Fwd 8</td>
<td>(*)</td>
</tr>
</tbody>
</table>

(8) le paramètre XXXX change en fonction du paramètre “Source” qui l’utilise:

4452 Mot decomp src
(8) = 4450 Mot Dig decomp 23.6.1

(*) Paramètre non visible sur la console, pour plus d’informations voir le chapitre “PARAMETRES ENTRES DANS LES LISTES DE SELECTION NON VISIBLES SUR LA CONSOLE”

===
APP. 1 1 - Utilisation I/O analogiques numériques sous programmation Mdplc

Les paramètres de système suivants internes et variables sont relatifs à External digital input exp.

DIGITAL INPUT EXP

<table>
<thead>
<tr>
<th>Nom</th>
<th>Type</th>
<th>Description</th>
<th>Unit</th>
<th>R/W</th>
</tr>
</thead>
<tbody>
<tr>
<td>sysEDIBitWord</td>
<td>DWORD</td>
<td>Exp Digital input word</td>
<td>Null</td>
<td>1200</td>
</tr>
<tr>
<td>sysEDIBitWordBit0</td>
<td>BOOL</td>
<td>Exp Digital input 0 (0..1)</td>
<td>Null</td>
<td>1210</td>
</tr>
<tr>
<td>sysEDIBitWordBit1</td>
<td>BOOL</td>
<td>Exp Digital input 1 (0..1)</td>
<td>Null</td>
<td>1212</td>
</tr>
<tr>
<td>sysEDIBitWordBit2</td>
<td>BOOL</td>
<td>Exp Digital input 2 (0..1)</td>
<td>Null</td>
<td>1214</td>
</tr>
<tr>
<td>sysEDIBitWordBit3</td>
<td>BOOL</td>
<td>Exp Digital input 3 (0..1)</td>
<td>Null</td>
<td>1216</td>
</tr>
<tr>
<td>sysEDIBitWordBit4</td>
<td>BOOL</td>
<td>Exp Digital input 4 (0..1)</td>
<td>Null</td>
<td>1218</td>
</tr>
<tr>
<td>sysEDIBitWordBit5</td>
<td>BOOL</td>
<td>Exp Digital input 5 (0..1)</td>
<td>Null</td>
<td>1220</td>
</tr>
<tr>
<td>sysEDIBitWordBit6</td>
<td>BOOL</td>
<td>Exp Digital input 6 (0..1)</td>
<td>Null</td>
<td>1222</td>
</tr>
<tr>
<td>sysEDIBitWordBit7</td>
<td>BOOL</td>
<td>Exp Digital input 7 (0..1)</td>
<td>Null</td>
<td>1224</td>
</tr>
<tr>
<td>SysEDIBitWordBit8</td>
<td>BOOL</td>
<td>Exp Digital input 8 (0..1)</td>
<td>Null</td>
<td>5510</td>
</tr>
<tr>
<td>SysEDIBitWordBit9</td>
<td>BOOL</td>
<td>Exp Digital input 9 (0..1)</td>
<td>Null</td>
<td>5512</td>
</tr>
<tr>
<td>SysEDIBitWordBit10</td>
<td>BOOL</td>
<td>Exp Digital input 10 (0..1)</td>
<td>Null</td>
<td>5514</td>
</tr>
<tr>
<td>SysEDIBitWordBit11</td>
<td>BOOL</td>
<td>Exp Digital input 11 (0..1)</td>
<td>Null</td>
<td>5516</td>
</tr>
<tr>
<td>SysEDIBitWordBit12</td>
<td>BOOL</td>
<td>Exp Digital input 12 (0..1)</td>
<td>Null</td>
<td>5518</td>
</tr>
<tr>
<td>SysEDIBitWordBit13</td>
<td>BOOL</td>
<td>Exp Digital input 13 (0..1)</td>
<td>Null</td>
<td>5520</td>
</tr>
<tr>
<td>SysEDIBitWordBit14</td>
<td>BOOL</td>
<td>Exp Digital input 14 (0..1)</td>
<td>Null</td>
<td>5522</td>
</tr>
<tr>
<td>SysEDIBitWordBit15</td>
<td>BOOL</td>
<td>Exp Digital input 15 (0..1)</td>
<td>Null</td>
<td>5524</td>
</tr>
<tr>
<td>sysExtIODigIn0</td>
<td>DWORD</td>
<td>External expansion digital input 0</td>
<td>Null</td>
<td>5400</td>
</tr>
<tr>
<td>sysExtIODigIn1</td>
<td>DWORD</td>
<td>External expansion digital input 1</td>
<td>Null</td>
<td>5402</td>
</tr>
</tbody>
</table>

Les paramètres de système suivants internes et variables sont relatifs à External analog input exp.

Les modules pour entrées analogiques peuvent avoir une résolution de 12 à 16 bits et l’échelonnage de la donnée peut varier d’un constructeur à l’autre.

Exemple:**

Module 12 bits

<table>
<thead>
<tr>
<th>Signal branché</th>
<th>Variante 1</th>
<th>Variante 2</th>
<th>Variante 3</th>
<th>Variante 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>-10V..+10V</td>
<td>-2048..+2047</td>
<td>-32768..+32767</td>
<td>-16384..+16383</td>
<td></td>
</tr>
<tr>
<td>0V..+10V</td>
<td>0..+4095</td>
<td>0..+2047</td>
<td>0..+3276</td>
<td>0..+65535</td>
</tr>
<tr>
<td>4..20mA</td>
<td>0..+32767</td>
<td>+6553..+32767</td>
<td>+3276..+16383</td>
<td></td>
</tr>
</tbody>
</table>
Module 16 bits

<table>
<thead>
<tr>
<th>Signal branché</th>
<th>Variante 1</th>
<th>Variante 2</th>
<th>Variante 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Configuration module</td>
<td>-10V..+10V</td>
<td>-32768...+32767</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0V..+10V</td>
<td>0..+65535</td>
<td>0..+32767</td>
</tr>
<tr>
<td></td>
<td>4..20mA</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Il n’est pas possible de définir une Unité unique pouvant convenir à chaque modèle de module entrée ana-
 logique.

Contrôlez l’échelonnage fourni par le modèle utilisé et utiliser les variables de systèmes conformément à cet
échelonnage.

ANALOG INPUT EXP

<table>
<thead>
<tr>
<th>Nom</th>
<th>Type</th>
<th>Description</th>
<th>Unit</th>
<th>R/W</th>
</tr>
</thead>
<tbody>
<tr>
<td>sysEAi0</td>
<td>DINT</td>
<td>Exp Analog input 0 Scheme: "Analog Inputs Expansion Card"</td>
<td>4000H * 2 ^ 16 = 10V</td>
<td>1600</td>
</tr>
<tr>
<td>sysEAi1</td>
<td>DINT</td>
<td>Exp Analog input 1 Schéma: "Analog Inputs Expansion Card"</td>
<td>4000H * 2 ^ 16 = 10V</td>
<td>1650</td>
</tr>
<tr>
<td>sysExtIOAnaIn0</td>
<td>INT</td>
<td>External expansion analog input 0. Defined by module builder</td>
<td>5410</td>
<td>R</td>
</tr>
<tr>
<td>sysExtIOAnaIn1</td>
<td>INT</td>
<td>External expansion analog input 1 Defined by module builder</td>
<td>5412</td>
<td>R</td>
</tr>
<tr>
<td>sysExtIOAnaIn2</td>
<td>INT</td>
<td>External expansion analog input 2 Defined by module builder</td>
<td>5414</td>
<td>R</td>
</tr>
<tr>
<td>sysExtIOAnaIn3</td>
<td>INT</td>
<td>External expansion analog input 3 Defined by module builder</td>
<td>5416</td>
<td>R</td>
</tr>
<tr>
<td>sysExtIOAnaIn4</td>
<td>INT</td>
<td>External expansion analog input 4 Defined by module builder</td>
<td>5418</td>
<td>R</td>
</tr>
<tr>
<td>sysExtIOAnaIn5</td>
<td>INT</td>
<td>External expansion analog input 5 Defined by module builder</td>
<td>5420</td>
<td>R</td>
</tr>
<tr>
<td>sysExtIOAnaIn6</td>
<td>INT</td>
<td>External expansion analog input 6 Defined by module builder</td>
<td>5422</td>
<td>R</td>
</tr>
<tr>
<td>sysExtIOAnaIn7</td>
<td>INT</td>
<td>External expansion analog input 7 Defined by module builder</td>
<td>5424</td>
<td>R</td>
</tr>
</tbody>
</table>

- Les paramètres de système suivants internes et variables sont relatifs à External digital output exp.

DIGITAL OUTPUT EXP

<table>
<thead>
<tr>
<th>Nom</th>
<th>Type</th>
<th>Description</th>
<th>Unit</th>
<th>R/W</th>
</tr>
</thead>
<tbody>
<tr>
<td>sysEDOBitWord</td>
<td>DWORD</td>
<td>Read only exp digital output word Schéma: "Digital Outputs"</td>
<td>Null</td>
<td>1400</td>
</tr>
<tr>
<td>sysExtIODigOut0</td>
<td>DWORD</td>
<td>External expansion digital output 0 Indique directement l’état des sorties externes de 0 à 31. L’état des sorties numériques 0..7 n’est pas disponible depuis Mdplc puisqu’il est remplacé par le drive en fonction de la configuration de la sortie analogique.</td>
<td>Null</td>
<td>5454</td>
</tr>
<tr>
<td>sysExtIODigOut1</td>
<td>DWORD</td>
<td>External expansion digital output 1 Indique directement l’état des sorties externes de 32 à 63.</td>
<td>Null</td>
<td>5456</td>
</tr>
</tbody>
</table>

- Les paramètres de système suivants internes et variables sont relatifs à External analog output exp.

Les modules pour sorties analogiques peuvent avoir une résolution de 12 à 16 bits et l’échelonnage de la don-
née peut varier d’un constructeur à l’autre.
Exemple:
Module 12 bits

<table>
<thead>
<tr>
<th>Signal branché Configuration module</th>
<th>Variante 1</th>
<th>Variante 2</th>
<th>Variante 3</th>
<th>Variante 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>-10V..+10V</td>
<td>-2048..+2047</td>
<td>-32768..+32767</td>
<td>-16384..+16383</td>
<td></td>
</tr>
<tr>
<td>0V..+10V</td>
<td>0..+4095</td>
<td>0..+2047</td>
<td>0..+16383</td>
<td>0..+32767</td>
</tr>
<tr>
<td>4..20mA</td>
<td>0..+32767</td>
<td>+6553..+32767</td>
<td>+3276..+16383</td>
<td></td>
</tr>
</tbody>
</table>

Module 16 bits

<table>
<thead>
<tr>
<th>Signal branché Configuration module</th>
<th>Variante 1</th>
<th>Variante 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>-10V..+10V</td>
<td>-32768..+32767</td>
<td></td>
</tr>
<tr>
<td>0V..+10V</td>
<td>0..+65535</td>
<td>0..+32767</td>
</tr>
<tr>
<td>4..20mA</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Il n’est pas possible de définir une Unité unique pouvant convenir à chaque modèle de module de sortie analogique.

Contrôle l’échelonnage fourni par le modèle utilisé et utiliser les variables de systèmes conformément à cet échelonnage.

ANALOG OUTPUT EXP

<table>
<thead>
<tr>
<th>Nom</th>
<th>Type</th>
<th>Description</th>
<th>Unit</th>
<th>R/W</th>
</tr>
</thead>
<tbody>
<tr>
<td>sysEA00Value</td>
<td>DINT</td>
<td>Exp Analog Output 0 Value</td>
<td>4000H * 2 ^ 16 = 10V</td>
<td>1866 R</td>
</tr>
<tr>
<td>sysEA01Value</td>
<td>DINT</td>
<td>Exp Analog Output 1 Value</td>
<td>4000H * 2 ^ 16 = 10V</td>
<td>1868 R</td>
</tr>
<tr>
<td>sysExtIOAnaOut0</td>
<td>INT</td>
<td>External expansion analog output 0</td>
<td>Defined by module builder</td>
<td>5460 RW</td>
</tr>
<tr>
<td>sysExtIOAnaOut1</td>
<td>INT</td>
<td>External expansion analog output 1</td>
<td>Defined by module builder</td>
<td>5462 RW</td>
</tr>
<tr>
<td>sysExtIOAnaOut2</td>
<td>INT</td>
<td>External expansion analog output 2</td>
<td>Defined by module builder</td>
<td>5464 RW</td>
</tr>
<tr>
<td>sysExtIOAnaOut3</td>
<td>INT</td>
<td>External expansion analog output 3</td>
<td>Defined by module builder</td>
<td>5466 RW</td>
</tr>
<tr>
<td>sysExtIOAnaOut4</td>
<td>INT</td>
<td>External expansion analog output 4</td>
<td>Defined by module builder</td>
<td>5468 RW</td>
</tr>
<tr>
<td>sysExtIOAnaOut5</td>
<td>INT</td>
<td>External expansion analog output 5</td>
<td>Defined by module builder</td>
<td>5470 RW</td>
</tr>
<tr>
<td>sysExtIOAnaOut6</td>
<td>INT</td>
<td>External expansion analog output 6</td>
<td>Defined by module builder</td>
<td>5472 RW</td>
</tr>
<tr>
<td>sysExtIOAnaOut7</td>
<td>INT</td>
<td>External expansion analog output 7</td>
<td>Defined by module builder</td>
<td>5474 RW</td>
</tr>
</tbody>
</table>

- L’état de la communication avec le module externe peut être lu directement par l’application en utilisant la variable suivante :

DIGITAL OUTPUT EXP

<table>
<thead>
<tr>
<th>Nom</th>
<th>Type</th>
<th>Description</th>
<th>Unit</th>
<th>R/W</th>
</tr>
</thead>
<tbody>
<tr>
<td>sysExtI0State</td>
<td>BOOL</td>
<td>External expansion state</td>
<td>Null</td>
<td>5484 R</td>
</tr>
</tbody>
</table>

La valeur est identique à celle du paramètre 5484 Etat Ent/Sort.Ex, toutefois la variable est mise à jour immédiatement dans le task.
Équivaut à TRUE quand la communication avec le module est active. Cela indique que l’état est Operational et qu’ont été reçues correctement au moins une fois toutes les données des TPDO du slave.

Si lors d’un cycle de communication, les TPDO ne sont pas tous reçus, la variable devient FALSE et l’alarme "Déf.EntSortExt" [27] se déclenche.
APP. 1.2 - Soutien protocole CANopen

Le drive exécute le contrôle d’un module de I/O externe via CANopen, avec certaines fonctions master, limitées à la possibilité de gérer un unique dispositif.

Le salve branché doit respecter les spécifications CANopen DS301 selon le profil “DS401 Device profile for generic I/O modules Version 3.0.0 3 Jun 2008” et doit être réglé de manière indépendante du drive pour opérer avec un baudrate de 500kbps, avec adresse 1.

Ci-dessous les objets de l’Object Dictionary du slave auquel le drive accède:

<table>
<thead>
<tr>
<th>Index</th>
<th>Sub.</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>0x1000</td>
<td>0</td>
<td>Device type</td>
</tr>
<tr>
<td>0x100c</td>
<td>0</td>
<td>Guard time (in alternativa a 0x1016 e 0x1017)</td>
</tr>
<tr>
<td>0x100d</td>
<td>0</td>
<td>Lifetime factor</td>
</tr>
<tr>
<td>0x1016</td>
<td>0</td>
<td>Consumer HB Object</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>Cons.HB n+T</td>
</tr>
<tr>
<td>0x1017</td>
<td>0</td>
<td>Producer HB time</td>
</tr>
<tr>
<td>0x1018</td>
<td>0</td>
<td>Identity Object</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>Vendor Id</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>Product Code</td>
</tr>
<tr>
<td>0x1400/1/2/3</td>
<td>0</td>
<td>RPDOs Communication Parameters</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>COB-ID</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>Transmission type = 1</td>
</tr>
<tr>
<td>0x1600/1/2/3</td>
<td>0</td>
<td>RPDOs Mapping</td>
</tr>
<tr>
<td></td>
<td>1-n</td>
<td>Objet mappé</td>
</tr>
<tr>
<td>0x1800/1/2/3</td>
<td>0</td>
<td>RPDOs Communication Parameters</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>COB-ID</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>Transmission type = 1</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>Inhibit time</td>
</tr>
<tr>
<td>0x1A00/1/2/3</td>
<td>0</td>
<td>TPDOs Mapping</td>
</tr>
<tr>
<td></td>
<td>1-n</td>
<td>Objet mappé</td>
</tr>
</tbody>
</table>

Le slave doit supporter si possible le protocole de Heartbeat ou au moins NodeGuarding.
Si les objets 1016 et 1017 sont inscriptibles, est utilisé le HeartBeat et les objets 100C et 100D sont remis à zéro, différemment, ils sont respectivement programmés sur 200 et 3 et le protocole de NodeGuarding s’active.
L’envoi d’Emergency est détecté par le drive comme signal d’une éventuelle erreur et il déclenche l’alarme, et il est géré lors des 3 phases.
Le slave doit supporter le protocole NMT pour la transition en Pre-Operational et Operational.
APP. 1.3 - Tableau Configuration SDO

Dans le tableau ci-dessous, sont indiqués les objets requis via SDO lors de la phase de Config. Une erreur ou l’absence de réponse déclenche une alarme avec le Subcode indiqué.

<table>
<thead>
<tr>
<th>SubCode</th>
<th>Index</th>
<th>SubIndex</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>0x1000</td>
<td>0</td>
<td></td>
<td>Device Type : Doit être 401</td>
</tr>
<tr>
<td>0x1018</td>
<td>0</td>
<td></td>
<td>Vendor ID</td>
</tr>
<tr>
<td>0x1018</td>
<td>1</td>
<td></td>
<td>Product Code</td>
</tr>
<tr>
<td>0x1400</td>
<td>1</td>
<td></td>
<td>RPDO1</td>
</tr>
<tr>
<td>0x1401</td>
<td>1</td>
<td></td>
<td>RPDO2</td>
</tr>
<tr>
<td>0x1402</td>
<td>1</td>
<td></td>
<td>RPDO3</td>
</tr>
<tr>
<td>0x1403</td>
<td>1</td>
<td></td>
<td>RPDO4</td>
</tr>
<tr>
<td>0x1800</td>
<td>1</td>
<td></td>
<td>TPDO1</td>
</tr>
<tr>
<td>0x1801</td>
<td>1</td>
<td></td>
<td>TPDO2</td>
</tr>
<tr>
<td>0x1802</td>
<td>1</td>
<td></td>
<td>TPDO3</td>
</tr>
<tr>
<td>0x1803</td>
<td>0</td>
<td></td>
<td>TPDO4</td>
</tr>
<tr>
<td>0x1A00</td>
<td>0</td>
<td></td>
<td>Mapping RPDO1 mapping info</td>
</tr>
<tr>
<td>0x1A01</td>
<td>0</td>
<td></td>
<td>Mapping RPDO2 mapping info</td>
</tr>
<tr>
<td>0x1A02</td>
<td>0</td>
<td></td>
<td>Mapping RPDO3 mapping info</td>
</tr>
<tr>
<td>0x1A03</td>
<td>0</td>
<td></td>
<td>Mapping RPDO4 mapping info</td>
</tr>
</tbody>
</table>

Ci-dessous, sont indiqués les objets inscrits via SDO lors de la phase de Config

<table>
<thead>
<tr>
<th>SubCode</th>
<th>Index</th>
<th>SubIndex</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>0x1016</td>
<td>1</td>
<td>0</td>
<td>HeartBeat consumer rate and Id</td>
</tr>
<tr>
<td>0x1017</td>
<td>0</td>
<td>0</td>
<td>HeartBeat producer rate</td>
</tr>
<tr>
<td>0x100C</td>
<td>0</td>
<td></td>
<td>GuardTime (100ms opp. 0 si HeartBeat est supporté)</td>
</tr>
<tr>
<td>0x100D</td>
<td>0</td>
<td></td>
<td>LifeTime period (3 opp. 0 si HeartBeat est supporté)</td>
</tr>
<tr>
<td>0x1400</td>
<td>1</td>
<td></td>
<td>RPDO1 default</td>
</tr>
<tr>
<td>0x1401</td>
<td>1</td>
<td></td>
<td>RPDO2 default</td>
</tr>
<tr>
<td>0x1402</td>
<td>1</td>
<td></td>
<td>RPDO3 default</td>
</tr>
<tr>
<td>0x1403</td>
<td>1</td>
<td></td>
<td>RPDO4 default</td>
</tr>
<tr>
<td>0x1800</td>
<td>1</td>
<td></td>
<td>TPDO1 default</td>
</tr>
<tr>
<td>0x1801</td>
<td>1</td>
<td></td>
<td>TPDO3 default</td>
</tr>
<tr>
<td>0x1802</td>
<td>1</td>
<td></td>
<td>TPDO3 default</td>
</tr>
<tr>
<td>0x1803</td>
<td>1</td>
<td></td>
<td>TPDO4 default</td>
</tr>
<tr>
<td>0x1400</td>
<td>2</td>
<td></td>
<td>RPDO1 transmission type</td>
</tr>
<tr>
<td>0x1401</td>
<td>2</td>
<td></td>
<td>RPDO3 transmission type</td>
</tr>
<tr>
<td>0x1402</td>
<td>2</td>
<td></td>
<td>RPDO3 transmission type</td>
</tr>
<tr>
<td>0x1403</td>
<td>2</td>
<td></td>
<td>RPDO3 transmission type</td>
</tr>
<tr>
<td>0x1404</td>
<td>3</td>
<td></td>
<td>TPDO1 inhibit time</td>
</tr>
<tr>
<td>0x1405</td>
<td>3</td>
<td></td>
<td>TPDO2 inhibit time</td>
</tr>
<tr>
<td>0x1406</td>
<td>3</td>
<td></td>
<td>TPDO3 inhibit time</td>
</tr>
<tr>
<td>0x1407</td>
<td>3</td>
<td></td>
<td>TPDO4 inhibit time</td>
</tr>
<tr>
<td>0x1408</td>
<td>3</td>
<td></td>
<td>TPDO4 inhibit time</td>
</tr>
<tr>
<td>0x1409</td>
<td>3</td>
<td></td>
<td>TPDO4 inhibit time</td>
</tr>
<tr>
<td>0x140A</td>
<td>3</td>
<td></td>
<td>TPDO4 inhibit time</td>
</tr>
<tr>
<td>0x140B</td>
<td>3</td>
<td></td>
<td>TPDO4 inhibit time</td>
</tr>
<tr>
<td>0x140C</td>
<td>3</td>
<td></td>
<td>TPDO4 inhibit time</td>
</tr>
<tr>
<td>0x140D</td>
<td>3</td>
<td></td>
<td>TPDO4 inhibit time</td>
</tr>
</tbody>
</table>
Durant la phase de contrôle, le système envoie un message de HeartBeat au slave tous les 100ms et vérifie l’état de Op à travers le message HeartBeat producer du dispositif, qui doit arriver dans le temps programmé sur l’objet 1017. En présence d’une erreur, il revient en Init.

Dans le cas où le HeartBeat ne serait pas disponible et le NodeGuarding serait inactif, les timeout programmés sur les objets 100C et 100D sont utilisés.

Durant la phase de configuration, parmi les objets requis, sont également présents ceux qui contiennent le “mapping”, la signification des données contenues dans les PDO. Les objets que le slave peut avoir mappés dans les PDO sont un sous-ensemble de ceux définis par le profil DS401. Cette liste indique en particulier les objets reconnus par le drive:
- 6000h Read Input 8 bit
- 6100h ReadInput 16 bit
- 6120h ReadInput 32 bit
- 6200h Write Output 8 bit
- 6300h WriteOutput 16 bit
- 6320h WriteOutput 32 bit
- 6400h ReadAnalog 8 bit
- 6401h ReadAnalog 16 bit
- 6411h WriteAnalog 16 bit

Si d’autres objets sont détectés, la configuration n’échoue pas, toutefois l’objet présent dans le PDO n’est pas géré en réception mais est écrit à 0 en transmission.

Les objets sont associés aux paramètres d’entrée et sortie numériques et analogiques dans l’ordre où ils sont détectés.

Par exemple, si la slave a la configuration suivante:

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>6200h</td>
</tr>
<tr>
<td>2</td>
<td>6200h</td>
</tr>
</tbody>
</table>

Les données envoyées via RPDO sont associées dans l’ordre suivant:

<table>
<thead>
<tr>
<th>Byte 0</th>
<th>Byte1</th>
<th>Byte2</th>
<th>Byte3</th>
<th>Mon Dig Usc 0Ext</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>V</td>
<td>V</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Byte 0</td>
<td>Byte1</td>
<td>Byte2</td>
<td>Byte3</td>
<td>PDO1</td>
</tr>
<tr>
<td>6200h</td>
<td>6200h</td>
<td>--</td>
<td>--</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Byte 0</th>
<th>Byte1</th>
<th>Mon Dig Usc 0Ext</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>V</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>Byte 0</td>
<td>Byte1</td>
<td>Byte2</td>
</tr>
<tr>
<td>6200h</td>
<td>6200h</td>
<td>--</td>
</tr>
</tbody>
</table>

Après la transition en Op, le logiciel du drive lit et écrit les PDO (RPDO) et déplace les données vers les blocs de gestion des I/O et envoie à intervalles réguliers le Sync.

Puisque le réseau est constitué de 2 dispositifs seulement et que l’échange des données est prédéfini, il a été choisi de toujours utiliser des PDO synchrones pour avoir une répétibilité dans la communication.

L’échange des données intervient lors de cycles à durée prédéfinie, appelés “Communication cycle”, dont la valeur est fournie par le paramètre 5488 External IO period (disponible dans le menu service et à travers le fichier de configuration .sdo). La valeur par défaut pour le “Communication Cycle” est de 8 ms.

A chaque “Communication Cycle”, le bloc accède à la périphérique CAN pour vérifier les PDO envoyés par le slave (TPDO) et les copier, puis il écrit les RPDO à envoyer.
Chaque “Communication Cycle” envoie également le message de Sync, auquel le slave répond immédiatement avec ses PDO. Le non-envoi de PDO par le slave est détecté comme perte de communication et déclenche une alarme “Déf.EntSortExt” et le passage du paramètre 5484 Etat Ent/Sort.Ext de Off à On. La détection de la perte de communication intervient au bout d’une durée maximum égale à 2 fois le “Communication Cycle” depuis la dernière réception de données valables.
APP. 1.4 - Variables de système pour Mdplc

Variables de système sous Mdplc pour la gestion du FastLink.

FASTLINK

<table>
<thead>
<tr>
<th>Nom</th>
<th>Type</th>
<th>Description</th>
<th>Unit</th>
<th>PAR</th>
<th>R/W</th>
</tr>
</thead>
<tbody>
<tr>
<td>sysFL_Fw1_mon</td>
<td>DWORD</td>
<td>FastLink Forward 1 monitor</td>
<td>Null</td>
<td>5750</td>
<td>R</td>
</tr>
<tr>
<td>sysFL_Fw2_mon</td>
<td>DWORD</td>
<td>FastLink Forward 2 monitor</td>
<td>Null</td>
<td>5752</td>
<td>R</td>
</tr>
<tr>
<td>sysFL_Fw3_mon</td>
<td>DWORD</td>
<td>FastLink Forward 3 monitor</td>
<td>Null</td>
<td>5754</td>
<td>R</td>
</tr>
<tr>
<td>sysFL_Fw4_mon</td>
<td>DWORD</td>
<td>FastLink Forward 4 monitor</td>
<td>Null</td>
<td>5756</td>
<td>R</td>
</tr>
<tr>
<td>sysFL_Fw5_mon</td>
<td>DWORD</td>
<td>FastLink Forward 5 monitor</td>
<td>Null</td>
<td>5758</td>
<td>R</td>
</tr>
<tr>
<td>sysFL_Fw6_mon</td>
<td>DWORD</td>
<td>FastLink Forward 6 monitor</td>
<td>Null</td>
<td>5760</td>
<td>R</td>
</tr>
<tr>
<td>sysFL_Fw7_mon</td>
<td>DWORD</td>
<td>FastLink Forward 7 monitor</td>
<td>Null</td>
<td>5762</td>
<td>R</td>
</tr>
<tr>
<td>sysFL_Fw8_mon</td>
<td>DWORD</td>
<td>FastLink Forward 8 monitor</td>
<td>Null</td>
<td>5764</td>
<td>R</td>
</tr>
<tr>
<td>sysFL_Fw1_inv_mon</td>
<td>DWORD</td>
<td>FastLink Forward 1 monitor inverted</td>
<td>Null</td>
<td>5800</td>
<td>R</td>
</tr>
<tr>
<td>sysFL_Fw2_inv_mon</td>
<td>DWORD</td>
<td>FastLink Forward 2 monitor inverted</td>
<td>Null</td>
<td>5802</td>
<td>R</td>
</tr>
<tr>
<td>sysFL_Fw3_inv_mon</td>
<td>DWORD</td>
<td>FastLink Forward 3 monitor inverted</td>
<td>Null</td>
<td>5804</td>
<td>R</td>
</tr>
<tr>
<td>sysFL_Fw4_inv_mon</td>
<td>DWORD</td>
<td>FastLink Forward 4 monitor inverted</td>
<td>Null</td>
<td>5806</td>
<td>R</td>
</tr>
<tr>
<td>sysFL_Fw5_inv_mon</td>
<td>DWORD</td>
<td>FastLink Forward 5 monitor inverted</td>
<td>Null</td>
<td>5808</td>
<td>R</td>
</tr>
<tr>
<td>sysFL_Fw6_inv_mon</td>
<td>DWORD</td>
<td>FastLink Forward 6 monitor inverted</td>
<td>Null</td>
<td>5810</td>
<td>R</td>
</tr>
<tr>
<td>sysFL_Fw7_inv_mon</td>
<td>DWORD</td>
<td>FastLink Forward 7 monitor inverted</td>
<td>Null</td>
<td>5812</td>
<td>R</td>
</tr>
<tr>
<td>sysFL_Fw8_inv_mon</td>
<td>DWORD</td>
<td>FastLink Forward 8 monitor inverted</td>
<td>Null</td>
<td>5814</td>
<td>R</td>
</tr>
<tr>
<td>sysFL_Fw5</td>
<td></td>
<td>FastLink Forward 5</td>
<td>Null</td>
<td>5578</td>
<td>RW</td>
</tr>
<tr>
<td>sysFL_Fw6</td>
<td></td>
<td>FastLink Forward 6</td>
<td>Null</td>
<td>5580</td>
<td>RW</td>
</tr>
<tr>
<td>sysFL_Fw7</td>
<td></td>
<td>FastLink Forward 7</td>
<td>Null</td>
<td>5582</td>
<td>RW</td>
</tr>
<tr>
<td>sysFL_Fw8</td>
<td></td>
<td>FastLink Forward 8</td>
<td>Null</td>
<td>5584</td>
<td>RW</td>
</tr>
</tbody>
</table>

SYSTEM

<table>
<thead>
<tr>
<th>Nom</th>
<th>Type</th>
<th>Description</th>
<th>Unit</th>
<th>R/W</th>
</tr>
</thead>
<tbody>
<tr>
<td>sysSyncSlaveStatus</td>
<td>DWORD</td>
<td>State of Pwm synchronisation</td>
<td>Null</td>
<td>R</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Scheme: “Control_FastLink_04”</td>
<td></td>
<td></td>
</tr>
<tr>
<td>sysSSLsidCurrentCorr</td>
<td>DWORD</td>
<td>Possible modification of the Id current (IPA7014) in sensorless mode while the drive is running</td>
<td>Null</td>
<td>RW</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Scheme: “Control_FastLink_04”</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>