Векторный инвертор для лифтов с синхронными двигателями

ADL300

Функциональное описание и список параметров
Информация о данном руководстве

В даннм руководстве разъясняются функции и приводится описание параметров. Информацию о механической установке, электрических подключениях и быстром запуске можно найти в Руководстве по быстрому запуску ADL300.
Полный комплект руководств можно найти на CD-диске, поставляемом с приводом.

Версия ПО
Данное руководство обновлено в соответствии с ПО версии V 4.0.0.
Идентификационный номер версии ПО, указан на паспортной табличке привода, либо его можно проверить в параметре ПАР 490 Firmware ver.rel, меню 2.7.

Общие сведения

В данной отрасли термины "Инвертор", "Регулятор" и "Привод" в ряде случаев взаимозаменяемы. В данном документе будет использован термин "Привод".

Перед использованием продукта внимательно изучите раздел указаний по безопасности. Храните руководство в надежном месте, доступном для технического и монтажного персонала, в течение всего времени эксплуатации продукта.
Gefran S.p.A имеет право изменять свои изделия, их данные и размеры, без предварительного уведомления. Приведенные данные могут быть использованы только в качестве описания продукта, и не могут восприниматься как законодательно заявленные характеристики.

Благодарим Вас за выбор продукта Gefran.
Мы были бы рады получить любую возможную информацию, которая помогла бы нам улучшить данное руководство.
Электронный адрес: techdoc@gefran.com.
Все права защищены.
Содержание

Информация о данном руководстве..2
Символы, используемые в руководстве...4

A - Программирование..5
A.1 Выбор "Асинхронный/Синхронный"..5
A.2 Режимы отображения меню...5
A.3 Программирование аналоговых и дискретных входных сигналов "функционального блока"..............................5
A.4 Режим взаимосвязи переменных..5

B - Описание параметров и функций (входящие в список "Expert")..............7
Обозначения...7
Меню 1 - MONITOR ..8
Меню 2 - DRIVE INFO ...10
Меню 3 - STARTUP WIZARD ...13
Меню 4 - DRIVE CONFIG ..14
Меню 5 - LIFT ...18
Меню 5.1 - SPEED ..20
Меню 5.2 - RAMPS ..22
Меню 5.3 - LIFT SEQUENCES...22
Меню 5.4 - MECHANICAL DATA ..27
Меню 5.5 - DISTANCE ..29
Меню 5.6 - EMERGENCY MODE ...35
Меню 5.7 - INPUT/OUTPUT ...37
Меню 5.8 - PRE - TORQUE ..49
Меню 5.9 - LIFT ALARMS ...51

6 - ..54
7 - ..54
8 - ..54
9 - ..54

Меню 10 - DIGITAL INPUTS ...55
Меню 11 - DIGITAL OUTPUTS ...56
Меню 12 - ANALOG INPUTS ...57
Меню 13 - ANALOG OUTPUTS ...60
Меню 14 - MOTOR DATA ..62
Меню15 - ENCODER CONFIG ...65
Меню 16 - SPEED REG GAINS ..74
Меню 17 - REGULATOR PARAM ...75
Меню 18 - TORQUE CONFIG ...75
Меню 19 - FUNCTIONS ...77
Меню 19.1 - FUNCTIONS/INERTIA COMP ...77
Меню 19.2 - FUNCTIONS/MOTOR OVERLOAD77
Меню 19.3 - FUNCTIONS/BRES OVERLOAD79
Меню 19.4 - FUNCTIONS/DATA PAR SET ..80
Меню 19.5 - FUNCTIONS/COMPARE ..81
Меню 19.6 - FUNCTIONS/PADS ...82
Меню 19.7 - FUNCTIONS/DIRECTION CNT83
Меню 20 - COMMUNICATION ..86
Меню 20.1 - COMMUNICATION/RS232 ..86
Меню 20.2 - COMMUNICATION/FIELDBUS CONFIG.............................87
Меню 20.3 - COMMUNICATION/FIELDBUS M2S88
Меню 20.4 - COMMUNICATION/FIELDBUS S2M91
Меню 20.5 - COMMUNICATION/WORD COMP93
Меню 20.6 - COMMUNICATION/WORD COMP94
Меню 21 - ALARM CONFIG ..95
Меню 23 - ALARM LOG ...95
ПАРАМЕТРЫ, ИМЕЮЩИЕСЯ В СПИСКАХ ВЫБОРА, НО НЕ ОТОБРАЖАЮЩИЕСЯ ..105

C - СПИСКИ ВЫБОРА ..109
L_ANOUT ...109
L_CMP ...109
L_DIGSEL1 ..109
L_DIGSEL2 ..109
L_DIGSEL3 ..110
L_FBLS2 ...110
L_LIM ...111
L_MLMTREF ...111
L_REF ...111
L_SCOPE ..111
L_VREF ..111
L_WDECOMP ...111
Символы, используемые в руководстве

Осторожно! Указывает на процедуру, условие или указание, несоблюдение которого в точном соответствии может привести к травме или гибели лиц из числа персонала.

Внимание Указывает на процедуру, условие или указание, несоблюдение которого в точном соответствии может привести к повреждению или разрушению оборудования.

Указывает на возможный электростатический разряд, который может повредить устройство. При работе с платами всегда надевайте заземляющий браслет.

Внимание Указывает на процедуру, условие или указание, которое следует строго соблюдать для оптимальной работы приложений.

Примечание Указывает на существенную или важную процедуру, условие или указание.
А - Программирование

A.1 Выбор "Асинхронный/Синхронный"

Заводская установка ADL300 - работа в режиме управления асинхронным двигателем.
Для того чтобы перейти в режим управления синхронным двигателем, установите параметр ПАР 6100 в значение Load synch control (Меню 4 - DRIVE CONFIG). Информацию об изменении режима управления через клавиатуру см. в Руководстве по быстрому запуску ADL300 (через встроенную клавиатуру - см. п. 8.2.9; через опциональную клавиатуру - см. п. 8.3.15).

Примечание
Если выбрано управление синхронным двигателем, используйте Описание функций ADL300 и список параметров - Руководство по векторному инвертору для лифтов с асинхронными двигателями.

A.2 Режимы отображения меню

Меню программирования могут отображаться в двух режимах, которые можно выбирать через параметр (04 - меню DRIVE CONFIG):
- Easy (по умолчанию) отображаются только основные параметры.
- Expert отображаются все параметры.

A.3 Программирование аналоговых и дискретных входных сигналов "функционального блока"

Сигналы, переменные и параметры каждого отдельного "функционального блока" привода взаимодействуют так, чтобы получились нужная конфигурация и средства управления внутри системы управления.
Ими можно управлять и их можно изменять со встроенной клавиатуры, конфигурационной программой на ПК или программировать через полевую шину.
Режим программирования основывается на следующей логике:

Src (источник; например: Ramp ref 1 src, ПАР: 610)
Этим термином определяется источник для входа функционального блока, т. е. сигнал, обрабатываемый в функциональном блоке.
Различные конфигурации указаны в соответствующих списках выбора.

Mon (отобразить, например: Ramp ref 1 mon, ПАР: 620)
Этот термин относится к выводу из функционального блока переменной, которая является результатом вычислений, выполненных в актуальном блоке.

Функциональный блок

<table>
<thead>
<tr>
<th>Входные данные</th>
<th>Выходные данные</th>
</tr>
</thead>
<tbody>
<tr>
<td>Src</td>
<td>Mon</td>
</tr>
</tbody>
</table>

A.4 Режим взаимосвязи переменных

Источник (src) позволяет назначить желаемый сигнал управления входу функционального блока.
Эта операция выполняется с помощью специальных списков выбора.

Возможные источники управляющего сигнала:
1 – Физический зажим
Аналоговые или дискретные сигналы поступают с клеммной колодки платы регулирования и/или с клемм плат расширения.
2 – Внутренние переменные привода
Внутренние переменные системы управления привода, от результатов вычислений "функционального блока", передаваемые через программу конфигурации на ПК либо полевую шину.

Практический пример
Следующие примеры иллюстрируют принципы и методы, с помощью которых производятся более или менее сложные операции в отдельном функциональном блоке, результаты которых представлены на выходе блока.

• Пример: Изменение источника опорной скорости
В конфигурации по умолчанию основная опорная скорость для привода Ramp ref 1 mon (ПАР: 620) выдается выходом функционального блока “Ramp setpoint block”.
Ее источником по умолчанию является сигнал Analog input 1 mon (ПАР: 1500) с выхода функционального блока “Analog input 1 Block”, который в данном случае относится к аналоговому входу 1 сигнальной клеммной колодки.
Для того чтобы изменить в приводе источник опорной скорости с аналогового входа на цифровое опорное значение, выходной сигнал необходимо заменить на “Ramp setpoint Block”.
Введите параметр Ramp ref 1 src (ПАР: 610) и задайте новую опорную скорость, выбрав ее из перечисленных в списке выбора L_MLTREF, например, Dig ramp ref 1 (ПАР: 600).

• Пример: Инвертирование аналогового опорного сигнала
Для того чтобы инвертировать выходной сигнал "Analog input 1 Block", параметр An inp 1X sign src (ПАР: 1626), который по умолчанию имеет значение Null (нет операции), необходимо изменить, выбрав источник командного сигнала из перечисленных в списке выбора L_DIGSEL 2, например, Digital input X mon, One (функция всегда разрешена), и т. д.

На схемах выше иллюстрируется принцип внутренней обработки отдельными "функциональными блоками" и воздействие этих изменений на другие взаимосвязанные "функциональные блоки".

Примечание
В данном разделе приведено краткое описание функций других параметров функциональных блоков, которые в данном примере не затронуты изменениями.

Параметр Ramp ref invert src (ПАР: 616) можно использовать для выбора источника для команды обращения выхода “Ramp setpoint” функционального блока.
Выходной сигнал с блока "Ramp setpoint" отображается в параметре Ramp ref 1 mon (ПАР: 620).
Обозначения

<table>
<thead>
<tr>
<th>№</th>
<th>Нумерация меню и параметра</th>
<th>Идентификатор параметра</th>
<th>Описание параметра</th>
<th>UM: единица измерения</th>
<th>Тип параметра</th>
<th>Формат обмена данными через полевую шину</th>
<th>Значение по умолчанию</th>
<th>Минимальное значение</th>
<th>Максимальное значение</th>
<th>Доступность:</th>
<th>Наличие в режиме регулирования:</th>
<th>Списки выбора:</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>E</td>
<td>V = Управление V/F / Модуляция импульсов</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>R</td>
<td>S = Векторное управление / замкнутый контур</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>S</td>
<td>F = Векторное управление / разомкнутый контур</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
</tr>
</tbody>
</table>

Меню 1 - MONITOR

<table>
<thead>
<tr>
<th>№</th>
<th>Номер меню</th>
<th>Описание параметра</th>
<th>UM</th>
<th>Тип</th>
<th>Формат</th>
<th>Минимальное значение</th>
<th>Максимальное значение</th>
<th>Доступность</th>
<th>Режим</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>250</td>
<td>Output current</td>
<td>A</td>
<td>FLOAT</td>
<td>16/32</td>
<td>0.0</td>
<td>0.0</td>
<td>R</td>
<td>F__</td>
</tr>
<tr>
<td>1.2</td>
<td>252</td>
<td>Output voltage</td>
<td>V</td>
<td>FLOAT</td>
<td>16/32</td>
<td>0.0</td>
<td>0.0</td>
<td>R</td>
<td>F__</td>
</tr>
</tbody>
</table>

Меню 21.5 - COMMUNICATION/WORD C

<table>
<thead>
<tr>
<th>№</th>
<th>Номер меню</th>
<th>Описание параметра</th>
<th>UM</th>
<th>Тип</th>
<th>Формат</th>
<th>Минимальное значение</th>
<th>Максимальное значение</th>
<th>Доступность</th>
<th>Режим</th>
</tr>
</thead>
<tbody>
<tr>
<td>21.5.1</td>
<td>4400</td>
<td>Word bit0 src</td>
<td>LINK</td>
<td>16BIT</td>
<td>6000</td>
<td>0</td>
<td>16384</td>
<td>ERW</td>
<td>F__</td>
</tr>
<tr>
<td>21.5.16</td>
<td>4430</td>
<td>Word bit15 src</td>
<td>LINK</td>
<td>16BIT</td>
<td>6000</td>
<td>0</td>
<td>16384</td>
<td>ERW</td>
<td>F__</td>
</tr>
</tbody>
</table>

Списки выбора:

Параметры в формате "Источник" (src) связаны со списком выбора.
Источник сигнала, который управляет параметром, может выбираться из указанного списка.
Списки приведены в разделе С данного руководства.
<table>
<thead>
<tr>
<th>№</th>
<th>Привод</th>
<th>Описание</th>
<th>Ед. изм.</th>
<th>Тип</th>
<th>Умолч.</th>
<th>Мин.</th>
<th>Макс.</th>
<th>Доступ</th>
<th>Режим</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>250</td>
<td>Output current</td>
<td>A</td>
<td>FLOAT</td>
<td>16/32BIT</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>R</td>
</tr>
<tr>
<td>1.2</td>
<td>252</td>
<td>Output voltage</td>
<td>V</td>
<td>FLOAT</td>
<td>16/32BIT</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>R</td>
</tr>
<tr>
<td>1.3</td>
<td>254</td>
<td>Output frequency</td>
<td>Hz</td>
<td>FLOAT</td>
<td>16/32BIT</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>R</td>
</tr>
<tr>
<td>1.4</td>
<td>628</td>
<td>Ramp setpoint</td>
<td>rpm</td>
<td>INT16</td>
<td>16/32BIT</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>R</td>
</tr>
<tr>
<td>1.5</td>
<td>664</td>
<td>Speed setpoint</td>
<td>rpm</td>
<td>INT16</td>
<td>16/32BIT</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>R</td>
</tr>
<tr>
<td>1.6</td>
<td>260</td>
<td>Motor speed</td>
<td>rpm</td>
<td>INT16</td>
<td>16/32BIT</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>R</td>
</tr>
<tr>
<td>1.7</td>
<td>270</td>
<td>DC link voltage</td>
<td>V</td>
<td>FLOAT</td>
<td>16/32BIT</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>ER</td>
</tr>
<tr>
<td>1.8</td>
<td>272</td>
<td>Heatsink temperature</td>
<td>°C</td>
<td>INT16</td>
<td>16BIT</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>ER</td>
</tr>
<tr>
<td>1.9</td>
<td>280</td>
<td>Torque current ref</td>
<td>A</td>
<td>FLOAT</td>
<td>16/32BIT</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>ER</td>
</tr>
<tr>
<td>1.10</td>
<td>282</td>
<td>Magnet current ref</td>
<td>A</td>
<td>FLOAT</td>
<td>16/32BIT</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>ER</td>
</tr>
<tr>
<td>1.11</td>
<td>284</td>
<td>Torque current</td>
<td>A</td>
<td>FLOAT</td>
<td>16/32BIT</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>ER</td>
</tr>
<tr>
<td>1.12</td>
<td>286</td>
<td>Magnet current</td>
<td>A</td>
<td>FLOAT</td>
<td>16/32BIT</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>ER</td>
</tr>
</tbody>
</table>

Меню 1 - MONITOR

Отображается выходной ток привода.

Отображается напряжение на выходной линии привода.

Отображается частота на выходе привода.

Отображается опорное значение рампы, в об/мин. Это - значение скорости, которого привод должен достичь в конце рампы.

Отображается опорное значение скорости в об/мин. Это - значение, измеренное на выходе цепи опорной скорости.

Отображается фактическая скорость вращения двигателя в об/мин. (в режиме FOC = скорость, измеренная энкодером, в SLS/VF = скорость, измеряемая приводом).

Непосредственное значение на конденсаторах шины постоянного напряжения.

The temperature measured by the linear sensor integrated in the IGBT modules is displayed.

Отображается опорное значение тока, используемое для управления моментом (в режимах векторного управления без датчиков и по значению поля).

Отображается опорное значение намагничивающего тока (в режимах векторного управления без датчиков и по значению поля).

Отображается фактическое значение тока для момента.

Отображается фактическое значение тока намагничивания.
<table>
<thead>
<tr>
<th>Меню</th>
<th>ПАР.</th>
<th>Описание</th>
<th>Ед. изм.</th>
<th>Тип</th>
<th>FB ВИТ</th>
<th>Умолч.</th>
<th>Мин.</th>
<th>Макс.</th>
<th>Доступ</th>
<th>Режим</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.13</td>
<td>3212</td>
<td>Motor overload accum</td>
<td>UINT16</td>
<td>16/32BIT</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>100</td>
<td>ER</td>
<td>F__</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Отображается уровень перегрузки двигателя (100% = порог сигнализации)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.14</td>
<td>368</td>
<td>Drive overload accum</td>
<td>UINT16</td>
<td>16/32BIT</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>100</td>
<td>ER</td>
<td>F__</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Отображается уровень перегрузки привода. Допускается кратковременная перегрузка привода величиной 200% номинального тока в течение 10 с. Пороговые значения выходного тока привода определяются тепловой моделью I²t. В ходе нормальной работы значение выходного тока может кратковременно достигать значения 200% номинального тока привода. Если уровень перегрузки согласно параметру 368 Drive overload accum достигнет 100%, порог выходного тока понижается до 100% номинального тока и остается в этом значении до тех пор, пока не завершится цикл работы интегратора I²t. В этот момент будет вновь разрешена кратковременная перегрузка 200 или 150% (не чаще 3 раз в сек.).</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.15</td>
<td>3260</td>
<td>Bres overload accum</td>
<td>UINT16</td>
<td>16/32BIT</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>100</td>
<td>ER</td>
<td>F__</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Отображается уровень перегрузки тормозного резистора (100% = порог сигнализации)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.16</td>
<td>1066</td>
<td>Enable state mon</td>
<td>BIT</td>
<td>16BIT</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>R</td>
<td>F__</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Отображается состояние команды разрешения работы привода. На клемме 7 должно присутствовать напряжение. Для пуска инвертора требуется команда пуска вперед (FR).</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1 Enabled</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>работа привода разрешена</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>0 Disabled</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>работа привода запрещена</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.17</td>
<td>1068</td>
<td>Start state mon</td>
<td>BIT</td>
<td>16BIT</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>R</td>
<td>F__</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Отображается состояние команды Start для привода.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.18</td>
<td>1070</td>
<td>FastStop state mon</td>
<td>BIT</td>
<td>16BIT</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>R</td>
<td>F__</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Отображается состояние команды быстрой остановки привода.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.19</td>
<td>1200</td>
<td>Digital input X mon</td>
<td>UINT16</td>
<td>16BIT</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>R</td>
<td>F__</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Отображается состояние дискретных входов платы расширения. Его можно также считать по последовательной линии или через полевую шину. Эти данные объединены в одно слово, в котором каждый бит равен 1, если на клемму соответствующего входа подано напряжение.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1 На входе имеется сигнал.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>0 Сигнал на входе отсутствует.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Пример:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>0 0 0 0 0 0 0 0 0 0 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Сигнал подан на вход DI 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.20</td>
<td>1400</td>
<td>Digital output X mon</td>
<td>UINT16</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>R</td>
<td>F__</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Отображается состояние дискретных выходов платы расширения. Его можно также считать по последовательной линии или через полевую шину. Эти данные объединены в одно слово, в котором каждый бит равен 1, если на клемму соответствующего входа подано напряжение.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1 Выход в сработавшем состоянии</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>0 Выход в несработавшем состоянии</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Пример:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>0 0 0 0 0 0 0 0 0 0 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Выход DO 1 в сработавшем состоянии</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Выход DO 2 в сработавшем состоянии</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Меню 2 - DRIVE INFO

В этом меню отображается информация для идентификации и конфигурирования привода.

<table>
<thead>
<tr>
<th>Меню</th>
<th>ПАР.</th>
<th>Описание</th>
<th>Ед. изм.</th>
<th>Тип</th>
<th>FB ВТ</th>
<th>Умолч.</th>
<th>Мин.</th>
<th>Макс.</th>
<th>Доступ</th>
<th>Режим</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>476</td>
<td>Drive type</td>
<td>ENUM</td>
<td>Basic-Sin</td>
<td>1</td>
<td>0</td>
<td>R</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Отображается идентификационный код серии привода.

Приводы, в описании которых имеется "24V", могут питаться от внешнего источника постоянного напряжения 24 В. Принципиальные схемы и схемы соединений см. в Руководстве по быстрому запуску.

0 Basic-Sin
1 Advanced
2 Basic-VGA
3 Basic-End
128 Basic-Sin 24V
129 Advanced 24V
130 Basic-VGA 24V
131 Basic-VGA 24V

<table>
<thead>
<tr>
<th>Меню</th>
<th>ПАР.</th>
<th>Описание</th>
<th>Ед. изм.</th>
<th>Тип</th>
<th>FB ВТ</th>
<th>Умолч.</th>
<th>Мин.</th>
<th>Макс.</th>
<th>Доступ</th>
<th>Режим</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.2</td>
<td>480</td>
<td>Control type</td>
<td>ENUM</td>
<td>Synchronous</td>
<td>0</td>
<td>0</td>
<td>R</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Отображается режим управления.

11 Асинхронный
12 Синхронный

<table>
<thead>
<tr>
<th>Меню</th>
<th>ПАР.</th>
<th>Описание</th>
<th>Ед. изм.</th>
<th>Тип</th>
<th>FB ВТ</th>
<th>Умолч.</th>
<th>Мин.</th>
<th>Макс.</th>
<th>Доступ</th>
<th>Режим</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.3</td>
<td>482</td>
<td>Drive size</td>
<td>UINT16</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>RS</td>
<td>F.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Отображается идентификационный код типоразмера привода.

<table>
<thead>
<tr>
<th>Меню</th>
<th>ПАР.</th>
<th>Описание</th>
<th>Ед. изм.</th>
<th>Тип</th>
<th>FB ВТ</th>
<th>Умолч.</th>
<th>Мин.</th>
<th>Макс.</th>
<th>Доступ</th>
<th>Режим</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.4</td>
<td>484</td>
<td>Drive family</td>
<td>ENUM</td>
<td>No Power</td>
<td>0</td>
<td>0</td>
<td>RS</td>
<td>F.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Отображается имеющееся вводное напряжение (например, 400 В). С этим значением связана сигнализация минимального напряжения.

Состояние No power имеет место, когда плата регулирования только что вышла из производства и еще не конфигурировалась ни под какое питание. Конфигурационная настройка для данного питания выполняется подключением сети к плате питания и запуском команды Save parameters.

0 No power
1 230 B.480 B
2 500 B.575B
3 690 B
4 230 B

<table>
<thead>
<tr>
<th>Меню</th>
<th>ПАР.</th>
<th>Описание</th>
<th>Ед. изм.</th>
<th>Тип</th>
<th>FB ВТ</th>
<th>Умолч.</th>
<th>Мин.</th>
<th>Макс.</th>
<th>Доступ</th>
<th>Режим</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.5</td>
<td>486</td>
<td>Drive region</td>
<td>ENUM</td>
<td>EU</td>
<td>0</td>
<td>1</td>
<td>R</td>
<td>F.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Установка географической зоны, в которой используется привод (Европа или США). Эта настройка определяет значения заводского напряжения и частоту источника питания.

0 EU (400V / 50Hz)
1 USA (460 / 60 Hz)

<table>
<thead>
<tr>
<th>Меню</th>
<th>ПАР.</th>
<th>Описание</th>
<th>Ед. изм.</th>
<th>Тип</th>
<th>FB ВТ</th>
<th>Умолч.</th>
<th>Мин.</th>
<th>Макс.</th>
<th>Доступ</th>
<th>Режим</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.6</td>
<td>488</td>
<td>Drive cont current</td>
<td>A</td>
<td>FLOAT</td>
<td>CALCF</td>
<td>0.0</td>
<td>0.0</td>
<td>RZS</td>
<td>F.</td>
<td></td>
</tr>
</tbody>
</table>

Отображается ток, который привод может длительно подавать в нагрузку в соответствии с типоразмером, питающим напряжением и запрограммированной частотой переключения.

<table>
<thead>
<tr>
<th>Меню</th>
<th>ПАР.</th>
<th>Описание</th>
<th>Ед. изм.</th>
<th>Тип</th>
<th>FB ВТ</th>
<th>Умолч.</th>
<th>Мин.</th>
<th>Макс.</th>
<th>Доступ</th>
<th>Режим</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.7</td>
<td>490</td>
<td>Firmware ver.rel</td>
<td>UINT16</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>R</td>
<td>F.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Отображаются номера версии и редакции внутреннего ПО привода. На дисплее клавиатуры они отображаются в формате "версия.редакция". Через последовательную коммуникацию или полевую шину этот параметр возвращаеться в виде номера версии в старшем байте и редакции в младшем.
<table>
<thead>
<tr>
<th>Меню</th>
<th>Номер</th>
<th>Описание</th>
<th>Эд. изм.</th>
<th>Тип</th>
<th>FB ВИТ</th>
<th>Умолч.</th>
<th>Мин.</th>
<th>Макс.</th>
<th>Доступ</th>
<th>Режим</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.8</td>
<td>496</td>
<td>Firmware type</td>
<td>UINT16</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>R</td>
<td>F__</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Меню</td>
<td>Номер</td>
<td>Описание</td>
<td>Эд. изм.</td>
<td>Тип</td>
<td>FB ВИТ</td>
<td>Умолч.</td>
<td>Мин.</td>
<td>Макс.</td>
<td>Доступ</td>
<td>Режим</td>
</tr>
<tr>
<td>-------</td>
<td>-------</td>
<td>----------</td>
<td>---------</td>
<td>-----</td>
<td>--------</td>
<td>--------</td>
<td>------</td>
<td>------</td>
<td>---------</td>
<td>-------</td>
</tr>
<tr>
<td>2.9</td>
<td>504</td>
<td>Application ver.rel</td>
<td>UINT16</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>ER</td>
<td>F__</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Меню</td>
<td>Номер</td>
<td>Описание</td>
<td>Эд. изм.</td>
<td>Тип</td>
<td>FB ВИТ</td>
<td>Умолч.</td>
<td>Мин.</td>
<td>Макс.</td>
<td>Доступ</td>
<td>Режим</td>
</tr>
<tr>
<td>-------</td>
<td>-------</td>
<td>----------</td>
<td>---------</td>
<td>-----</td>
<td>--------</td>
<td>--------</td>
<td>------</td>
<td>------</td>
<td>---------</td>
<td>-------</td>
</tr>
<tr>
<td>2.10</td>
<td>506</td>
<td>Application type</td>
<td>UINT16</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>ER</td>
<td>F__</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>6</td>
<td>EFC (Creep to Floor)</td>
<td>(Управление лифтами по этажным датчикам)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>EPC (Direct Approach)</td>
<td>(Управление лифтами по данным внутренней системы позиционирования)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>DCP3/DCP4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>DS417</td>
<td>(CANOpen Lift CiA 417)</td>
<td>(Лифт с шиной CANOpen/CiA 417)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>2.11</td>
<td>508</td>
<td>Application subver</td>
<td>UINT16</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>ER</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Меню</td>
<td>Номер</td>
<td>Описание</td>
<td>Эд. изм.</td>
<td>Тип</td>
<td>FB ВИТ</td>
<td>Умолч.</td>
<td>Мин.</td>
<td>Макс.</td>
<td>Доступ</td>
<td>Режим</td>
</tr>
<tr>
<td>-------</td>
<td>-------</td>
<td>----------</td>
<td>---------</td>
<td>-----</td>
<td>--------</td>
<td>--------</td>
<td>------</td>
<td>------</td>
<td>---------</td>
<td>-------</td>
</tr>
<tr>
<td>2.12</td>
<td>510</td>
<td>Time drive power on</td>
<td>h.min</td>
<td>UINT32</td>
<td>0</td>
<td>0.0</td>
<td>0.0</td>
<td>ER</td>
<td>F__</td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>2.13</td>
<td>512</td>
<td>Time drive enable</td>
<td>h.min</td>
<td>UINT32</td>
<td>0</td>
<td>0.0</td>
<td>0.0</td>
<td>ER</td>
<td>F__</td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Меню</td>
<td>Номер</td>
<td>Описание</td>
<td>Эд. изм.</td>
<td>Тип</td>
<td>FB ВИТ</td>
<td>Умолч.</td>
<td>Мин.</td>
<td>Макс.</td>
<td>Доступ</td>
<td>Режим</td>
</tr>
<tr>
<td>-------</td>
<td>-------</td>
<td>----------</td>
<td>---------</td>
<td>-----</td>
<td>--------</td>
<td>--------</td>
<td>------</td>
<td>------</td>
<td>---------</td>
<td>-------</td>
</tr>
<tr>
<td>2.14</td>
<td>514</td>
<td>Number power up</td>
<td>UINT16</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>ER</td>
<td>F__</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Меню</td>
<td>Номер</td>
<td>Описание</td>
<td>Эд. изм.</td>
<td>Тип</td>
<td>FB ВИТ</td>
<td>Умолч.</td>
<td>Мин.</td>
<td>Макс.</td>
<td>Доступ</td>
<td>Режим</td>
</tr>
<tr>
<td>-------</td>
<td>-------</td>
<td>----------</td>
<td>---------</td>
<td>-----</td>
<td>--------</td>
<td>--------</td>
<td>------</td>
<td>------</td>
<td>---------</td>
<td>-------</td>
</tr>
<tr>
<td>2.15</td>
<td>516</td>
<td>Power S/N</td>
<td>h.min</td>
<td>UINT32</td>
<td>0</td>
<td>0.0</td>
<td>0.0</td>
<td>ER</td>
<td>F__</td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Меню</td>
<td>Номер</td>
<td>Описание</td>
<td>Эд. изм.</td>
<td>Тип</td>
<td>FB ВИТ</td>
<td>Умолч.</td>
<td>Мин.</td>
<td>Макс.</td>
<td>Доступ</td>
<td>Режим</td>
</tr>
<tr>
<td>-------</td>
<td>-------</td>
<td>----------</td>
<td>---------</td>
<td>-----</td>
<td>--------</td>
<td>--------</td>
<td>------</td>
<td>------</td>
<td>---------</td>
<td>-------</td>
</tr>
<tr>
<td>2.16</td>
<td>520</td>
<td>Product S/N</td>
<td>UINT32</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>R</td>
<td>F__</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Меню</td>
<td>Номер</td>
<td>Описание</td>
<td>Эд. изм.</td>
<td>Тип</td>
<td>FB ВИТ</td>
<td>Умолч.</td>
<td>Мин.</td>
<td>Макс.</td>
<td>Доступ</td>
<td>Режим</td>
</tr>
<tr>
<td>-------</td>
<td>-------</td>
<td>----------</td>
<td>---------</td>
<td>-----</td>
<td>--------</td>
<td>--------</td>
<td>------</td>
<td>------</td>
<td>---------</td>
<td>-------</td>
</tr>
<tr>
<td>2.17</td>
<td>522</td>
<td>Regulation S/N</td>
<td>UINT32</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>R</td>
<td>F__</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Меню</td>
<td>Номер</td>
<td>Описание</td>
<td>Эд. изм.</td>
<td>Тип</td>
<td>FB ВИТ</td>
<td>Умолч.</td>
<td>Мин.</td>
<td>Макс.</td>
<td>Доступ</td>
<td>Режим</td>
</tr>
<tr>
<td>-------</td>
<td>-------</td>
<td>----------</td>
<td>---------</td>
<td>-----</td>
<td>--------</td>
<td>--------</td>
<td>------</td>
<td>------</td>
<td>---------</td>
<td>-------</td>
</tr>
<tr>
<td>2.18</td>
<td>524</td>
<td>Power S/N</td>
<td>UINT32</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>R</td>
<td>F__</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Меню</td>
<td>Номер</td>
<td>Описание</td>
<td>Эд. изм.</td>
<td>Тип</td>
<td>FB ВИТ</td>
<td>Умолч.</td>
<td>Мин.</td>
<td>Макс.</td>
<td>Доступ</td>
<td>Режим</td>
</tr>
<tr>
<td>-------</td>
<td>-------</td>
<td>----------</td>
<td>---------</td>
<td>-----</td>
<td>--------</td>
<td>--------</td>
<td>------</td>
<td>------</td>
<td>---------</td>
<td>-------</td>
</tr>
<tr>
<td>2.19</td>
<td>526</td>
<td>Power file ver.rel</td>
<td>UINT16</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>ER</td>
<td>F__</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>
Отображается тип платы расширения, установленной в соответствующем слоте привода.

0 None
257 I/O 1
1281 I/O 2
2305 I/O 3
3841 I/O 4
4865 I/O 5
5377 I/O 6
8 Enc 1
264 Enc 2
520 Enc 3
776 Enc 4
1032 Enc 5
4 Can/Dnet
260 Profibus
516 Gdnet
255 Unknown
1544 Enc 4 Dbss

Примечание: Дополнительную информацию о платах расширения см. в Руководстве по быстрому запуску. В исполнении ADL300-...-C для слота 3 указывается наличие CAN на плате регулирования.

Отображается серийный номер платы расширения, установленной в соответствующем слоте привода.

Отображаются номера версии и редакции внутреннего ПО энкодера, используемого с приводом. На дисплее клавиатуры они отображаются в формате "версия.редакция". Когда параметр считывается через последовательную коммуникацию или полевую шину, он возвращается в виде номера версии в старшем байте и редакции в младшем.

Отображается тип внутреннего ПО энкодера.
Меню 3 - STARTUP WIZARD

Меню мастера запуска предоставляет процедуру быстрого запуска привода в работу с уменьшенным числом настроек. Расширенная настройка под конкретные требования требует использования отдельных параметров соответствующих уровней характеристик. См. процедуру, описанную в разделе 9 Запуск в работу с помощью клавиатуры Руководства по быстрому запуску.
Меню 4 - DRIVE CONFIG

<table>
<thead>
<tr>
<th>Меню</th>
<th>ПАР.</th>
<th>Описание</th>
<th>Ед. изм.</th>
<th>Тип</th>
<th>FB ВИТ</th>
<th>Умолч.</th>
<th>Мн.</th>
<th>Макс.</th>
<th>Доступ</th>
<th>Режим</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1</td>
<td>550</td>
<td>Save parameters</td>
<td>BIT</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>RW</td>
<td>F___</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Любые изменения значений параметров сразу же оказывают действие на работу привода, но не сохраняются автоматически в постоянной памяти.
Команда "Сохранить параметры" используется для сохранения текущих значений параметров в постоянной памяти.
Какие-либо несохраненные значения при выключении привода будут утрачены.
Для сохранения параметров следуйте процедуре, описанной в ШАГЕ 9 Startup wizard.

<table>
<thead>
<tr>
<th>Меню</th>
<th>ПАР.</th>
<th>Описание</th>
<th>Ед. изм.</th>
<th>Тип</th>
<th>FB ВИТ</th>
<th>Умолч.</th>
<th>Мн.</th>
<th>Макс.</th>
<th>Доступ</th>
<th>Режим</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.2</td>
<td>552</td>
<td>Regulation mode</td>
<td>ENUM</td>
<td>Flux vector CL</td>
<td>0</td>
<td>3</td>
<td>RWZ</td>
<td>F___</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ADL300 может работать в нескольких режимах управления:
2 Flux vector CL (Векторное управление с замкнутым контуром) (Синхронные машины с постоянными магнитами)
3 Autotune (Автонастройка)

В режиме векторного управления (с замкнутым контуром/синхронным) для обеспечения обратной связи в замкнутом контуре требуется энкодер. В этом режиме, благодаря широкой полосе частот системы регулирования, максимально-му моменту даже при заторможенном роторе и управлению скоростью вращения и моментом, можно добиться очень хороших динамических характеристик! Для подстройки привода под специфические требования можно использовать ряд параметров регулирования, например, адаптивное усиление, компенсацию инерционности системы, и т. п.
Если процедура Startup wizard не использовалась, возможна самонастройка параметров двигателя в режиме самонастройки (Autotune).
Эту процедуру можно использовать для самонастройки как на остановленном, так и на вращающемся двигателе.

<table>
<thead>
<tr>
<th>Меню</th>
<th>ПАР.</th>
<th>Описание</th>
<th>Ед. изм.</th>
<th>Тип</th>
<th>FB ВИТ</th>
<th>Умолч.</th>
<th>Мн.</th>
<th>Макс.</th>
<th>Доступ</th>
<th>Режим</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.3</td>
<td>554</td>
<td>Access mode</td>
<td>ENUM</td>
<td>Easy</td>
<td>0</td>
<td>1</td>
<td>RW</td>
<td>F___</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

0 Easy (Простой)
1 Expert (Эксперт)
В режиме Easy предоставляется доступ к списку параметров, которые можно использовать для быстрого запуска привода в работу. Такой тип конфигурации пригоден для большинства применений.
При настройке доступа Expert предоставляется доступ ко всем параметрам внутреннего ПО привода. В этом режиме можно добиться очень высокого уровня адаптации к требованиям применения и полностью использовать потенциал ADL300.
Для встроенных программ версии 4.0.0 и выше переход из режима Easy в режим Expert может быть защищен специальным паролем (PAR 566 Passwd expert). Эта функция доступна только с клавиатуры, а не через Gefran_exPress).

<table>
<thead>
<tr>
<th>Меню</th>
<th>ПАР.</th>
<th>Описание</th>
<th>Ед. изм.</th>
<th>Тип</th>
<th>FB ВИТ</th>
<th>Умолч.</th>
<th>Мн.</th>
<th>Макс.</th>
<th>Доступ</th>
<th>Режим</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.4</td>
<td>566</td>
<td>Passwd expert</td>
<td>UNT32</td>
<td>0</td>
<td>0</td>
<td>99999</td>
<td>RW</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Набрать пароль, чтобы активировать параметр 554 Access mode.
Пароль должен быть заранее установлен с помощью параметра 586 Set passwd expert.
Меню ПАР. Описание Ед. изм. Тип FB ВИТ Умолч. Мин. Макс. Доступ Режим

<table>
<thead>
<tr>
<th>4.5</th>
<th>Запасной</th>
</tr>
</thead>
</table>

Меню ПАР. Описание Ед. изм. Тип FB ВИТ Умолч. Мин. Макс. Доступ Режим

<table>
<thead>
<tr>
<th>4.6.558</th>
<th>Application select</th>
<th>ENUM</th>
<th>Application 1</th>
<th>0</th>
<th>2</th>
<th>ERWZ F__</th>
</tr>
</thead>
<tbody>
<tr>
<td>выбор для работы в одном из назначений, совместимых с указанными в стандарте МЭК 61131-3.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>4.6.558</th>
<th>Application select</th>
<th>ENUM</th>
<th>Application 1</th>
<th>0</th>
<th>2</th>
<th>ERWZ F__</th>
</tr>
</thead>
<tbody>
<tr>
<td>Привод поставляется с уже включенным в него рядом применений, разработанных под условия эксплуатации, указанные в МЭК 61131-3. Для их использования задайте желаемое назначение, сохраните параметры, затем отключите/включите привод. По умолчанию привод сконфигурирован под управление лифтом по этажным датчикам (описание этого применения см. в п. меню 5 - ЛИФТ).</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Примечание

Команда Load default (ПАР. 580) данный параметр не затрагивает

Меню ПАР. Описание Ед. изм. Тип FB ВИТ Умолч. Мин. Макс. Доступ Режим

<table>
<thead>
<tr>
<th>4.7.560</th>
<th>Mains voltage</th>
<th>ENUM</th>
<th>400 V</th>
<th>SIZE</th>
<th>SIZE</th>
<th>ERWZS F__</th>
</tr>
</thead>
<tbody>
<tr>
<td>Настройка значения имеющейся питающей сети в вольтах. С этим значением связано определение уровня минимального напряжения.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>4.7.560</th>
<th>Mains voltage</th>
<th>ENUM</th>
<th>400 V</th>
<th>SIZE</th>
<th>SIZE</th>
<th>ERWZS F__</th>
</tr>
</thead>
<tbody>
<tr>
<td>Примечание ! Если параметр Mains voltage задается на максимально возможное значение, порог активации тормозного резистора примет только одно возможное значение, которое нельзя будет изменить.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Меню ПАР. Описание Ед. изм. Тип FB ВИТ Умолч. Мин. Макс. Доступ Режим

<table>
<thead>
<tr>
<th>4.8.448</th>
<th>Emergency UV</th>
<th>FLOAT</th>
<th>CALCF</th>
<th>0.0</th>
<th>CALCF</th>
<th>ERWZ FVS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Этот параметр позволяет задать порог минимального напряжения на шине постоянного напряжения. С помощью этого параметра предотвращается снятие тормоза в аварийных условиях, когда шина постоянного тока выдает правильное напряжение.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Меню ПАР. Описание Ед. изм. Тип FB ВИТ Умолч. Мин. Макс. Доступ Режим

<table>
<thead>
<tr>
<th>4.9.450</th>
<th>Undervoltage</th>
<th>FLOAT</th>
<th>CALCF</th>
<th>CALCF</th>
<th>CALCF</th>
<th>ERWZS FVS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Позволяет изменить порог низкого напряжения. Значения по умолчанию, минимальное и максимальное значения зависят от напряжения сети.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Меню ПАР. Описание Ед. изм. Тип FB ВИТ Умолч. Мин. Макс. Доступ Режим

<table>
<thead>
<tr>
<th>4.10.454</th>
<th>Chopper ON</th>
<th>FLOAT</th>
<th>CALCF</th>
<th>CALCF</th>
<th>CALCF</th>
<th>ERWZS FVS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Соответствует порогу активации тормозного резистора, поэтому можно увеличить это значение до значения чуть ниже порога аварийного сигнала Overvoltage (ADL300-...-4 = 802 В пост. т., ADL300-...-2T = 396 В пост. т., ADL300-...-2M = 396 В пост. т.). Предельы диапазона значений параметра рассчитываются в зависимости от IPA 560 Mains voltage.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Примечание

Если параметр Mains voltage задается на максимально возможное значение, порог активации тормозного резистора примет только одно возможное значение, которое нельзя будет изменить.

Меню ПАР. Описание Ед. изм. Тип FB ВИТ Умолч. Мин. Макс. Доступ Режим

<table>
<thead>
<tr>
<th>4.11.570</th>
<th>Password</th>
<th>UINT32</th>
<th>0</th>
<th>0</th>
<th>99999</th>
<th>ERW F__</th>
</tr>
</thead>
<tbody>
<tr>
<td>Для защиты параметров от неправомочного доступа можно задать пароль: он может задаваться пользователем в виде комбинации из не более чем 5 цифр. Все параметры, за исключением данного и команды Save parameters, блокируются. Для ввода пароля нажмите кнопку E, затем введите пароль, далее для его вступления в силу вновь нажмите кнопку E (отобразится сообщение о принятии пароля (Enabled)).</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Для того, чтобы пароль действовал после отключения/включения привода, сохраните текущую конфигурацию командой `Save parameters`.

При введенном пароле любая попытка изменить параметры блокируется и отображается сообщение `Password enabled`.

Для отмены пароля введите параметр `Password` (570) в меню `DRIVE CONFIG`.

Удостоверьтесь, что пароль действует (`Enabled`), нажмите E и введите комбинацию цифр, составляющих пароль. Вновь нажатие E. Отобразится сообщение о том, что пароль снят (`Disabled`).

Для того, чтобы снятие пароля сохранилось после отключения/включения привода, сохраните текущую конфигурацию командой `Save parameters`.

При вводе неверного пароля отобразится сообщение об этом.

<table>
<thead>
<tr>
<th>Меню</th>
<th>ПАР.</th>
<th>Описание</th>
<th>Ед. изм.</th>
<th>Тип</th>
<th>FB</th>
<th>ВТ</th>
<th>Умолч.</th>
<th>Мин.</th>
<th>Макс.</th>
<th>Доступ</th>
<th>Режим</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.12</td>
<td>572</td>
<td>Application key</td>
<td>UINT32</td>
<td>0</td>
<td>0</td>
<td>4294967295</td>
<td>ERW</td>
<td>F__</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Этот параметр может использоваться для ввода ключа, разрешающего работу прикладной программы ПЛК.

Некоторым приложениям ПЛК для полного разрешения работы требуется ключ. Дополнительную информацию о приложениях ПЛК, требующих ключа, можно получить, обратившись в Gefran.

Если выполняется приложение, в котором предусматривается верификация ключом, а ключ неверный, работа приложения принудительно разрешается на 200 часов (время разрешения от привода).

При первой подаче питания спустя эти 200 часов выдается предупредительный сигнал, а приложение не запускается.

Для получения цифрового значения ключа обратитесь в Gefran.

<table>
<thead>
<tr>
<th>Меню</th>
<th>ПАР.</th>
<th>Описание</th>
<th>Ед. изм.</th>
<th>Тип</th>
<th>FB</th>
<th>ВТ</th>
<th>Умолч.</th>
<th>Мин.</th>
<th>Макс.</th>
<th>Доступ</th>
<th>Режим</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.13</td>
<td>586</td>
<td>Set passwd expert</td>
<td>UINT32</td>
<td>0</td>
<td>0</td>
<td>99999</td>
<td>ERW</td>
<td>FVS</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Активирует пароль для защиты уставки параметра 554 `Access mode` от перехода из режима `Easy` в режим `Expert`; вводится значение, отличное от 0. При вводе 0 пароль деактивируется.

Чтобы получить доступ к параметру Set passwd expert, нужно войти в режим `Expert`.

Чтобы пароль был принят, его необходимо ввести дважды.

После того, как пароль запрограммирован, параметр 554 `Access mode` остается в режиме `Expert`; для активации защиты нужно ввести пароль в параметр 566 `Passwd expert`.

После этого параметр 554 `Access mode` переидет в режим `Easy`. При каждом включении привод будет запускаться в режиме `Easy`, с активированной защитой.

<table>
<thead>
<tr>
<th>Меню</th>
<th>ПАР.</th>
<th>Описание</th>
<th>Ед. изм.</th>
<th>Тип</th>
<th>FB</th>
<th>ВТ</th>
<th>Умолч.</th>
<th>Мин.</th>
<th>Макс.</th>
<th>Доступ</th>
<th>Режим</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.14</td>
<td>574</td>
<td>Startup display</td>
<td>INT16</td>
<td>-1</td>
<td>-1</td>
<td>20000</td>
<td>ERW</td>
<td>F__</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Можно установить параметр, который будет автоматически отображаться при включении привода.

Если установить -1, при включении привода автоматически отобразится главное меню.

Если установить 0, при включении привода автоматически отобразится начальная страница.

<table>
<thead>
<tr>
<th>Меню</th>
<th>ПАР.</th>
<th>Описание</th>
<th>Ед. изм.</th>
<th>Тип</th>
<th>FB</th>
<th>ВТ</th>
<th>Умолч.</th>
<th>Мин.</th>
<th>Макс.</th>
<th>Доступ</th>
<th>Режим</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.15</td>
<td>576</td>
<td>Display backlight</td>
<td>BIT</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>ERW</td>
<td>F__</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Разрешает фоновую подсветку дисплея привода.

При установке в 0 фоновая подсветка будет отключаться через три минуты после включения привода.

При установке в 1 будет оставаться включенной все время, пока на привод подано питание.

<table>
<thead>
<tr>
<th>Меню</th>
<th>ПАР.</th>
<th>Описание</th>
<th>Ед. изм.</th>
<th>Тип</th>
<th>FB</th>
<th>ВТ</th>
<th>Умолч.</th>
<th>Мин.</th>
<th>Макс.</th>
<th>Доступ</th>
<th>Режим</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.16</td>
<td>578</td>
<td>Language select</td>
<td>ENUM</td>
<td>English</td>
<td>0</td>
<td>4</td>
<td>RWZ</td>
<td>F__</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Задание языка для программирования привода.

0 | Английский
1 | Итальянский
2 | Французский
3 | Немецкий
4 | Испанский
8 | Турецкий

Команда `Load default` (ПАР. 580) данный параметр не затрагивает.
<table>
<thead>
<tr>
<th>Меню</th>
<th>ПАР.</th>
<th>Описание</th>
<th>Ед. изм.</th>
<th>Тип</th>
<th>FB BIT</th>
<th>Умолч.</th>
<th>Мин.</th>
<th>Макс.</th>
<th>Доступ</th>
<th>Режим</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.17</td>
<td>580</td>
<td>Load default</td>
<td>BIT</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>RWZ</td>
<td>F__</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>В память привода пересылаются стандартные заводские настройки (см. столбец "Умолч." в списке параметров).</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.18</td>
<td>590</td>
<td>Save par to keypad</td>
<td>BIT</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>RW</td>
<td>F__</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Параметры, заданные в данный момент в приводе, пересылаются в память клавиатуры и сохраняются там (см. руководство по быстрому запуску, раздел 8.3.13).</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.19</td>
<td>592</td>
<td>Load par from keypad</td>
<td>BIT</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>RWZ</td>
<td>F__</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Параметры из памяти клавиатуры пересылаются в привод (см. руководство по быстрому запуску, раздел 8.3.13).</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.20</td>
<td>594</td>
<td>Keypad memory select</td>
<td>UINT16</td>
<td>1</td>
<td>1</td>
<td>5</td>
<td>ERW</td>
<td>F__</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Выбор области в памяти клавиатуры, в которую пересылаются для сохранения параметры привода.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.21</td>
<td>596</td>
<td>Save to SD card</td>
<td>BIT</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>RW</td>
<td>F__</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Параметры привода пересылаются на карту памяти SD (см. руководство по быстрому запуску, раздел 8.3.14).</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.22</td>
<td>598</td>
<td>Load from SD card</td>
<td>BIT</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>RWZ</td>
<td>F__</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Параметры с карты памяти SD пересылаются в привод (см. руководство по быстрому запуску, раздел 8.3.14).</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.23</td>
<td>6100</td>
<td>Load asynch control</td>
<td>BIT</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>ERW</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Выбирается режим управления асинхронным двигателем. Привод сбрасывается и вновь запускается уже в новом режиме управления.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Примечание
Важно: загружаются параметры по умолчанию, включая назначение LIFT.
Операцию можно выполнять только на заблокированном приводе.
Through the combination of "MtlSpd S0" (Digital input 4), "MtlSpd S1" (Digital input 5) and "MtlSpd S2" (Digital input 6) commands, it is possible to select Multi speed desired, according to next table:

<table>
<thead>
<tr>
<th>MtlSpd S2</th>
<th>MtlSpd S1</th>
<th>MtlSpd S0</th>
<th>ACTIVE SPEED</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>Multispeed 0, PAR 11020</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>Multispeed 1, PAR 11022</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>Multispeed 2, PAR 11024</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>Multispeed 3, PAR 11026</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>Multispeed 4, PAR 11028</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>Multispeed 5, PAR 11030</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>Multispeed 6, PAR 11032</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>Multispeed 7, PAR 11034</td>
</tr>
</tbody>
</table>

Выбор единиц измерения опорных значений скорости.

1 м/с (скорость кабины, зависящая от механической конструкции)
2 об/мин. (скорость вращения вала двигателя)
3 США (Единицы США: футов в минуту, футов/с², футов/с³)

При изменении единиц измерения все константы пересчитываются, в списке параметров единицы измерения также меняются, значения скоростей преобразуются к новым единицам измерения (в результатах может содержаться погрешность округления при вычислениях).

Выбранное значение является опорным для S-образной рампы лифта. Это значение считается низкой рабочей скоростью по умолчанию.

Выбранное значение является опорным для S-образной рампы лифта. Это значение считается высокой скоростью по умолчанию.

Выбранное значение является опорным для S-образной рампы лифта. Это значение считается скоростью ревизии по умолчанию.

Выбранное значение является опорным для S-образной рампы лифта.
<table>
<thead>
<tr>
<th>№</th>
<th>ПАР.</th>
<th>Описание</th>
<th>Ед. изм.</th>
<th>Тип</th>
<th>Умолч.</th>
<th>Мин.</th>
<th>Макс.</th>
<th>Доступ</th>
<th>Режим</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.1.6</td>
<td>11028</td>
<td>Multi speed 4</td>
<td>m/s</td>
<td>FLOAT</td>
<td>0.00</td>
<td>-10000</td>
<td>10000</td>
<td>RW</td>
<td>F__</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Установка задания значения скорости 4. Может выбираться через дискретный вход, полевую шину, и т. д. Выбранное значение является опорным для S-образной рампы лифта.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.1.7</td>
<td>11030</td>
<td>Multi speed 5</td>
<td>m/s</td>
<td>FLOAT</td>
<td>0.00</td>
<td>-10000</td>
<td>10000</td>
<td>RW</td>
<td>F__</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Установка задания значения скорости 5. Может выбираться через дискретный вход, полевую шину, и т. д. Выбранное значение является опорным для S-образной рампы лифта.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.1.8</td>
<td>11032</td>
<td>Multi speed 6</td>
<td>m/s</td>
<td>FLOAT</td>
<td>0.00</td>
<td>-10000</td>
<td>10000</td>
<td>RW</td>
<td>F__</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Установка задания значения скорости 6. Может выбираться через дискретный вход, полевую шину, и т. д. Выбранное значение является опорным для S-образной рампы лифта.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.1.9</td>
<td>11034</td>
<td>Multi speed 7</td>
<td>m/s</td>
<td>FLOAT</td>
<td>0.00</td>
<td>-10000</td>
<td>10000</td>
<td>RW</td>
<td>F__</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Установка задания значения скорости 7. Может выбираться через дискретный вход, полевую шину, и т. д. Выбранное значение является опорным для S-образной рампы лифта.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.1.10</td>
<td>12010</td>
<td>Actual multi spd sel</td>
<td>ENUM</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>R</td>
<td>F__</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Отображается скорость, выбранная в данный момент.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>0 Задание скорости 0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1 Задание скорости 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>2 Задание скорости 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3 Задание скорости 3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>4 Задание скорости 4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>5 Задание скорости 5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>6 Задание скорости 6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>7 Задание скорости 7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>8 Null</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.1.11</td>
<td>12210</td>
<td>Actual speed ref</td>
<td>m/s</td>
<td>FLOAT</td>
<td></td>
<td></td>
<td></td>
<td>R</td>
<td>F__</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Отображается скорость кабины в м/с.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Меню 5.2 - RAMPS

В лифтовом применении предусматривается функция S-образного изменения скорости (рампа) с возможностью задания 4 независимых переходов скорости (рывков) и коэффициентов линейного ускорения и замедления, как показано для стандарта профиля на рис. ниже.

Значения начального рывка при ускорении Acc ini Jerk, ускорения Acceleration и конечного рывка при ускорении Acc end jerk используются для реализации рампы ускорения и подсчитываются умножением соответствующих параметров на коэффициент рампы ускорения (Percent acc factor), в то время как значения начального рывка при замедлении Dec ini jerk, замедления Deceleration и конечного рывка Dec end jerk values, используемые для выполнения рампы замедления, рассчитываются умножением соответствующих параметров на коэффициент рампы замедления (Percent dec factor ПАР 11056).

Когда команда Start снимается, опорная скорость равна нулю независимо от выбора одной из скоростей. На конечной части профиля значения рывков замедления задаются непосредственно (а не умножением на Percent dec factor, ПАР 11056), параметром Stop deceleration в виде линейного замедления. Коэффициенты для конечного участка используются также в случае аварийной остановки лифта.

<table>
<thead>
<tr>
<th>Меню</th>
<th>ПАР.</th>
<th>Описание</th>
<th>Ед. изм.</th>
<th>Тип</th>
<th>FB BIT</th>
<th>Умол.</th>
<th>Мин.</th>
<th>Макс.</th>
<th>Доступ</th>
<th>Режим</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.2.1</td>
<td>11040</td>
<td>Acc ini Jerk</td>
<td>m/s³</td>
<td>FLOAT</td>
<td>0.50</td>
<td>0.01</td>
<td>20</td>
<td>RW</td>
<td>F__</td>
<td></td>
</tr>
<tr>
<td>5.2.2</td>
<td>11042</td>
<td>Acceleration</td>
<td>m/s²</td>
<td>FLOAT</td>
<td>0.60</td>
<td>0.01</td>
<td>10</td>
<td>RW</td>
<td>F__</td>
<td></td>
</tr>
<tr>
<td>5.2.3</td>
<td>11044</td>
<td>Acc end jerk</td>
<td>m/s³</td>
<td>FLOAT</td>
<td>1.40</td>
<td>0.01</td>
<td>20</td>
<td>RW</td>
<td>F__</td>
<td></td>
</tr>
<tr>
<td>5.2.4</td>
<td>11046</td>
<td>Dec ini jerk</td>
<td>m/s³</td>
<td>FLOAT</td>
<td>1.40</td>
<td>0.01</td>
<td>20</td>
<td>RW</td>
<td>F__</td>
<td></td>
</tr>
<tr>
<td>5.2.5</td>
<td>11048</td>
<td>Deceleration</td>
<td>m/s²</td>
<td>FLOAT</td>
<td>0.60</td>
<td>0.01</td>
<td>10</td>
<td>RW</td>
<td>F__</td>
<td></td>
</tr>
<tr>
<td>5.2.6</td>
<td>11050</td>
<td>Dec end jerk</td>
<td>m/s³</td>
<td>FLOAT</td>
<td>0.50</td>
<td>0.01</td>
<td>20</td>
<td>RW</td>
<td>F__</td>
<td></td>
</tr>
<tr>
<td>5.2.7</td>
<td>11052</td>
<td>Stop deceleration</td>
<td>m/s²</td>
<td>FLOAT</td>
<td>0.70</td>
<td>0.01</td>
<td>10</td>
<td>RW</td>
<td>F__</td>
<td></td>
</tr>
<tr>
<td>5.2.8</td>
<td>11054</td>
<td>Percent acc factor</td>
<td>Perc</td>
<td>FLOAT</td>
<td>100.00</td>
<td>10</td>
<td>10000</td>
<td>RW</td>
<td>F__</td>
<td></td>
</tr>
</tbody>
</table>

Установка значения рывка для начальной части при ускорении.

Установка максимальной величины ускорения.

Установка значения рывка для конечной части при ускорении.

Установка значения рывка для начальной части при замедлении.

Установка максимальной величины замедления.

Установка значения рывка для конечной части при замедлении.

Установка максимального значения замедления, используемого при снятии команды пуска.

Установка коэффициента умножения для ускорения.

При его установке в значение 100 используются коэффициенты, заданные в параметрах.
При его установке в значение меньше 100 лифт будет разгоняться на большем расстоянии.
При его установке в значение больше 100 лифт будет разгоняться на более коротком расстоянии.

Меню ПАР. Описание Ед. изм. Тип FB ВТ Умолч. Мин. Макс. Доступ Режим

5.2.9 11056 Percent dec factor Perc FLOAT 100.00 10 10000 RW F__

Установка коэффициента умножения для замедления.
При его установке в значение 100 используются коэффициенты, заданные в параметрах.
При его установке в значение меньше 100 лифт будет замедляться на большем расстоянии.
При его установке в значение больше 100 лифт будет замедляться на более коротком расстоянии.
В этом меню указываются параметры, используемые для управления ходом лифта и задания характеристик движения в зависимости от состояния входов и тревожных сигналов. Структура последовательности движения приведена ниже.

Последовательность пуска:
1. Считывание состояния аппаратного входа разрешения и проверка отсутствия тревожных сигналов (при наличии тревожных сигналов разрешение работы снимается)
2. Обнаружение команд **Enable** и **Start** в соответствии с установкой в параметре **Sequence start mode**
3. После получения команды **Start forward/reverse** выдается команда на срабатывание контакторов в соответствии с направлением движения
4. Когда временная уставка из параметра **Cont close delay** будет отработана, активируется внутренний сигнал лифта **Enable**
5. Система ожидает сигнала намагничивания от привода (**Drive ready**)
6. По окончании намагничивания активируется сигнал снятия тормоза
7 Система ожидает снятия тормоза (Brake open delay)
8 Когда задержка перед снятием тормоза истечет, выдается команда Start лифта и движение разрешается.

Последовательность передвижения:
1 Двигатель запускается и вращается медленно, со скоростью, установленной в параметре Smooth start speed в течение времени, указанном в параметре Smooth start delay
2 По истечении времени Smooth start delay передвижение определяется установленными заданиями скоростей и S-образной рампой
3 Когда заданная скорость будет превышена, можно использовать выходной сигнал Brake 2 mon для проверки того, действительно ли снят тормоз.
4 Для перехода на более низкую скорость можно использовать функцию EFC с контролем местоположения.
5 Когда сигнал Start forward/reverse снимается, разрешается сигнал прибытия на этаж, а сигнал пуска лифта блокируется.
6 Команда пуска может быть послана вновь до достижения нулевой скорости, рабочие условия восстанавливаются.

Последовательность остановки:
1 По достижении нулевой скорости разрешается команда остановки торможением постоянным током (управление SSC)
2 Система ждет время, необходимое для достижения нулевой скорости, и выдает команду наложения тормозов 1 и 2.
3 Далее она ждет время, необходимое для наложения тормозов (задержка наложения тормоза) и, если ток должен снизиться по рампе, ожидает достижения тормозов предельного нулевого значений. После этого сигналы разрешения лифта, зоны прибытия и торможения постоянным током снимаются.
4 Система находится в ожидании в течение времени из параметра Contactor open delay и, перед подачей команды на отключение контакторов проверяет, равен ли подаваемый ток нулю.

Очень важно удостовериться что в случае тревожного сигнала или запрета привода, последний всегда останавливается и выдается команда на отключение контакторов.

Меню ПАР. Описание Ед. изм. Тип FB ВИТ Умолч. Мин. Макс. Доступ Режим
5.3.1 11060 Sequence start mode ENUM 0 0 2 RW F__

Настройка процедуры запуска последовательность команды включения контактора
0 Start forward/reverse (Пуск вперед/назад)
1 Enable (Разрешение)
2 Multespeed (Скорость):!= 0

При установке в 0 последовательность включения контакторов может быть разрешена без команды Enable (она требуется только для работы двигателя). Сигнал разрешения может сниматься с блок-контактов выходных контакторов.
При установке в 1 последовательность включения контакторов может выполняться только при активной команде разрешения.
При установке в 2 последовательность включения контакторов может быть разрешена с помощью значений задания скорости. Значение задания скорости, отличное от 0, вызывает запуск последовательности. Команда Start также должна быть разрешена.

Меню ПАР. Описание Ед. изм. Тип FB ВИТ Умолч. Мин. Макс. Доступ Режим
5.3.2 11062 Cont close delay ms INT32 200.00 0 10000 RW F__

Установка времени задержки включения контактора, мс

Меню ПАР. Описание Ед. изм. Тип FB ВИТ Умолч. Мин. Макс. Доступ Режим
5.3.3 11064 Brake open delay ms INT32 200 0 10000 RW F__

Установка времени задержки отпускания тормоза.

Меню ПАР. Описание Ед. изм. Тип FB ВИТ Умолч. Мин. Макс. Доступ Режим
5.3.4 11066 Smooth start delay ms INT32 0 0 10000 RW F__

Установка времени, в течение которого разрешена скорость Smooth start speed. Если этот параметр установлен в нуль, при пуске выполняется непосредственно S-образный профиль, а функция плавного пуска отключена.

Меню ПАР. Описание Ед. изм. Тип FB ВИТ Умолч. Мин. Макс. Доступ Режим
5.3.5 11068 Brake close delay ms INT32 500.00 0 10000 RW F__

Установка времени задержки наложения тормоза.
Установка времени, необходимого для снижения момента от предельного значения, разрешенного во время хода, до 0. Она определяет наклон линии в функции "Current down ramp". Эта функция предназначена для предотвращения немедленного сброса момента двигателя при наложении тормоза, что вызывает механические напряжения кабины.

Для включения функции параметр Current down delay должен устанавливаться в значение, отличное от нуля. Это возможно только когда параметр Torque curr lim имеет значение, отличное от отключенного, в противном случае Current down delay принудительно устанавливается в нуль.

Установка времени задержки отключения контактора.

Установка порога нулевой скорости, ниже которого активируется сигнал нулевой скорости.

Установка задержки нулевой скорости. После обнаружения нулевой скорости и спустя время, заданное этим параметром, сигнал нулевой скорости активируется. Эти параметры используются для обнаружения остановки кабины.

Установка скорости для этапа плавного пуска.

Установка режима плавного пуска.

При установке в 1 скорость плавного пуска автоматически выбирается после команды пуска независимо от выбранного задания скорости. Длительность периода скорости плавного пуска зависит от параметра Smooth start delay. Если этот параметр установлен в ноль, используется выбранное задание скорости, а не скорость плавного пуска. Эта установка используется в системах с редуктором, поскольку это помогает преодолеть начальное трение перед запуском в соответствии с профилем.

При установке в 2 устанавливается режим более слаженного и медленного пуска, в котором на этапе плавного пуска используется пусковой рывок с переменным ускорением. В зависимости от значений параметров Smooth start speed и Smooth start delay значение рывка рассчитывается по концу этапа плавного пуска по линейной рампе так, чтобы этот рывок изменялся от 0 до расчетного значения.

При использовании меняющегося значения рывка достигается переменное ускорение запуска, которое следует по параболической линии, обеспечивая очень малые изменения в начальной скорости. Такая установка используется главным образом с безредукторными двигателями.
5.3.12 11086 Door open speed

Установка скорости открывания двери

Источник для разрешения отпуска тормоза через дискретный вход. В стандартной последовательности отпуска тормоза управляет привод, и, следовательно, этот параметр устанавливается в ONE в случае, когда отпускание тормоза обуславливается каким-то внешним управлением (например, ПЛК), назначьте этот параметр дискретному входу управления в ПЛК. Внутренняя последовательность отпускания тормоза не начнется, пока не установится этот сигнал.

Во время хода лифта всегда, когда этот вход не установлен, тормоз будет наложен.

Меню ПАР. Описание Ед. изм. Тип FB BIT Умолч. Мин. Макс. Доступ Режим

5.3.13 11088 Contactorless Enable

Задается в случае режима работы без контакторов. При разрешении этого параметра команда быстрого разрешения подается на дискретный вход 7 (если нет короткого замыкания между фазами в двигателе, этот параметр должен быть возвращен в значение по умолчанию), а привод сигнализирует ПЛК о режиме работы без контактора через дискретный выход 4 (см. рис. 7.3.2.8-А в Руководстве по быстрому запуску ADL300).

Меню ПАР. Описание Ед. изм. Тип FB BIT Умолч. Мин. Макс. Доступ Режим

5.3.14 11822 Em max speed

Задает максимальную скорость, которую кабина (или двигатель) может развить в этом режиме. Скорость может быть выражена в м/с (для кабины) или в об/мин (для двигателя).

Меню ПАР. Описание Ед. изм. Тип FB BIT Умолч. Мин. Макс. Доступ Режим

5.3.15 11824 Brake lock time

Задание времени блокировки тормоза при достижении кабиной максимально допустимой скорости.

Меню ПАР. Описание Ед. изм. Тип FB BIT Умолч. Мин. Макс. Доступ Режим

5.3.16 11826 Inspection Behaviour

Управление задатчиком торможения в режиме техобслуживания или осмотра. Если эта функция активирована, она позволяет добиться более интенсивного торможения по сравнению с торможением в номинальном режиме. Предусмотрены три режима:

None: функция деактивирована (по умолчанию). Остановка происходит с обычными ранее введенными задатчиками торможения.

Fast Stop: активируется функция остановки за 200 мс, если задана скорость техобслуживания (PAR 11024 Multi speed 2 или PAR 11828 Inspection speed) ниже 0,63 м/с. Если задана более высокая скорость, она автоматически ограничивается значением 0,63 м/с.

Immediate: немедленная блокировка лифта с замыканием тормоза. При отпускании кнопки пульта техобслуживания кабина останавливается мгновенно (без задатчика торможения).

Меню ПАР. Описание Ед. изм. Тип FB BIT Умолч. Мин. Макс. Доступ Режим

5.3.17 11828 Inspection speed

Скорость техобслуживания.
Отображается счетчик поездок лифта. Значение счетчика увеличивается каждый раз, когда активируется сигнал пуска лифта.

Отображается состояние последовательности работы лифта.

<table>
<thead>
<tr>
<th>Ref</th>
<th>PAR 12016 description</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Idle</td>
<td>Not active</td>
</tr>
<tr>
<td>1</td>
<td>Close close</td>
<td>Close Contact on Sequence lift diagram (*)</td>
</tr>
<tr>
<td>2</td>
<td>Drive ready</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Brake open</td>
<td>Open Brake on Sequence lift diagram (*)</td>
</tr>
<tr>
<td>4</td>
<td>Smooth start</td>
<td>Refer to diagram on parameter 11084</td>
</tr>
<tr>
<td>5</td>
<td>Multispeed</td>
<td>“Mlt spd s0/s1/s2” on Sequence lift diagram (*)</td>
</tr>
<tr>
<td>6</td>
<td>Waiting 0 spd</td>
<td>“Wait 0 ref” on Sequence lift diagram (*)</td>
</tr>
<tr>
<td>7</td>
<td>Zero speed</td>
<td>“Spd 0 ref” on Sequence lift diagram (*)</td>
</tr>
<tr>
<td>8</td>
<td>Brake close</td>
<td>“Close Brake” on Sequence lift diagram (*)</td>
</tr>
<tr>
<td>9</td>
<td>Cont open</td>
<td>“Open contact” on Sequence lift diagram (*)</td>
</tr>
<tr>
<td>10</td>
<td>Not drive ok</td>
<td></td>
</tr>
</tbody>
</table>

(*) the diagram is at the top of menu 5.3
Меню 5.4 - MECHANICAL DATA

Параметры, описываемые в данном меню, используются для определения механических и физических характеристик системы.

Механические константы
Механическая константа определяет связь между частотой вращения двигателя в об/мин. и расстоянием, проходимым кабиной.
Механические константы могут рассчитываться двумя способами, в зависимости от используемого метода преобразования.

- Непосредственно: Механическая константа = Системная скорость/(Диапазон шкалы скорости/60)
- Механические данные: Механическая константа = (π *Диаметр шкива)/Понижающее число редуктора

Механическая константа подсчитывается при включении привода и пересчитывается каждый раз, когда изменяется значение одного из используемых параметров (Mechanical calc mode, Full scale speed, Contract speed, Pulley diameter, Gearbox ratio).
Метод подсчета механических констант можно выбирать независимо от режима управления (SSC Flux vector OL, Flux vector CL, Synchronous) или используемых единиц измерения.

Масса и инерция
Ввод механических характеристик системы позволяет подсчитать общий момент инерции, прилагаемый к двигателю.
После изменения этих параметров подсчитанное значение момента инерции автоматически сохраняется в параметре Inertia comp, что позволяет корректировать компенсацию момента инерции.
Отображается значение момента инерции, который можно ввести в параметр "Inertia" в меню "16 - SPEED REG GAINS" для более точного расчета параметров контура регулирования скорости. Эта операция выполняется автоматически, когда разрешен PAR 11162 Calc spd reg gain.

Меню ПАР. Описание Ед. изм. Тип FB ВБ Умолч. Мин. Макс. Доступ Режим
5.4.1 11006 Contract speed m/s FLOAT 1 0 10 RW F__
Представляет скорость системы. Используется также для расчета механических констант. Скорость кабины в м/с связывается с диапазоном шкалы скорости (пар. 628) для получения коэффициента преобразования (м/об. в мин.).

Меню ПАР. Описание Ед. изм. Тип FB ВБ Умолч. Мин. Макс. Доступ Режим
5.4.2 11008 Mechanical calc mode INT16 0 0 1 ERW F__
Задание метода расчета, единиц измерения, либо по скорости кабины и двигателя (непосредственный метод), либо по механическим коэффициентам (метод механических данных)
0 Прямой метод
1 Механические данные

Меню ПАР. Описание Ед. изм. Тип FB ВБ Умолч. Мин. Макс. Доступ Режим
5.4.3 11010 Gearbox ratio FLOAT 2 ERW F__
Задание передаточного числа между скоростью вращения двигателя и шкива.
<table>
<thead>
<tr>
<th>Меню</th>
<th>ПАР.</th>
<th>Описание</th>
<th>Ед. изм.</th>
<th>Тип FB BIT</th>
<th>Умолч.</th>
<th>Мин.</th>
<th>Макс.</th>
<th>Доступ</th>
<th>Режим</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.4.4</td>
<td>11012</td>
<td>Pulley diameter</td>
<td>m</td>
<td>FLOAT</td>
<td>0.32</td>
<td></td>
<td></td>
<td></td>
<td>ERW F__</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Указание диаметра канатоведущего шкива.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.4.5</td>
<td>11150</td>
<td>Car weight</td>
<td>kg</td>
<td>FLOAT</td>
<td>0.00</td>
<td></td>
<td></td>
<td></td>
<td>RW F__</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Указание массы кабины.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.4.6</td>
<td>11152</td>
<td>Counter weight</td>
<td>kg</td>
<td>FLOAT</td>
<td>0.00</td>
<td></td>
<td></td>
<td></td>
<td>RW F__</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Указание массы противовеса.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.4.7</td>
<td>11154</td>
<td>Load weight</td>
<td>kg</td>
<td>FLOAT</td>
<td>0.00</td>
<td></td>
<td></td>
<td></td>
<td>RW F__</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Указание массы максимальной загрузки для системы данного типоразмера.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.4.8</td>
<td>11156</td>
<td>Rope weight</td>
<td>kg</td>
<td>FLOAT</td>
<td>0.00</td>
<td></td>
<td></td>
<td></td>
<td>RW F__</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Указание массы каната.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.4.9</td>
<td>11158</td>
<td>Gearbox inertia</td>
<td>kgm²</td>
<td>FLOAT</td>
<td>0.00</td>
<td></td>
<td></td>
<td></td>
<td>RW F__</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Указание момента инерции понижающего редуктора.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.4.10</td>
<td>11160</td>
<td>Motor inertia</td>
<td>kgm²</td>
<td>FLOAT</td>
<td>0.00</td>
<td></td>
<td></td>
<td></td>
<td>RW F__</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Указание момента инерции двигателя.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.4.11</td>
<td>11162</td>
<td>Calc spd reg gains</td>
<td>ENUM INT</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>RW F__</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Если разрешено, записываются значения момента инерции в параметр 2240 Inertia, рассчитываются составляющие в контуре регулирования скорости в параметрах с 2200 по 2210 и устанавливаются в 100%, а также записываются расчетные значения в параметрах 2236 Speed reg P gain, 2238 Speed reg I time и 2242 Bandwidth. Значение параметра автоматически сбрасывается в 0, когда начинаются вычисления.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.4.13</td>
<td>12020</td>
<td>Inertia calculated</td>
<td>kgm²</td>
<td>FLOAT</td>
<td>0</td>
<td></td>
<td></td>
<td>R F__</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Отображается момент инерции системы с половинной нагрузкой, приложенной к двигателю. Это значение можно ввести в параметр момента инерции в меню "16 - SPEED REG GAINS"</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.4.13</td>
<td>12022</td>
<td>SpeedLineCalc</td>
<td>m/s</td>
<td>FLOAT</td>
<td>0</td>
<td></td>
<td></td>
<td>R F__</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Отображается линейная скорость, рассчитанная по параметрам 11010 Gearbox ratio и 11012 Pulley diameter.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Меню 5.5 - DISTANCE

Используются расстояния, определяющие расположение датчиков замедления, полезны для работы лифта на укороченных расстояниях между этажами.

Данная функция служит для определения расстояний, при которых начинается замедление с высокой скорости, позволяющее достичь скорости приближения к этажу при входе в зону этажа.

Можно устанавливать до 8 различных расстояний замедления (фактических расстояний от момента срабатывания датчика и положением на этаже), связанных с разными заданиями скорости. Используемое расстояние выбирается после разрешения привода и до начала движения кабины. Во время движения кабины другое расстояние выбрать нельзя.

Если расстояние замедления короче, чем фактическое расстояние замедления для выбранной целевой скорости, эта скорость ограничивается так, чтобы остановка всегда производилась правильно. При срабатывании ограничения скорости выдается предупредительная сигнализация Speed target.

Если датчик замедления срабатывает во время ускорения, расстояние, требующееся для этапа ускорения или замедления может оказаться больше имеющегося. В этом случае последний рывок ускорения для обеспечения надлежащей остановки на этаже увеличивается.

Следует также иметь в виду, что, когда датчик положения в зоне этажа не срабатывает, точное расстояние неизвестно. Для того чтобы обеспечить правильное замедление, это расстояние оценивается по значению, введенному в параметр Landing zone dist.

Если оно равно нулю, расстояние рассчитывается по значению малой скорости и параметрам замедления и отображается в параметре Landing zone space. Пользователь должен удостовериться, что это расстояние приблизительно соответствует фактической длине зоны этажа.

В режиме векторного управления (FOC) расстояние рассчитывается считыванием положения по данным энкодера. В режимах скалярного управления SSC и SLS расстояние рассчитывается как (SpdRef*Время), что является источником ошибки из-за отличия фактической скорости двигателя от опорной скорости.

<table>
<thead>
<tr>
<th>Меню</th>
<th>ПАР.</th>
<th>Описание</th>
<th>Ед. изм.</th>
<th>Тип</th>
<th>FB Вит</th>
<th>Умолч.</th>
<th>Мин.</th>
<th>Макс.</th>
<th>Доступ</th>
<th>Режим</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.5.1</td>
<td>11102</td>
<td>Distance multispeed0</td>
<td>m</td>
<td>FLOAT</td>
<td>0.00</td>
<td>0.00</td>
<td>10.00</td>
<td>RW</td>
<td>F__</td>
<td></td>
</tr>
</tbody>
</table>

Задание значения расстояния, связанного с multispeed 0.
5.5.2 11104 Distance multispeed1 m FLOAT 0.00 0.00 10.00 RW F__
Задание значения расстояния, связанного с multispeed 1.

5.5.3 11106 Distance multispeed2 m FLOAT 0.00 0.00 10.00 RW F__
Задание значения расстояния, связанного с multispeed 2.

5.5.4 11110 Distance multispeed3 m FLOAT 0.00 0.00 10.00 RW F__
Задание значения расстояния, связанного с multispeed 3.

5.5.5 11112 Distance multispeed4 m FLOAT 0.00 0.00 10.00 RW F__
Задание значения расстояния, связанного с multispeed 4.

5.5.6 11114 Distance multispeed5 m FLOAT 0.00 0.00 10.00 RW F__
Задание значения расстояния, связанного с multispeed 5.

5.5.7 11116 Distance multispeed6 m FLOAT 0.00 0.00 10.00 RW F__
Задание значения расстояния, связанного с multispeed 6.

5.5.8 11118 Distance multispeed7 m FLOAT 0.00 0.00 10.00 RW F__
Задание значения расстояния, связанного с multispeed 7.

5.5.9 11120 Slow speed UINT16 0 0 9 RW F__
Установка скорости подхода к этажу.

Slow speed - это скорость подхода к зоне остановки на этаже. Когда выбрано задание скорости, связанное с Slow speed, проверяется место для замедления, чтобы достичь этой скорости вблизи зоны остановки на этаже.

0 Autoselect (Автоматический выбор)
1 Multispeed (Задание скорости) 0
2 Multispeed (Задание скорости) 1
3 Multispeed (Задание скорости) 2
4 Multispeed (Задание скорости) 3
5 Multispeed (Задание скорости) 4
6 Multispeed (Задание скорости) 5
7 Multispeed (Задание скорости) 6
8 Multispeed (Задание скорости) 7
9 Null
При выборе режима 0 (автоматический выбор), Slow speed автоматически заменяется заданием скорости с абсолютным значением, меньшим или большим нуля. Если используется скорость передвижения со значением, меньшим, чем в параметре Slow speed, необходимо устанавливать задание скорости, соответствующее скорости подхода к этажу.

При выборе режима 9 (Null), расстояния подхода к этажу никогда не контролируются. В этом случае профиль скоростей определяется исключительно выбранным заданием скорости.

Меню	ПАР.	Описание	Ед. изм.	Тип	FB	BIT	Умолч.	Мин.	Макс.	Доступ	Режим
5.5.10 | 11130 | Enable landing sel | INT16 | 0 | 0 | 1 | RW | F__

Установка для разрешения контроля расстояния в зоне остановки на этаже.

Эта функция обеспечивает точное прибытие кабины на уровень этажной площадки, контролируя положение энкодера по датчику зоны остановки на этаже. Контроль положения возможен только при использовании энкодера (обычно в режиме FOC-BRS). В режимах SSC и SLS просто отрабатывается соответствующий профиль по опорному положению.

Когда эта функция разрешена, Slow speed, ПАР 11120 (скорость, с которой кабина входит в зону этажной остановки) больше не зависит от соответствующего задания скорости, а вычисляется автоматически по значениям рывка и замедления, обеспечивая остановку без превышения ограничений.

Значение Slow speed (ПАР 11120 = 1...8) подсчитывается с использованием рыва и замедления, не умноженных на коэффициент рампы.

Во время процедуры остановки на этаже профиль скорости рассчитывается с использованием метода моделирования полиномом пятой степени.

Возможно также непосредственное приближение к этажу, без использования параметра Slow speed. Это выполняется установкой значения задания скорости в параметре Slow speed в нуль.

0 | Отключено
1 | Включено

Если для расчета профиля скорости выбрано такое решение, перед разрешением функции зоны этажа очень важно проверить точность введенных расстояний (как для замедления, так и для остановки) и механических констант. Неправильные расстояния могут привести к внезапным замедлениям и ошибкам прибытия на уровень этажа.

Меню	ПАР.	Описание	Ед. изм.	Тип	FB	BIT	Умолч.	Мин.	Макс.	Доступ	Режим
5.5.11 | 11132 | Landing zone dist | m | FLOAT | 0.12 | 0 | 10.00 | RW | F__

Задание расстояния зоны этажа.

Меню	ПАР.	Описание	Ед. изм.	Тип	FB	BIT	Умолч.	Мин.	Макс.	Доступ	Режим
5.5.12 | 11138 | Out floor function | BIT | 0 | 0 | 1 | RW | F__

Обеспечивает функцию безопасного пуска при нахождении не на уровне этажа. Эта функция разрешает определение прибытия на уровень этажа, который считается правильным, если выполнен этап входа в зону этажа.

Если не распознается правильная остановка, это значит, что выдавалась команда аварийной остановки, после которой производится пуск на низкой скорости.

Процедура перезапуска зависит от положения остановки, как показано на рисунках.

0 | ОТКЛ
1 | ВКЛ
32

Case 2

Приход в точку замедления

Case 3

После замедления

<table>
<thead>
<tr>
<th>№ параметра</th>
<th>Описание</th>
<th>Тип</th>
<th>Умолч.</th>
<th>Мин.</th>
<th>Макс.</th>
<th>Доступ</th>
<th>Режим</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.5.13</td>
<td>11140 Delay acq time</td>
<td>m</td>
<td>FLOAT</td>
<td>15</td>
<td>0.00</td>
<td>10.00</td>
<td>RW</td>
</tr>
</tbody>
</table>

Установка времени задержки выдачи сигнала замедления.
Величина этого параметра используется для компенсации расстояния, проходимого за время задержки от момента прохода кабины у датчика замедления и приемом команды замедления приводом. При высоких скоростях это расстояние может быть существенным, например, если кабина перемещается со скоростью 2 м/с, а время задержки 30 мс, проходимое расстояние, учитываемое на этапе замедления, составляет 6 см.

<table>
<thead>
<tr>
<th>№ параметра</th>
<th>Описание</th>
<th>Тип</th>
<th>Умолч.</th>
<th>Мин.</th>
<th>Макс.</th>
<th>Доступ</th>
<th>Режим</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.5.14</td>
<td>11142 Calc space hi-speed</td>
<td>UINT16</td>
<td>1</td>
<td>0</td>
<td>8</td>
<td>RW</td>
<td>F__</td>
</tr>
</tbody>
</table>

Установка высокой скорости, используемой для расчета расстояний.
0 Multi-speed (Задание скорости) 0
1 Multi-speed (Задание скорости) 1
2 Multi-speed (Задание скорости) 2
3 Multi-speed (Задание скорости) 3
4 Multi-speed (Задание скорости) 4
5 Multi-speed (Задание скорости) 5
6 Multi-speed (Задание скорости) 6
7 Multi-speed (Задание скорости) 7
8 Null

<table>
<thead>
<tr>
<th>№ параметра</th>
<th>Описание</th>
<th>Тип</th>
<th>Умолч.</th>
<th>Мин.</th>
<th>Макс.</th>
<th>Доступ</th>
<th>Режим</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.5.15</td>
<td>11276 Kp Landing</td>
<td>Float</td>
<td>0.0000</td>
<td>0</td>
<td>100</td>
<td>RW</td>
<td>FVS</td>
</tr>
</tbody>
</table>

Позволяет конфигурировать усиление пропорциональной составляющей для управления кривой остановки на этаже.

<table>
<thead>
<tr>
<th>№ параметра</th>
<th>Описание</th>
<th>Тип</th>
<th>Умолч.</th>
<th>Мин.</th>
<th>Макс.</th>
<th>Доступ</th>
<th>Режим</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.5.16</td>
<td>12030 Acceleration space</td>
<td>m</td>
<td>FLOAT</td>
<td>0</td>
<td></td>
<td>R</td>
<td>F__</td>
</tr>
</tbody>
</table>

Отображается расстояние, необходимое для ускорения с нулевой скорости до высокой, выбранной в предыдущем параметре.

<table>
<thead>
<tr>
<th>№ параметра</th>
<th>Описание</th>
<th>Тип</th>
<th>Умолч.</th>
<th>Мин.</th>
<th>Макс.</th>
<th>Доступ</th>
<th>Режим</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.5.17</td>
<td>12032 Deceleration space</td>
<td>m</td>
<td>FLOAT</td>
<td>0</td>
<td></td>
<td>R</td>
<td>F__</td>
</tr>
</tbody>
</table>

Отображается расстояние, необходимое для остановки с высокой скорости.
Для расчета этого расстояния используются разные методы, в зависимости от величины сопутствующих параметров.

Случай 1: S-образная рампа от высокой скорости до нулевой

Distance multispeed0 (ПАР 11102) = 0, Enable landing sel (ПАР 11130) = запрет, Slow speed (ПАР 11120) = нулю.

Deceleration space (ПАР 12032) - расстояние, проходимое по рампе остановки от Calc space hi-speed (ПАР 11142) (высокая скорость) до нулевой скорости.

Параметрами, влияющими на расчет этого расстояния, являются: Calc space hi-speed (ПАР 11142), Percent dec factor (ПАР 11056), Dec ini jerk (ПАР 11046), Deceleration (ПАР 11048) и Dec end jerk (ПАР 11050).

Случай 2: S-образная рампа от высокой скорости до низкой, участок низкой скорости и последующая остановка.

Distance multispeed0 (ПАР 11102) = 0, Enable landing sel (ПАР 11130) = Запрет, Slow speed (ПАР 11120) = Заданная скорость 0.

Deceleration space (ПАР 12032) - это расстояние, проходимое в течение рампы замедления от скорости Calc space hi-speed (ПАР 11142) (высокая скорость) до скорости Multispeed 0 и в течение рампы остановки от скорости Calc space hi-speed (ПАР 11142) до нулевой скорости. Оно не включает в себя рассечение, проходящее на постоянной (низкой) скорости.

Параметрами, влияющими на расчет этого расстояния, являются: Calc space hi-speed (ПАР 11142), Multispeed 0 (ПАР 11020), Percent dec factor (ПАР 11056), Dec ini jerk (ПАР 11046), Deceleration (ПАР 11048), Dec end jerk (ПАР 11050) и Stop deceleration (ПАР 11052).

Случай 3: S-образная рампа от высокой скорости до низкой, участок низкой скорости и последующая остановка.

Distance multispeed0 (ПАР 11102) ≠ 0 (ок.0,5 м), Enable landing sel (ПАР 11130) = Запрет, Slow speed (ПАР 11120) = Задание скорости 0.

Deceleration space (ПАР 12032) - это расстояние, проходимое в течение рампы замедления от скорости Calc space hi-speed (ПАР 11142) до скорости Multispeed 0 и в течение рампы остановки от скорости Calc space hi-speed (ПАР 11142) до нулевой скорости. Оно не включает в себя рассечение, проходящее на постоянной (низкой) скорости.

Параметрами, влияющими на расчет этого расстояния, являются: Calc space hi-speed (ПАР 11142), Multispeed 0 (ПАР 11020), Percent dec factor (ПАР 11056), Dec ini jerk (ПАР 11046), Deceleration (ПАР 11048) и Dec end jerk (ПАР 11050).
Для случая 4: S-образная рампа от высокой скорости до низкой, участок низкой скорости и последующая остановка с "контролем этажной площадки".

Distance multispeed0 (ПАР 11102) ≠ 0 (ок.0,5 м), **Enable landing sel** (ПАР 11130) = Запрет, **Slow speed** (ПАР 11120) = Задание скорости 0.

Deceleration space (ПАР 12032) - это расстояние, проходимое в течение рампы замедления от скорости **Calc space hi-speed** (ПАР 11142) (высокая скорость) до скорости **Multispeed 0** плюс **Landing zone dist** (ПАР 11132). Параметрами, влияющими на расчет этого расстояния, являются: **Calc space hi-speed** (ПАР 11142), [11022], **Multispeed 0** (ПАР 11020), **Percent dec factor** (ПАР 11056), **Dec ini jerk** (ПАР 11046), **Deceleration** (ПАР 11048) и **Dec end jerk** (ПАР 11050).

Меню ПАР. Описание Ед. изм. Тип FB BIT Умолч. Мин. Макс. Доступ Режим

<table>
<thead>
<tr>
<th>Меню</th>
<th>ПАР.</th>
<th>Описание</th>
<th>Ед. изм.</th>
<th>Тип</th>
<th>FB BIT</th>
<th>Умолч.</th>
<th>Мин.</th>
<th>Макс.</th>
<th>Доступ</th>
<th>Режим</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.5.18</td>
<td>12034</td>
<td>Landing zone space</td>
<td>m</td>
<td>FLOAT</td>
<td>0</td>
<td>R</td>
<td>F___</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Отображается длина зоны этажа. Если этот параметр установлен в значение, отличное от нуля, эта переменная имеет то же значение, что и параметр, если **Landing zone space** = 0, эта переменная принимает значение расстояния, необходимого для замедления от скорости, установленной в параметре **Slow speed**, до нуля с использованием значений рампы, не умножаемых на параметр **Percent dec factor**.
Меню 5.6 - EMERGENCY MODE

Для устранения проблем, вызываемых внезапным пропаданием питания, в приводе имеется возможность управления аварийным модулем питания.

Сигнал об аварийных условиях работы подключается к входу управления Emergency (по умолчанию дискретный вход 3), который, когда становится активным, блокирует тревожный сигнал undervoltage, так что привод сможет работать с питанием шины постоянного тока от клеммы EM модуля аварийного питания (EMS), который, в свою очередь, питается от комплекта буферных аккумуляторных батарей).

Для того чтобы использовать батареи меньшей номинальной емкости, имеется функция, позволяющая выбрать желаемое направление хода лифта перед началом процедуры аварийного пуска.

Направление выбирается после проверки движения в обоих направлениях, используется то из них, для которого требуется меньший ток (дополнительную информацию см. в руководстве по EMS).

В случае пропадания питания привод может питьться от модуля аварийного питания (EMS) или от источника бесперебойного питания (ИБП).

Сигнал аварийной функции необходимо подключить к управляющему входу аварийного режима (по умолчанию дискретный вход DI3).

Работа от модуля аварийного питания (EMS)

Если дискретный вход DI3 активен, выдается тревожный сигнал Undervoltage (UV), согласно значению, установленному в параметре 448 (меню 4), что позволяет приводу переходить на питание от шины постоянного тока. Подключение см. в руководстве по быстрому запуску ADL300 (параграф 7.3.3) и в руководстве по EMS.

Работа от однофазного бесперебойного источника питания (ИБП)

Когда происходит авария и активируется дискретный вход DI3, привод может питьться напряжением 230 В от однофазного ИБП. Подключение см. в руководстве по быстрому запуску ADL300 (параграф 7.3.3).

Прибытие на этаж при аварии

Для конфигураций как с замкнутым, так и разомкнутым контурами управления, при перемещении на этаж при аварии производится попытка оптимизировать потребность в токе от аварийных модулей.

Привод может выбрать более предпочтительное направление движения к этажу, без перемещений назад/вперед, защищая таким образом детали в случае аварии.

<table>
<thead>
<tr>
<th>Меню</th>
<th>ПАР.</th>
<th>Описание</th>
<th>Ед. изм.</th>
<th>Тип</th>
<th>FB BIT</th>
<th>Умолч.</th>
<th>Мин.</th>
<th>Макс.</th>
<th>Доступ</th>
<th>Режим</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.6.1</td>
<td>11260</td>
<td>Speed emergency mode</td>
<td>m/s</td>
<td>FLOAT</td>
<td>5.00</td>
<td>3.40E+94</td>
<td>3.40E+94</td>
<td>RW</td>
<td>F__</td>
<td></td>
</tr>
</tbody>
</table>

Установка скорости при передвижении в аварийной ситуации. Поскольку напряжение низкое, при питании привода от батарей (или от аварийного модуля) высоких скоростей получить нельзя. Поэтому скорость, выбранная в параметре задания скоростей, игнорируется, и вместо него используется данное значение.

<table>
<thead>
<tr>
<th>Меню</th>
<th>ПАР.</th>
<th>Описание</th>
<th>Ед. изм.</th>
<th>Тип</th>
<th>FB BIT</th>
<th>Умолч.</th>
<th>Мин.</th>
<th>Макс.</th>
<th>Доступ</th>
<th>Режим</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.6.2</td>
<td>11262</td>
<td>Autoselect direction</td>
<td>BIT</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>ERW</td>
<td>F__</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Разрешение автоматического выбора предпочитительного направления перед пуском в случае аварии.

0 — ОТКЛ.
1 — ВКЛ
2 — Рекомендуемое

Данный параметр позволяет выбрать способ, которым привод выбирает более предпочтительное направление хода кабины в аварийной ситуации.

Если выбран 0, привод не определяет предпочитительное направление, оно задается вручную.

Если выбрано 1, то сразу при наступлении аварийной ситуации привод включает двигатель на передвижение поочередно вперед и назад, определяя значение тока, потребляемого при каждом направлении, и выбирает наиболее благоприятное (с меньшим расходуемым током).

Если выбрано 2 (рекомендуемый режим), привод определяет более благоприятное направление, не производя поочередных передвижений вперед и назад (избегая расхода тока от EMS или ИБП), а уже зная это направление, которое уже определено на основе значения потребляемого тока и напряжения на шине постоянного тока. Если привод перед аварией работал в режиме регенерации, он работает в этом же направлении и при аварии. Если режима регенерации не было, но потреблялся ток величины, меньшей, чем заданная в параметре ПАР 11284 Detection Limit, движение будет продолжено в этом же направлении. В противном случае, привод изменяет направление движения, а предыдущее считается неблагоприятным.

<table>
<thead>
<tr>
<th>Меню</th>
<th>ПАР.</th>
<th>Описание</th>
<th>Ед. изм.</th>
<th>Тип</th>
<th>FB BIT</th>
<th>Умолч.</th>
<th>Мин.</th>
<th>Макс.</th>
<th>Доступ</th>
<th>Режим</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.6.3</td>
<td>11278</td>
<td>Em Dc brk current</td>
<td>FLOAT</td>
<td>75.0</td>
<td>0</td>
<td>150</td>
<td>RW</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Этот параметр позволяет задать значение постоянного тока, подаваемого в обмотки двигателя для торможения. Можно ограничить это значение и устранить перегрузку аварийных аккумуляторных батарей. Не распространяется...
на синхронные двигатели.

Меню ПАР. Описание Ед. изм. Тип FB В/Т Умолч. Мин. Макс. Доступ Режим

<table>
<thead>
<tr>
<th>№</th>
<th>ПАР</th>
<th>Описание</th>
<th>Ед. изм.</th>
<th>Тип</th>
<th>FB В/Т</th>
<th>Умолч.</th>
<th>Мин.</th>
<th>Макс.</th>
<th>Доступ</th>
<th>Режим</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.6.4</td>
<td>11284</td>
<td>Detection Limit</td>
<td>PERC</td>
<td>LONG</td>
<td>50</td>
<td>0</td>
<td>100</td>
<td>RW</td>
<td>FVS</td>
<td></td>
</tr>
</tbody>
</table>

Это - значение предела тока, выдаваемого приводом (выраженное в процентах от номинального тока) для выбора предпочтительного направления движения в режиме Рекомендуемый (см. ПАР 11262).

Меню ПАР. Описание Ед. изм. Тип FB В/Т Умолч. Мин. Макс. Доступ Режим

<table>
<thead>
<tr>
<th>№</th>
<th>ПАР</th>
<th>Описание</th>
<th>Ед. изм.</th>
<th>Тип</th>
<th>FB В/Т</th>
<th>Умолч.</th>
<th>Мин.</th>
<th>Макс.</th>
<th>Доступ</th>
<th>Режим</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.6.5</td>
<td>12282</td>
<td>ChosenDirection</td>
<td>INT</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>R</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Указывается направление, выбранное приводом во время аварии.

- 0 Направление не выбрано
- 1 Вперед
- 2 Назад

Связь между Вперед/Назад и Вверх/Вниз зависит от того, как выполнено подключение двигателя.
Меню 5.7 - INPUT/OUTPUT

Входы
Входные команды в лифтовой установке могут подключаться к сигналам через селектор, позволяющий сделать выбор из ряда возможностей, имеющихся в списке входов.
В общем случае, сигнал можно подключить к дискретному входу, к определенным внутренним сигналам и к биту в Decomp word. Это слово подключено к каналу обработки связи с полевойшиной (PDC FieldBus M->S1).
Установка дискретных входов в слове отображается в параметре Lift control word.
Команды, используемые в лифтовом применении, перечислены ниже:

<table>
<thead>
<tr>
<th>Команда</th>
<th>Описание</th>
<th>Источник по умолчанию</th>
</tr>
</thead>
<tbody>
<tr>
<td>EnableCmd</td>
<td>Команда разрешения</td>
<td>Dig input enable</td>
</tr>
<tr>
<td>StartFwdCmd</td>
<td>Команда пуска вперед</td>
<td>Dig input 1x</td>
</tr>
<tr>
<td>StartRevCmd</td>
<td>Команда пуска назад</td>
<td>Dig input 2x</td>
</tr>
<tr>
<td>MltSpd S0</td>
<td>Выбор задания скорости 0</td>
<td>Dig input 4x</td>
</tr>
<tr>
<td>MltSpd S1</td>
<td>Выбор задания скорости 1</td>
<td>Dig input 5x</td>
</tr>
<tr>
<td>MltSpd S2</td>
<td>Выбор задания скорости 2</td>
<td>Dig input 6x</td>
</tr>
<tr>
<td>ContFbk</td>
<td>Контакт сигнализации включения контактора</td>
<td>Run cont mon</td>
</tr>
<tr>
<td>BrakeFbk</td>
<td>Контакт включения контактора</td>
<td>Brake cont mon</td>
</tr>
<tr>
<td>DoorOpenEna</td>
<td>Источник для разрешения функции открывания двери</td>
<td>Null</td>
</tr>
<tr>
<td>DoorFbk</td>
<td>Контакт закрытия двери</td>
<td>Null</td>
</tr>
<tr>
<td>Emergency mode</td>
<td>Команда работы в аварийном режиме</td>
<td>Dig input 3x</td>
</tr>
<tr>
<td>InvRampSrc</td>
<td>Команда изменения направления скорости вращения</td>
<td>Null</td>
</tr>
<tr>
<td>UpperLimit</td>
<td>Сигнал ограничения хода вверх</td>
<td>Null</td>
</tr>
<tr>
<td>LowerLimit</td>
<td>Сигнал ограничения хода вниз</td>
<td>Null</td>
</tr>
</tbody>
</table>

Выходы
Выходные сигнал управления лифтом непосредственно связаны с параметрами PAD, как показано в таблице ниже.

<table>
<thead>
<tr>
<th>Параметр</th>
<th>Сигнал</th>
<th>Описание</th>
</tr>
</thead>
<tbody>
<tr>
<td>3700 Lift enable</td>
<td>LiftEnable</td>
<td>Команда разрешения работы лифта</td>
</tr>
<tr>
<td>3702 Run cont mon</td>
<td>RunCont</td>
<td>Команда включения контактора</td>
</tr>
<tr>
<td>3704 Up cont mon</td>
<td>UpCont</td>
<td>Команда на контакт вверх</td>
</tr>
<tr>
<td>3706 Down cont mon</td>
<td>DownCont</td>
<td>Команда на контакт вниз</td>
</tr>
<tr>
<td>3708 Brake cont mon</td>
<td>BrakeCont</td>
<td>Команда на тормоз</td>
</tr>
<tr>
<td>3710 Lift dc brake</td>
<td>LiftDcBrake</td>
<td>Команда включения функции торможения постоянным током</td>
</tr>
<tr>
<td>3712 Brake 2 mon</td>
<td>Brake2</td>
<td>Сигнал управления тормозом</td>
</tr>
<tr>
<td>3714 Door open mon</td>
<td>DoorOpen</td>
<td>Команда открывания двери</td>
</tr>
<tr>
<td>3716 Lift start</td>
<td>LiftStart</td>
<td>Команда пуска лифта</td>
</tr>
<tr>
<td>3718 PAD10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3720 Lift status word</td>
<td>Lift status word</td>
<td>Содержит биты слова состояния (выбираемое из SelLiftStatWord)</td>
</tr>
<tr>
<td>3722 PAD12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3724 PAD13</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3726 Ramp down limit</td>
<td></td>
<td>Ограничение тока в нижней части рампы</td>
</tr>
<tr>
<td>3728 PAD15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3730 Lift wdec input</td>
<td>LiftWdecInp</td>
<td>Подключается к селектору для LiftWDecomp</td>
</tr>
</tbody>
</table>

Они доступны в списках выбора и их легко использовать для конфигурирования релейных и дискретных выходов привода (для конфигурирования см. меню PAD).
Состояние выходных сигналов лифта содержится в LiftStatusWord, подключенного к ПАР 3720 Lift status word и полевой шины Тх DW1:

<table>
<thead>
<tr>
<th>Бит</th>
<th>Описание</th>
<th>Примечания</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>LiftEnable</td>
<td>Команда разрешения работы лифта</td>
</tr>
<tr>
<td>1</td>
<td>RunCont</td>
<td>Команда на контакт вода</td>
</tr>
<tr>
<td>2</td>
<td>UpCont</td>
<td>Команда на контакт вверх</td>
</tr>
<tr>
<td>3</td>
<td>DownCont</td>
<td>Команда на контакт вниз</td>
</tr>
<tr>
<td>4</td>
<td>BrakeCont</td>
<td>Команда на контакт тормоз</td>
</tr>
<tr>
<td>5</td>
<td>LiftDcBrake</td>
<td>Команда включения функции торможения постоянным током</td>
</tr>
<tr>
<td>6</td>
<td>Brake2</td>
<td>Сигнал управления тормозом (см. меню последовательностей)</td>
</tr>
<tr>
<td>7</td>
<td>DoorOpen</td>
<td>Команда открывания двери</td>
</tr>
<tr>
<td>8</td>
<td>Drive Ok</td>
<td>Сигнал отсутствия тревожных сигналов от привода</td>
</tr>
<tr>
<td>9</td>
<td>SpeedIsZero</td>
<td>Сигнал того, что скорость меньше, чем ограничение для нулевой скорости</td>
</tr>
<tr>
<td>10</td>
<td>SpeedRefIsZero</td>
<td>Сигнал того, что скорость меньше, чем ограничение для нулевой скорость</td>
</tr>
<tr>
<td>11 ... 12</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Конфигурация Таблица Многоскоростной

<table>
<thead>
<tr>
<th>Multi speed S2 sel</th>
<th>Multi speed S1 sel</th>
<th>Multi speed S0 sel</th>
<th>ACTIVE RAMP REF</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>Multi speed 0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>Multi speed 1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>Multi speed 2</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>Multi speed 3</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>Multi speed 4</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>Multi speed 5</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>Multi speed 6</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>Multi speed 7</td>
</tr>
</tbody>
</table>

5.7.1 11220 Lift enable cmd sel

Установка источника для команды разрешения работы.

1110	Digit input E
1210	Digit input 1x
1212	Digit input 2x
1214	Digit input 3x
1216	Digit input 4x
1218	Digit input 5x
1220	Digit input 6x
1222	Digit input 7x
1224	Digit input 8x
1226	Digit input 9x
1228	Digit input 10x
1230	Digit input 11x
1232	Digit input 12x
3702	Run cont mon
3706	Down cont mon
3708	Brake cont mon
3714	Door open mon
3728	PAD 15
6000	Null
6002	One
12250	B0 Lift decom
12252	B1 Lift decom
12254	B2 Lift decom
12256	B3 Lift decom
12258	B4 Lift decom
12260	B5 Lift decom
12262	B6 Lift decom
12264	B7 Lift decom
12266	B8 Lift decom
12268	B9 Lift decom
12270	B10 Lift decom
12272	B11 Lift decom
12274	B12 Lift decom
12276	B13 Lift decom
12278	B14 Lift decom
12280	B15 Lift decom

5.7.2 11222 Start fwd cmd sel

Установка источника для команды пуска вперед.

<p>| 1110 | Digit input E |
| 1210 | Digit input 1x |
| 1212 | Digit input 2x |
| 1214 | Digit input 3x |
| 1216 | Digit input 4x |
| 1218 | Digit input 5x |
| 1220 | Digit input 6x |
| 1222 | Digit input 7x |
| 1224 | Digit input 8x |
| 1226 | Digit input 9x |
| 1228 | Digit input 10x |
| 1230 | Digit input 11x |
| 1232 | Digit input 12x |</p>
<table>
<thead>
<tr>
<th>Меню</th>
<th>ПАР.</th>
<th>Описание</th>
<th>Ед. изм.</th>
<th>Тип</th>
<th>FB ВИТ</th>
<th>Умолч.</th>
<th>Мин.</th>
<th>Макс.</th>
<th>Доступ</th>
<th>Режим</th>
</tr>
</thead>
<tbody>
<tr>
<td>3702</td>
<td>Run cont mon</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3706</td>
<td>Down cont mon</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3708</td>
<td>Brake cont mon</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3714</td>
<td>Door open mon</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3728</td>
<td>PAD 15</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6000</td>
<td>Null</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6002</td>
<td>One</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12250</td>
<td>B0 Lift decomp</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12252</td>
<td>B1 Lift decomp</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12254</td>
<td>B2 Lift decomp</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12256</td>
<td>B3 Lift decomp</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12258</td>
<td>B4 Lift decomp</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12260</td>
<td>B5 Lift decomp</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12262</td>
<td>B6 Lift decomp</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12264</td>
<td>B7 Lift decomp</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12266</td>
<td>B8 Lift decomp</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12268</td>
<td>B9 Lift decomp</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12270</td>
<td>B10 Lift decomp</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12272</td>
<td>B11 Lift decomp</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12274</td>
<td>B12 Lift decomp</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12276</td>
<td>B13 Lift decomp</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12278</td>
<td>B14 Lift decomp</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12280</td>
<td>B15 Lift decomp</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Меню | ПАР. | Описание | Ед. изм. | Тип | FB ВИТ | Умолч. | Мин. | Макс. | Доступ | Режим |
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>5.7.3</td>
<td>11224</td>
<td>Start rev cmd sel</td>
<td>ENUM</td>
<td>1212</td>
<td>0</td>
<td>35</td>
<td>ERW</td>
<td>F__</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Установка источника для команды пуска назад.

1110 | Digit input E |
1210 | Digit input 1x |
1212 | Digit input 2x |
1214 | Digit input 3x |
1216 | Digit input 4x |
1218 | Digit input 5x |
1220 | Digit input 6x |
1222 | Digit input 7x |
1224 | Digit input 8x |
1226 | Digit input 9x |
1228 | Digit input 10x |
1230 | Digit input 11x |
1232 | Digit input 12x |
3702 | Run cont mon |
3706 | Down cont mon |
3708 | Brake cont mon |
3714 | Door open mon |
3728 | PAD 15 |
6000 | Null |
6002 | One |
12250 | B0 Lift decomp |
12252 | B1 Lift decomp |
12254 | B2 Lift decomp |
12256 | B3 Lift decomp |
12258 | B4 Lift decomp |
12260 | B5 Lift decomp |
12262 | B6 Lift decomp |
12264 | B7 Lift decomp |
12266 | B8 Lift decomp |
12268 | B9 Lift decomp |
12270 | B10 Lift decomp |
12272 | B11 Lift decomp |
12274 | B12 Lift decomp |
12276 | B13 Lift decomp |
12278 | B14 Lift decomp |
12280 | B15 Lift decomp |

Меню | ПАР. | Описание | Ед. изм. | Тип | FB ВИТ | Умолч. | Мин. | Макс. | Доступ | Режим |
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>5.7.4</td>
<td>11226</td>
<td>Multi speed S0 sel</td>
<td>ENUM</td>
<td>1216</td>
<td>0</td>
<td>35</td>
<td>ERW</td>
<td>F__</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Установка источника для бита выбора первого задания скорости

1110 | Digit input E |
1210 | Digit input 1x |
<p>| | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1212</td>
<td>Digit input 2x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1214</td>
<td>Digit input 3x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1216</td>
<td>Digit input 4x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1218</td>
<td>Digit input 5x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1220</td>
<td>Digit input 6x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1222</td>
<td>Digit input 7x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1224</td>
<td>Digit input 8x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1226</td>
<td>Digit input 9x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1228</td>
<td>Digit input 10x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1230</td>
<td>Digit input 11x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1232</td>
<td>Digit input 12x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3702</td>
<td>Run cont mon</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3706</td>
<td>Down cont mon</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3708</td>
<td>Brake cont mon</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3714</td>
<td>Door open mon</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3728</td>
<td>PAD 15</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6000</td>
<td>Null</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6002</td>
<td>One</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12250</td>
<td>B0 Lift decomp</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12252</td>
<td>B1 Lift decomp</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12254</td>
<td>B2 Lift decomp</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12256</td>
<td>B3 Lift decomp</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12258</td>
<td>B4 Lift decomp</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12260</td>
<td>B5 Lift decomp</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12262</td>
<td>B6 Lift decomp</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12264</td>
<td>B7 Lift decomp</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12266</td>
<td>B8 Lift decomp</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12268</td>
<td>B9 Lift decomp</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12270</td>
<td>B10 Lift decomp</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12272</td>
<td>B11 Lift decomp</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12274</td>
<td>B12 Lift decomp</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12276</td>
<td>B13 Lift decomp</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12278</td>
<td>B14 Lift decomp</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12280</td>
<td>B15 Lift decomp</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Меню</th>
<th>ПАР</th>
<th>Описание</th>
<th>Ед. изм.</th>
<th>Тип</th>
<th>FB ВИТ</th>
<th>Умолч.</th>
<th>Мин.</th>
<th>Макс.</th>
<th>Доступ</th>
<th>Режим</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.7.5</td>
<td>11228</td>
<td>Multi speed S1 sel</td>
<td>ENUM</td>
<td>1218</td>
<td>0</td>
<td>35</td>
<td>ERW</td>
<td>F__</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Установка источника для бита выбора второго задания скорости
Multi speed S2 sel

Установка источника для бита выбора третьего задания скорости

<table>
<thead>
<tr>
<th>Меню</th>
<th>ПАР</th>
<th>Описание</th>
<th>Ед. изм.</th>
<th>Тип</th>
<th>FB BIT</th>
<th>Умолч.</th>
<th>Мин.</th>
<th>Макс.</th>
<th>Доступ</th>
<th>Режим</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.7.6</td>
<td>11230</td>
<td>Multi speed S2 sel</td>
<td>ENUM</td>
<td>1220</td>
<td>0</td>
<td>35</td>
<td>ERW</td>
<td>F__</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Contactor fbk sel

Установка источника сигнала состояния контактора

<table>
<thead>
<tr>
<th>Меню</th>
<th>ПАР</th>
<th>Описание</th>
<th>Ед. изм.</th>
<th>Тип</th>
<th>FB BIT</th>
<th>Умолч.</th>
<th>Мин.</th>
<th>Макс.</th>
<th>Доступ</th>
<th>Режим</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.7.7</td>
<td>11232</td>
<td>Contactor fbk sel</td>
<td>ENUM</td>
<td>3702</td>
<td>0</td>
<td>35</td>
<td>ERW</td>
<td>F__</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Меню</td>
<td>ПАР.</td>
<td>Описание</td>
<td>Ед. изм.</td>
<td>Тип</td>
<td>FB B IT</td>
<td>Умолч.</td>
<td>Мин.</td>
<td>Макс.</td>
<td>Доступ</td>
<td>Режим</td>
</tr>
<tr>
<td>------</td>
<td>------</td>
<td>----------</td>
<td>---------</td>
<td>-----</td>
<td>---------</td>
<td>--------</td>
<td>------</td>
<td>-------</td>
<td>--------</td>
<td>-------</td>
</tr>
<tr>
<td>5.7.8</td>
<td>11236</td>
<td>Brake fbk sel</td>
<td>ENUM</td>
<td>3708</td>
<td>0</td>
<td>35</td>
<td>ERW</td>
<td>F__</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Установка источника сигнала состояния тормоза

- 1110 Digit input E
- 1210 Digit input 1x
- 1212 Digit input 2x
- 1214 Digit input 3x
- 1216 Digit input 4x
- 1218 Digit input 5x
- 1220 Digit input 6x
- 1222 Digit input 7x
- 1224 Digit input 8x
- 1226 Digit input 9x
- 1228 Digit input 10x
- 1230 Digit input 11x
- 1232 Digit input 12x
- 3702 Run cont mon
- 3706 Down cont mon
- 3708 Brake cont mon
- 3714 Door open mon
- 3728 PAD 15
- 6000 Null
- 6002 One
- 12250 B0 Lift decom
- 12252 B1 Lift decom
- 12254 B2 Lift decom
- 12256 B3 Lift decom
- 12258 B4 Lift decom
- 12260 B5 Lift decom
- 12262 B6 Lift decom
- 12264 B7 Lift decom
- 12266 B8 Lift decom
- 12268 B9 Lift decom
- 12270 B10 Lift decom
- 12272 B11 Lift decom
- 12274 B12 Lift decom
- 12276 B13 Lift decom
- 12278 B14 Lift decom
- 12280 B15 Lift decom

<table>
<thead>
<tr>
<th>Меню</th>
<th>ПАР.</th>
<th>Описание</th>
<th>Ед. изм.</th>
<th>Тип</th>
<th>FB B IT</th>
<th>Умолч.</th>
<th>Мин.</th>
<th>Макс.</th>
<th>Доступ</th>
<th>Режим</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.7.9</td>
<td>11238</td>
<td>Door open sel</td>
<td>ENUM</td>
<td>6000</td>
<td>0</td>
<td>35</td>
<td>ERW</td>
<td>F__</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Установка источника сигнала разрешения контроля закрытия двери

- 1110 Digit input E
- 1210 Digit input 1x
- 1212 Digit input 2x
- 1214 Digit input 3x
- 1216 Digit input 4x
- 1218 Digit input 5x
- 1220 Digit input 6x
- 1222 Digit input 7x
- 1224 Digit input 8x
- 1226 Digit input 9x
- 1228 Digit input 10x
- 1230 Digit input 11x
- 1232 Digit input 12x
- 3702 Run cont mon
- 3706 Down cont mon
- 3708 Brake cont mon
5.7.10 11240 Door feedback sel

<table>
<thead>
<tr>
<th>Меню</th>
<th>ПАР.</th>
<th>Описание</th>
<th>Ед. изм.</th>
<th>Тип</th>
<th>FB Бит</th>
<th>Умолч.</th>
<th>Мин.</th>
<th>Макс.</th>
<th>Доступ</th>
<th>Режим</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.7.10</td>
<td>11240</td>
<td>Door feedback sele</td>
<td>ENUM</td>
<td>6000</td>
<td>0</td>
<td>35</td>
<td></td>
<td></td>
<td></td>
<td>ERW</td>
</tr>
</tbody>
</table>

Установка источника сигнала состояния двери

- **1110** Digit input E
- **1210** Digit input 1x
- **1212** Digit input 2x
- **1214** Digit input 3x
- **1216** Digit input 4x
- **1218** Digit input 5x
- **1220** Digit input 6x
- **1222** Digit input 7x
- **1224** Digit input 8x
- **1226** Digit input 9x
- **1228** Digit input 10x
- **1230** Digit input 11x
- **1232** Digit input 12x
- **3702** Run cont mon
- **3706** Down cont mon
- **3708** Brake cont mon
- **3714** Door open mon
- **3728** PAD 15
- **6000** Null
- **6002** One
- **12250** B0 Lift decomp
- **12252** B1 Lift decomp
- **12254** B2 Lift decomp
- **12256** B3 Lift decomp
- **12258** B4 Lift decomp
- **12260** B5 Lift decomp
- **12262** B6 Lift decomp
- **12264** B7 Lift decomp
- **12266** B8 Lift decomp
- **12268** B9 Lift decomp
- **12270** B10 Lift decomp
- **12272** B11 Lift decomp
- **12274** B12 Lift decomp
- **12276** B13 Lift decomp
- **12278** B14 Lift decomp
- **12280** B15 Lift decomp

5.7.11 11242 Emergency mode sel

<table>
<thead>
<tr>
<th>Меню</th>
<th>ПАР.</th>
<th>Описание</th>
<th>Ед. изм.</th>
<th>Тип</th>
<th>FB Бит</th>
<th>Умолч.</th>
<th>Мин.</th>
<th>Макс.</th>
<th>Доступ</th>
<th>Режим</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.7.11</td>
<td>11242</td>
<td>Emergency mode sele</td>
<td>ENUM</td>
<td>1214</td>
<td>0</td>
<td>35</td>
<td></td>
<td></td>
<td></td>
<td>ERW</td>
</tr>
</tbody>
</table>

Установка источника сигнала аварийной работы.

- **1110** Digit input E
- **1210** Digit input 1x
- **1212** Digit input 2x
- **1214** Digit input 3x
- **1216** Digit input 4x
- **1218** Digit input 5x
- **1220** Digit input 6x
- **1222** Digit input 7x
- **1224** Digit input 8x
<table>
<thead>
<tr>
<th>Меню</th>
<th>ПАР.</th>
<th>Описание</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.7.12</td>
<td>11244</td>
<td>Inversion ramp sel</td>
</tr>
</tbody>
</table>

Установка источника команды, которая меняет направление вращения

<table>
<thead>
<tr>
<th>ПАР.</th>
<th>Описание</th>
</tr>
</thead>
<tbody>
<tr>
<td>1110</td>
<td>Digit input E</td>
</tr>
<tr>
<td>1210</td>
<td>Digit input 1x</td>
</tr>
<tr>
<td>1212</td>
<td>Digit input 2x</td>
</tr>
<tr>
<td>1214</td>
<td>Digit input 3x</td>
</tr>
<tr>
<td>1216</td>
<td>Digit input 4x</td>
</tr>
<tr>
<td>1218</td>
<td>Digit input 5x</td>
</tr>
<tr>
<td>1220</td>
<td>Digit input 6x</td>
</tr>
<tr>
<td>1222</td>
<td>Digit input 7x</td>
</tr>
<tr>
<td>1224</td>
<td>Digit input 8x</td>
</tr>
<tr>
<td>1226</td>
<td>Digit input 9x</td>
</tr>
<tr>
<td>1228</td>
<td>Digit input 10x</td>
</tr>
<tr>
<td>1230</td>
<td>Digit input 11x</td>
</tr>
<tr>
<td>1232</td>
<td>Digit input 12x</td>
</tr>
<tr>
<td>3702</td>
<td>Run cont mon</td>
</tr>
<tr>
<td>3706</td>
<td>Down cont mon</td>
</tr>
<tr>
<td>3708</td>
<td>Brake cont mon</td>
</tr>
<tr>
<td>3714</td>
<td>Door open mon</td>
</tr>
<tr>
<td>3728</td>
<td>PAD 15</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Меню</th>
<th>ПАР.</th>
<th>Описание</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.7.13</td>
<td>11246</td>
<td>Upper limit sel</td>
</tr>
</tbody>
</table>

Установка источника сигнала ограничения сверху

<table>
<thead>
<tr>
<th>ПАР.</th>
<th>Описание</th>
</tr>
</thead>
<tbody>
<tr>
<td>1110</td>
<td>Digit input E</td>
</tr>
<tr>
<td>1210</td>
<td>Digit input 1x</td>
</tr>
<tr>
<td>Меню</td>
<td>ФАР</td>
</tr>
<tr>
<td>------</td>
<td>-----</td>
</tr>
<tr>
<td>5.7.14</td>
<td>11248</td>
</tr>
</tbody>
</table>

Установка источника сигнала ограничения снизу

1110	Digit input E
1210	Digit input 1x
1212	Digit input 2x
1214	Digit input 3x
1216	Digit input 4x
1218	Digit input 5x
1220	Digit input 6x
1222	Digit input 7x
1224	Digit input 8x
1226	Digit input 9x
1228	Digit input 10x
1230	Digit input 11x
1232	Digit input 12x
3702	Run cont mon
3706	Down cont mon
3708	Brake cont mon
3714	Door open mon
3728	PAD 15
6000	Null
6002	One
12250	B0 Lift decomp
12252	B1 Lift decomp
12254	B2 Lift decomp
12256	B3 Lift decomp
12258	B4 Lift decomp
12260	B5 Lift decomp
12262	B6 Lift decomp
12264	B7 Lift decomp
12266	B8 Lift decomp
12268	B9 Lift decomp
12270	B10 Lift decomp
12272	B11 Lift decomp
12274	B12 Lift decomp
12276	B13 Lift decomp
12278	B14 Lift decomp
12280	B15 Lift decomp

<table>
<thead>
<tr>
<th>Меню</th>
<th>ФАР</th>
<th>Описание</th>
<th>Ед. изм.</th>
<th>Тип</th>
<th>FB</th>
<th>Умолч.</th>
<th>Мин.</th>
<th>Макс.</th>
<th>Доступ</th>
<th>Режим</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.7.15</td>
<td>11250</td>
<td>Dcp3 mode command</td>
<td>BIT</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>ERW</td>
<td>F__</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ADL300 • Функциональное описание и список параметров
Разрешение считывания команд с последовательного протокола DCP3

| 5.7.16 | 11252 | Brake fbk A3 sel | ENUM | 0 | - | - | RW | FVS |

Выбор сигнализации неисправности тормоза. В конфигурации по умолчанию функция сигнализации неисправности тормоза отключена.

Установка источника сигнализации

1110 Digit input E
1210 Digit input 1x
1212 Digit input 2x
1214 Digit input 3x
1216 Digit input 4x
1218 Digit input 5x
1220 Digit input 6x
1222 Digit input 7x
1224 Digit input 8x
1226 Digit input 9x
1228 Digit input 10x
1230 Digit input 11x
1232 Digit input 12x
3702 Run cont mon
3706 Down cont mon
3708 Brake cont mon
3714 Door open mon
6000 Null
6002 One
12250 B0 Lift decomp
12252 B1 Lift decomp
12254 B2 Lift decomp
12256 B3 Lift decomp
12258 B4 Lift decomp
12260 B5 Lift decomp
12262 B6 Lift decomp
12264 B7 Lift decomp
12266 B8 Lift decomp
12268 B9 Lift decomp
12270 B10 Lift decomp
12272 B11 Lift decomp
12274 B12 Lift decomp
12276 B13 Lift decomp
12278 B14 Lift decomp
12280 B15 Lift decomp
13000 F0 Rising
13001 F0 Falling
13002 F1 Rising
13003 F1 Falling

| 5.7.17 | 11256 | SpeedRefSrc | ENUM | 0 | 0 | 1 | RW | FVS |

Выбор исходного значения (источника) сигнала, используемого в качестве опорной скорости. Можно использовать сигналы задания скорости, аналоговые входы или полевая шина (за исключением PAP 4020 Fieldbus M->S1 ipa).

| 5.7.18 | 11258 | Lift EF alarm sel | ENUM | 0 | 0 | 1 | RW | FVS |

Выбор исходного значения (источника) сигнала “Lift external fault”.

| 5.7.19 | 11272 | Fast Enable sel | ENUM | 1 | 0 | 1 | RW | FVS |

Этот параметр разрешает команду Fast Enable с дискретного входа 8. Ввод на дискретный вход 8 должен управляться контроллером. Разрешение должно производиться при работе по бесконтакторной схеме. Этот параметр является дополнительным разрешением, используемым для быстрого блокирования привода в случае аварии или при коротком замыкании между фазами в бесконтакторной конфигурации.
Меню	ПАР	Описание	Ед. изм.	Тип	FB В/Т	Умолч.	Мин.	Макс.	Доступ	Режим
5.7.20 | 11274 | Landing cmd source | ENUM | NULL | - | - | RW | FVS

Команда Landing может разрешаться сигналом Start, а также с дискретных входов и входов фиксации (Freezes). Если выбраны входы фиксации, команда активируется на входах энкодера (для определения входов фиксации см. руководство по быстрому запуску ADL300).

Rising (положительный фронт) означает активацию по нарастающему фронту сигнала, Falling (отрицательный фронт) активирует вход по спадающему фронту.

1110 | Digit input E
1210 | Digit input 1x
1212 | Digit input 2x
1214 | Digit input 3x
1216 | Digit input 4x
1218 | Digit input 5x
1220 | Digit input 6x
1222 | Digit input 7x
1224 | Digit input 8x
1226 | Digit input 9x
1228 | Digit input 10x
1230 | Digit input 11x
1232 | Digit input 12x
3702 | Run cont mon
3706 | Down cont mon
3708 | Brake cont mon
3714 | Door open mon
6000 | Null
6002 | One
12250 | B0 Lift decomp
12252 | B1 Lift decomp
12254 | B2 Lift decomp
12256 | B3 Lift decomp
12258 | B4 Lift decomp
12260 | B5 Lift decomp
12262 | B6 Lift decomp
12264 | B7 Lift decomp
12266 | B8 Lift decomp
12268 | B9 Lift decomp
12270 | B10 Lift decomp
12272 | B11 Lift decomp
12274 | B12 Lift decomp
12276 | B13 Lift decomp
12278 | B14 Lift decomp
12280 | B15 Lift decomp
13000 | F0 Rising
13001 | F0 Falling
13002 | F1 Rising
13003 | F1 Falling

Перечень сопоставляемых функций содержится в списке L_DIGSEL1.

Ручной аварийный режим управления. Эта функция предназначена для разрешения движения кабины в отсутствие электропитания с целью доставки ее на ближайший этаж за счет силы тяжести.

- Этот режим управления возможен только тогда, когда привод находится в аварийном состоянии, которое сигнализируется платой управления через цифровой вход Emergency Mode. Необходимо подсоединить цифровой вход (Brake Open) к кнопке Brake Open шкафа управления, служащей для активации движения кабины.
- При нажатии кнопки инвертор размыкает контактор тормоза с помощью релейного выхода Brake Contactor.
- Для перемещения кабины оператор нажимает кнопку Brake Open.
- Параметр PAR 11822 Em max speed задает максимальную скорость, которую кабина (или двигатель) может развить в этом режиме.
- Когда кабина достигает максимально допустимой скорости, привод блокирует тормоз на отрезок времени T, который задается в параметре PAR 11824 Brake lock time, при этом кнопка деактивируется (т.е. она не разблокирует тормоз при нажатии).
- При активации этого режима работы на дисплей (как на опциональный, так и на встроенный) выводится текущая скорость кабины (или двигателя, если задана скорость в об/мин) и направление: Fwd (Вперед) или Rev (Назад).
- В ситуации осмотра этот режим деактивируется.

Меню	ПАР	Описание	Ед. изм.	Тип	FB В/Т	Умолч.	Мин.	Макс.	Доступ	Режим
5.7.21 | 11820 | Brake Release Sel | ENUM | NULL | - | - | RW | FVS
<table>
<thead>
<tr>
<th>№</th>
<th>Описание</th>
<th>Тип</th>
<th>Умолч.</th>
<th>Мин.</th>
<th>Макс.</th>
<th>Доступ</th>
<th>Режим</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.7.22</td>
<td>Command input mon</td>
<td>UINT32</td>
<td>0</td>
<td></td>
<td></td>
<td>ER</td>
<td>FVS</td>
</tr>
<tr>
<td>5.7.23</td>
<td>Command output mon</td>
<td>UINT32</td>
<td>0</td>
<td></td>
<td></td>
<td>ER</td>
<td>FVS</td>
</tr>
</tbody>
</table>

Отображается состояние входов в шестнадцатеричном виде, описание с назначением каждого бита см. в "lift control word".

Отображается состояние входов в шестнадцатеричном виде, описание с назначением каждого бита см. в "lift status word".
Функция Pre-torque помогает обеспечить линейный пуск без первоначального ускорения. Это достигается заданием значения момента, соответствующего нагрузке, перед отпуском тормоза. Значение первоначального момента, приложенного к двигателю и направление этого момента можно определить с помощью весового датчика, установленного в кабине. Сигнал весового датчика подается через аналоговый вход и определяет значение момента, приложенного к двигателю и направление этого момента. Это значение можно определять с помощью весового датчика или фиксированного значения момента.

Если весовой датчик не установлен, можно использовать фиксированное значение момента, определяя только его направление. В этом случае значение фиксированного момента оптимально лишь для одного значения веса.

Меню 5.8 - PRE - TORQUE

5.8.1 11166 Pre-torque enable

<table>
<thead>
<tr>
<th>ПАР</th>
<th>Описание</th>
<th>Ед. изм.</th>
<th>Тип</th>
<th>FB</th>
<th>Умолч.</th>
<th>Мин.</th>
<th>Макс.</th>
<th>Доступ</th>
<th>Режим</th>
</tr>
</thead>
<tbody>
<tr>
<td>11166</td>
<td>Pre-torque enable</td>
<td>BIT</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>RW</td>
<td>F</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Разрешение применения функции Pre-torque.

0 = ОТКЛ
1 = ВКЛ

5.8.2 11168 Pre-torque source

<table>
<thead>
<tr>
<th>ПАР</th>
<th>Описание</th>
<th>Ед. изм.</th>
<th>Тип</th>
<th>FB</th>
<th>Умолч.</th>
<th>Мин.</th>
<th>Макс.</th>
<th>Доступ</th>
<th>Режим</th>
</tr>
</thead>
<tbody>
<tr>
<td>11168</td>
<td>Pre-torque source</td>
<td>INT16</td>
<td>11170</td>
<td>0</td>
<td>2</td>
<td>RW</td>
<td>F</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Выбор исходного значения (источника) сигнала, используемого для функции Pre-torque.

- 1600 Analog inp 1
- 1650 Analoginp 2
- 4034 FieldbusM->S2
- 4044 FieldbusM->S3
- 4054 FieldbusM->S4
- 4064 FieldbusM->S5
- 4074 FieldbusM->S6
- 4084 FieldbusM->S7
- 4094 FieldbusM->S8
- 4104 FieldbusM->S9
- 4114 FieldbusM->S10
- 4124 FieldbusM->S11
- 4134 FieldbusM->S12
- 4144 FieldbusM->S13
- 4154 FieldbusM->S14
- 4164 FieldbusM->S15
- 4174 FieldbusM->S16
- 11170 Int pretorque

5.8.3 11170 Init pre-torque

<table>
<thead>
<tr>
<th>ПАР</th>
<th>Описание</th>
<th>Ед. изм.</th>
<th>Тип</th>
<th>FB</th>
<th>Умолч.</th>
<th>Мин.</th>
<th>Макс.</th>
<th>Доступ</th>
<th>Режим</th>
</tr>
</thead>
<tbody>
<tr>
<td>11170</td>
<td>Init pre-torque</td>
<td>INT32</td>
<td>1000</td>
<td></td>
<td>RW</td>
<td>F</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Установка опорного значения, используемого в функции Pre-torque, только если источник параметра Pre-torque установлен в 0. Значение, установленное в этом параметре функции Pre-torque, является оптимальным только для одного состояния загрузки. Функция Pre-torque может также оптимизироваться для различных условий загрузки.

5.8.4 11172 Pre-torque ramp up

<table>
<thead>
<tr>
<th>ПАР</th>
<th>Описание</th>
<th>Ед. изм.</th>
<th>Тип</th>
<th>FB</th>
<th>Умолч.</th>
<th>Мин.</th>
<th>Макс.</th>
<th>Доступ</th>
<th>Режим</th>
</tr>
</thead>
<tbody>
<tr>
<td>11172</td>
<td>Pre-torque ramp up</td>
<td>ms</td>
<td>10000</td>
<td></td>
<td>RW</td>
<td>F</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Установка времени рампы для нарастающего фронта значения момента (перед открытием тормоза). Если этот параметр установлен в нуль, во время хода поддерживается постоянное значение момента в направлении вперед.

5.8.5 11174 Pre-torque ramp down

<table>
<thead>
<tr>
<th>ПАР</th>
<th>Описание</th>
<th>Ед. изм.</th>
<th>Тип</th>
<th>FB</th>
<th>Умолч.</th>
<th>Мин.</th>
<th>Макс.</th>
<th>Доступ</th>
<th>Режим</th>
</tr>
</thead>
<tbody>
<tr>
<td>11174</td>
<td>Pre-torque ramp down</td>
<td>ms</td>
<td>60000</td>
<td></td>
<td>RW</td>
<td>F</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Установка времени рампы для спадающего фронта значения момента. Если этот параметр установлен в нуль, во время хода поддерживается постоянное значение момента в направлении вперед.
Меню ПАР. Описание Ед. изм. Тип FB ВИТ Умолч. Мин. Макс. Доступ Режим

5.8.6 11176 Pre-torque offset FLOAT 0 RW F
Установка смещения момента, применяемого к опорному входному значению для функции Pre-torque.

5.8.7 11178 Pre torque gain FLOAT 1 RW F
Установка коэффициента усиления, используемого для преобразования значения, поданного на аналоговый вход, в значение момента, используемого в данной функции. Это усиление рассчитывается автоматически, согласно введенным значениям массы и момента инерции. В идеальном случае опорное значение устанавливается таким, что минимальное значение соответствует пустой кабине, а максимальное - заполненной.

5.8.8 12040 Pre-torque input cnt INT32 0 ER F
Отображается опорное значение, берущееся за образец, при пуске.

5.8.9 12056 Pre-torque out cnt INT32 0 ER F
Отображается значение выходного момента подачи в направлении вперед из функции Pre-torque.

5.8.10 12058 Torque reference cnt INT32 0 ER F
Отображается опорное значение момента, определяемое суммой выхода контура скорости и момента подачи вперед.
Меню 5.9 - LIFT ALARMS

Приложение MdPlc для ADL300 управляет следующими тревожными сигналами и выдает их.

<table>
<thead>
<tr>
<th>Тревожный сигнал</th>
<th>Тип тревожного сигнала</th>
<th>Описание</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plc1 fault</td>
<td>Cont feedback</td>
<td>Ошибка сигнала обратной связи от контактора</td>
</tr>
<tr>
<td>Plc2 fault</td>
<td>Brake feedback</td>
<td>Ошибка сигнала обратной связи от тормоза</td>
</tr>
<tr>
<td>Plc3 fault</td>
<td>Door feedback</td>
<td>Ошибка сигнала обратной связи от двери</td>
</tr>
<tr>
<td>Plc4 fault</td>
<td>Brake Failure</td>
<td>The Threshold A3 (PAR 11270) threshold has been overcome.</td>
</tr>
<tr>
<td>Plc5 fault</td>
<td>Not used</td>
<td></td>
</tr>
<tr>
<td>Plc6 fault</td>
<td>Speed limited</td>
<td>Предупреждение об ограничении скорости, обеспечивающем остановку</td>
</tr>
<tr>
<td>Plc7 fault</td>
<td>Up/low limit</td>
<td>Ограничение скорости с выходом из зоны регулирования коэффициента мощности</td>
</tr>
<tr>
<td>Plc8 fault</td>
<td>Lift EF alarm sel</td>
<td>Associated to Lift EF alarm sel (PAR 11258) input</td>
</tr>
</tbody>
</table>

Все тревожные сигналы связаны с параметром для конфигурирования действия, предпринимаемого при активации тревожного сигнала. Операции: используются для установки действия, выполняемого после активации тревожного сигнала, имеются следующие.

<table>
<thead>
<tr>
<th>Действие</th>
<th>Описание</th>
</tr>
</thead>
<tbody>
<tr>
<td>Игнорирование</td>
<td>Тревожный сигнал не включен в список тревожных сигналов, не включается в журнал тревожных сигналов, не производится сигнализация через дискретные выходы, команды на привод не изменяются.</td>
</tr>
<tr>
<td>Предупреждение</td>
<td>Тревожный сигнал включен в список тревожных сигналов, включается в журнал тревожных сигналов, производится сигнализация через дискретные выходы, информация о первом тревожном сигнале обновляется, информация о выдаче тревожных сигналов обновляется, команды на привод не изменяются.</td>
</tr>
<tr>
<td>Блокирование</td>
<td>Тревожный сигнал включен в список тревожных сигналов, включается в журнал тревожных сигналов, производится сигнализация через дискретные выходы, информация о первом тревожном сигнале обновляется, информация о выдаче тревожных сигналов обновляется, выдается команда остановки, двигатель отключается и останавливается с инерционным выбегом.</td>
</tr>
<tr>
<td>Быстрая остановка</td>
<td>Тревожный сигнал включен в список тревожных сигналов, включается в журнал тревожных сигналов, производится сигнализация через дискретные выходы, информация о первом тревожном сигнале обновляется, информация о выдаче тревожных сигналов обновляется, выдается команда Stop. Привод останавливается в нулевую скорость максимально возможным током, когда активируется сигнал Speed 0 delay, привод блокируется.</td>
</tr>
<tr>
<td>Быстрая остановка лифта</td>
<td>При появлении тревожного сигнала лифт будет остановлен (опорная рампа устанавливается в ноль) немедленно по быстрой рампе, после чего остается в состоянии тревожной сигнализации. Внимание: это приводит к остановке кабины вне этажных остановок!</td>
</tr>
<tr>
<td>Остановка лифта</td>
<td>При появлении тревожного сигнала лифт будет продолжать движение до следующей остановки, после чего остается в состоянии тревожной сигнализации.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Меню</th>
<th>ПАР</th>
<th>Описание</th>
<th>Ед. изм.</th>
<th>Тип</th>
<th>FB</th>
<th>Bits</th>
<th>Умолч.</th>
<th>Мин.</th>
<th>Макс.</th>
<th>Доступ</th>
<th>Режим</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.9.1</td>
<td>11058</td>
<td>Lift fast stop fact</td>
<td>FLOAT</td>
<td>10.00</td>
<td>1.00</td>
<td>50.00</td>
<td>RW</td>
<td>FVS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.9.2</td>
<td>11200</td>
<td>Contactor activity</td>
<td>INT16</td>
<td>1</td>
<td>0</td>
<td>5</td>
<td>RW</td>
<td>FVS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.9.3</td>
<td>11202</td>
<td>Cont hold off</td>
<td>ms</td>
<td>3000</td>
<td></td>
<td></td>
<td>RW</td>
<td>FVS</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Этот параметр применяется ко всем рампам, когда выдается сигнал быстрой остановки. По умолчанию установка составляет 10 = 1000% (стандартные рампы с умножением на10). Для использования стандартных рамп без умножения устанавливается 1 = 100%.

Установка времени задержки между активацией состояния тревожного сигнала Cont fbk fail и фактическим тревожным сигналом. В случае наступления тревожного состояния привод ожидает истечения установленного времени,
перед чем активизировать тревожный сигнал. Если сигнал состояния неисправности за установленное время снимется, привод не будет активировать тревожный сигнал.

5.9.4 11204 Brake activity

Установка характера работы привода в случае тревожного сигнала Brake fbk fail. Этот тревожный сигнал указывает на то, что обратная связь, подтверждающая снятие/напложение тормоза, не получена.

0 Ignore (Игнорирование)
1 Warning (Предупреждение)
2 Disable (Запрет)
3 Fast stop (Быстрая остановка)
4 Lift fast stop (Быстрая остановка лифта)
5 Lift stop (Остановка лифта)

5.9.5 11206 Brake hold off

Установка времени задержки между активацией состояния тревожного сигнала Brake fbk fail и фактическим тревожным сигналом. В случае наступления тревожного состояния привод ожидает истечения установленного времени, прежде чем активизировать тревожный сигнал. Если сигнал состояния неисправности за установленное время снимется, привод не будет активировать тревожный сигнал.

5.9.6 11208 Brake run hold off

Установка характера работы привода, когда обнаружен возможный тревожный сигнал Brake fbk fail.

0 Запрет
1 Разрешение

При установке в 0 тревожный сигнал по обратной связи тормоза индицируется сразу же.
При установке в 1 возможный тревожный сигнал по обратной связи тормоза индицируется в конце передвижения, что позволяет кабине достичь этажа при наличии сигнала неисправности тормоза.

5.9.7 11210 Door activity

Установка характера работы привода в случае тревожного сигнала Door fbk fail. Этот тревожный сигнал указывает на то, что обратная связь, подтверждающая открытие двери, не получена.

0 Ignore (Игнорирование)
1 Warning (Предупреждение)
2 Disable (Запрет)
3 Fast stop (Быстрая остановка)
4 Lift fast stop (Быстрая остановка лифта)
5 Lift stop (Остановка лифта)

5.9.8 11212 Door hold off

Установка времени задержки между активацией состояния тревожного сигнала Door fbk fail и фактическим тревожным сигналом. В случае наступления тревожного состояния привод ожидает истечения установленного времени, прежде чем активизировать тревожный сигнал. Если сигнал состояния неисправности за установленное время снимется, привод не будет активировать тревожный сигнал.
<table>
<thead>
<tr>
<th>Меню ПАР.</th>
<th>Описание</th>
<th>Ед. изм.</th>
<th>Тип</th>
<th>FB ВИТ</th>
<th>Умолч.</th>
<th>Мин.</th>
<th>Макс.</th>
<th>Доступ</th>
<th>Режим</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.9.9</td>
<td>Limit activity</td>
<td>INT16</td>
<td>5</td>
<td>0</td>
<td>5</td>
<td>RW</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Установка характера работы привода в случае тревожного сигнала Upper/Lower limit. Этот тревожный сигнал выделяется, когда скорость больше указанной в ПАР 11216 Limit speed thr и активны датчики, установленные в начале и в конце промежутка. Эта функция, задействованная в приводе, обеспечивает дополнительный контроль во избежание перебега. Тревожный сигнал выдается, когда превышено установленное ограничение скорость. Входы UpperLimit или LowerLimit необходимо установить в состояние разрешения контроля ограничений скорости. Вход UpperLimit должен всегда соответствовать сигналу ограничения сверху, а LowerLimit - сигналу ограничения снизу.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td>Ignore (Игнорирование)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>Warning (Предупреждение)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td>Disable (Запрет)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3</td>
<td>Fast stop (Быстрая остановка)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>4</td>
<td>Lift fast stop (Быстрая остановка лифта)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>5</td>
<td>Lift stop (Остановка лифта)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.9.10</td>
<td>Limit speed thr</td>
<td>ms</td>
<td>1.000</td>
<td>RW</td>
<td>FVS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Установка порога скорости на участках ограничения снизу и сверху.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.9.11</td>
<td>Spd target activity</td>
<td>INT16</td>
<td>1</td>
<td>0</td>
<td>5</td>
<td>RW</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Установка характера работы привода в случае тревожного сигнала Speed limit. Этот тревожный сигнал активируется, если, при использовании функции EFC, расстояние замедления меньше фактического расстояния замедления, что позволяет ограничить скорость обеспечить нормальную остановку.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td>Ignore (Игнорирование)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>Warning (Предупреждение)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td>Disable (Запрет)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3</td>
<td>Fast stop (Быстрая остановка)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>4</td>
<td>Lift fast stop (Быстрая остановка лифта)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>5</td>
<td>Lift stop (Остановка лифта)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.9.12</td>
<td>Lift EF al activity</td>
<td>ENUM</td>
<td>5</td>
<td>0</td>
<td>5</td>
<td>RW</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Установка тревожного сигнала внешней неисправности лифта "Lift external fault".</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td>Ignore (Игнорирование)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>Avvisa (Предупреждение)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td>Disable (Блокирование)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3</td>
<td>Fast stop (Быстрая остановка)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>4</td>
<td>Lift fast stop (Быстрая остановка лифта)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>5</td>
<td>Arresto lift (Остановка лифта)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.9.13</td>
<td>Lift EF hold off</td>
<td>ms</td>
<td>1000</td>
<td>0</td>
<td>60000</td>
<td>RW</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Поддержка тревожного сигнала внешней неисправности лифта "Lift external fault". При появлении тревожного сигнала "Lift external fault" отображается "Lift EF".</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.9.14</td>
<td>Reset Brake Alarm</td>
<td>Short</td>
<td>0</td>
<td>-</td>
<td>-</td>
<td>RW</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Сброс сигнала неисправности тормоза Brake Alarm.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1. Откройте меню 5.9 LIFT ALARMS, и удостоверьтесь, что сигнал Brake Alarm включен.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2. В меню сигнализации лифта выберите параметр 11268 Reset Brake Alarm (по умолчанию 0).</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3. Система запросит код, введите 5313.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4. Убедитесь, что сигнал Brake Alarm сбросился.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.9.15</td>
<td>Threshold A3</td>
<td>Float</td>
<td>0.100</td>
<td>0.000</td>
<td>2.000</td>
<td>RW</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>При подключённом тормозе, сигнал неисправности тормоза активируется, если движение (в м) больше, чем значение, установленное в параметре 11270 Threshold A3.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Примечание
Эти меню отсутствуют.
Меню 10 - DIGITAL INPUTS

<table>
<thead>
<tr>
<th>Меню</th>
<th>ПАР.</th>
<th>Описание</th>
<th>Ед. изм.</th>
<th>Тип</th>
<th>FB ВИТ</th>
<th>Умолч.</th>
<th>Мин.</th>
<th>Макс.</th>
<th>Доступ</th>
<th>Режим</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.01</td>
<td>1240</td>
<td>Dig inp 1X inversion</td>
<td>BIT</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>ERW</td>
<td>F__</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10.02</td>
<td>1242</td>
<td>Dig inp 2X inversion</td>
<td>BIT</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>ERW</td>
<td>F__</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10.03</td>
<td>1244</td>
<td>Dig inp 3X inversion</td>
<td>BIT</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>ERW</td>
<td>F__</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10.04</td>
<td>1246</td>
<td>Dig inp 4X inversion</td>
<td>BIT</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>ERW</td>
<td>F__</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10.05</td>
<td>1248</td>
<td>Dig inp 5X inversion</td>
<td>BIT</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>ERW</td>
<td>F__</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10.06</td>
<td>1250</td>
<td>Dig inp 6X inversion</td>
<td>BIT</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>ERW</td>
<td>F__</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10.07</td>
<td>1252</td>
<td>Dig inp 7X inversion</td>
<td>BIT</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>ERW</td>
<td>F__</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10.08</td>
<td>1254</td>
<td>Dig inp 8X inversion</td>
<td>BIT</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>ERW</td>
<td>F__</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10.09</td>
<td>1256</td>
<td>Dig inp 9X inversion</td>
<td>BIT</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>ERW</td>
<td>F__</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10.10</td>
<td>1258</td>
<td>Dig inp 10X inversion</td>
<td>BIT</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>ERW</td>
<td>F__</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10.11</td>
<td>1260</td>
<td>Dig inp 11X inversion</td>
<td>BIT</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>ERW</td>
<td>F__</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10.12</td>
<td>1262</td>
<td>Dig inp 12X inversion</td>
<td>BIT</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>ERW</td>
<td>F__</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Инверсия логического состояния функции, связанной с дискретным входом платы расширения.

0 - Отключено
1 - Включено

Примечание

Параметры Dig inp 9X inversion ... Dig inp 12X inversion Inv предусмотрены только в версии ADL300A со специальной платой расширения, см. руководство на инвертор ADL300 QS.

Меню 10.13 - DIGITAL INPUTS

<table>
<thead>
<tr>
<th>Меню</th>
<th>ПАР.</th>
<th>Описание</th>
<th>Ед. изм.</th>
<th>Тип</th>
<th>FB ВИТ</th>
<th>Умолч.</th>
<th>Мин.</th>
<th>Макс.</th>
<th>Доступ</th>
<th>Режим</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.13</td>
<td>1268</td>
<td>Dig input E dest</td>
<td>ILINK</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>ER</td>
<td>F__</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10.14</td>
<td>1270</td>
<td>Dig input 1X dest</td>
<td>ILINK</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>ER</td>
<td>F__</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10.15</td>
<td>1272</td>
<td>Dig input 2X dest</td>
<td>ILINK</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>ER</td>
<td>F__</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10.16</td>
<td>1274</td>
<td>Dig input 3X dest</td>
<td>ILINK</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>ER</td>
<td>F__</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10.17</td>
<td>1276</td>
<td>Dig input 4X dest</td>
<td>ILINK</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>ER</td>
<td>F__</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10.18</td>
<td>1278</td>
<td>Dig input 5X dest</td>
<td>ILINK</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>ER</td>
<td>F__</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10.19</td>
<td>1280</td>
<td>Dig input 6X dest</td>
<td>ILINK</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>ER</td>
<td>F__</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10.20</td>
<td>1282</td>
<td>Dig input 7X dest</td>
<td>ILINK</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>ER</td>
<td>F__</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10.21</td>
<td>1284</td>
<td>Dig input 8X dest</td>
<td>ILINK</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>ER</td>
<td>F__</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10.22</td>
<td>1286</td>
<td>Dig input 9X dest</td>
<td>ILINK</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>ER</td>
<td>F__</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10.23</td>
<td>1288</td>
<td>Dig input 10X dest</td>
<td>ILINK</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>ER</td>
<td>F__</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10.24</td>
<td>1290</td>
<td>Dig input 11X dest</td>
<td>ILINK</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>ER</td>
<td>F__</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10.25</td>
<td>1292</td>
<td>Dig input 12X dest</td>
<td>ILINK</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>ER</td>
<td>F__</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Выбор места назначения дискретного входа сопутствующей платы расширения.

Примечание

Параметры Dig input 9X dest ... Dig input 12X dest Inv предусмотрены только в версии ADL300A со специальной платой расширения, см. руководство на инвертор ADL300 QS.
Меню 11 - DIGITAL OUTPUTS

<table>
<thead>
<tr>
<th>Меню</th>
<th>ПАР.</th>
<th>Описание</th>
<th>Ед. изм.</th>
<th>Тип</th>
<th>FB ВИТ</th>
<th>Умолч.</th>
<th>Мин.</th>
<th>Макс.</th>
<th>Доступ</th>
<th>Режим</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.01</td>
<td>1410</td>
<td>Dig output 1X src</td>
<td>LINK</td>
<td>16BIT</td>
<td>1062</td>
<td>0</td>
<td>16384</td>
<td>ERW</td>
<td>F__</td>
<td></td>
</tr>
<tr>
<td>11.02</td>
<td>1412</td>
<td>Dig output 2X src</td>
<td>LINK</td>
<td>16BIT</td>
<td>3708</td>
<td>0</td>
<td>16384</td>
<td>ERW</td>
<td>F__</td>
<td></td>
</tr>
<tr>
<td>11.03</td>
<td>1414</td>
<td>Dig output 3X src</td>
<td>LINK</td>
<td>16BIT</td>
<td>3702</td>
<td>0</td>
<td>16384</td>
<td>ERW</td>
<td>F__</td>
<td></td>
</tr>
<tr>
<td>11.04</td>
<td>1416</td>
<td>Dig output 4X src</td>
<td>LINK</td>
<td>16BIT</td>
<td>3714</td>
<td>0</td>
<td>16384</td>
<td>ERW</td>
<td>F__</td>
<td></td>
</tr>
<tr>
<td>11.05</td>
<td>1418</td>
<td>Dig output 5X src</td>
<td>LINK</td>
<td>16BIT</td>
<td>1062</td>
<td>0</td>
<td>16384</td>
<td>ERW</td>
<td>F__</td>
<td></td>
</tr>
<tr>
<td>11.06</td>
<td>1420</td>
<td>Dig output 6X src</td>
<td>LINK</td>
<td>16BIT</td>
<td>3708</td>
<td>0</td>
<td>16384</td>
<td>ERW</td>
<td>F__</td>
<td></td>
</tr>
<tr>
<td>11.07</td>
<td>1422</td>
<td>Dig output 7X src</td>
<td>LINK</td>
<td>16BIT</td>
<td>3702</td>
<td>0</td>
<td>16384</td>
<td>ERW</td>
<td>F__</td>
<td></td>
</tr>
<tr>
<td>11.08</td>
<td>1424</td>
<td>Dig output 8X src</td>
<td>LINK</td>
<td>16BIT</td>
<td>3714</td>
<td>0</td>
<td>16384</td>
<td>ERW</td>
<td>F__</td>
<td></td>
</tr>
</tbody>
</table>

Отображается место назначения дискретных выходов платы расширения. Функции, которые можно связать с дискретными выходами, перечислены в "списке выбора" "L DIGSEL1.

Примечание

Параметры Dig output 5X src ... Dig output 8X src Inv предусмотрены только в версии ADL300A со специальной платой расширения, см. руководство на инвертор ADL300 QS.

<table>
<thead>
<tr>
<th>Меню</th>
<th>ПАР.</th>
<th>Описание</th>
<th>Ед. изм.</th>
<th>Тип</th>
<th>FB ВИТ</th>
<th>Умолч.</th>
<th>Мин.</th>
<th>Макс.</th>
<th>Доступ</th>
<th>Режим</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.09</td>
<td>1430</td>
<td>Dig out 1X inversion</td>
<td>BIT</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>ERW</td>
<td>F__</td>
<td></td>
</tr>
<tr>
<td>11.10</td>
<td>1432</td>
<td>Dig out 2X inversion</td>
<td>BIT</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>ERW</td>
<td>F__</td>
<td></td>
</tr>
<tr>
<td>11.11</td>
<td>1434</td>
<td>Dig out 3X inversion</td>
<td>BIT</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>ERW</td>
<td>F__</td>
<td></td>
</tr>
<tr>
<td>11.12</td>
<td>1436</td>
<td>Dig out 4X inversion</td>
<td>BIT</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>ERW</td>
<td>F__</td>
<td></td>
</tr>
<tr>
<td>11.13</td>
<td>1438</td>
<td>Dig out 5X inversion</td>
<td>BIT</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>ERW</td>
<td>F__</td>
<td></td>
</tr>
<tr>
<td>11.14</td>
<td>1440</td>
<td>Dig out 6X inversion</td>
<td>BIT</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>ERW</td>
<td>F__</td>
<td></td>
</tr>
<tr>
<td>11.15</td>
<td>1442</td>
<td>Dig out 7X inversion</td>
<td>BIT</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>ERW</td>
<td>F__</td>
<td></td>
</tr>
<tr>
<td>11.16</td>
<td>1444</td>
<td>Dig out 8X inversion</td>
<td>BIT</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>ERW</td>
<td>F__</td>
<td></td>
</tr>
</tbody>
</table>

Инверсия логического состояния функции, связанной с дискретным выходом платы расширения.
0 Отключено
1 Включено

Примечание

Параметры Dig out 5X inversion ... Dig out 8X inversion Inv предусмотрены только в версии ADL300A со специальной платой расширения, см. руководство на инвертор ADL300 QS.
Меню 12 - ANALOG INPUTS

Примечание

Эти параметры действуют только с платами, имеющими аналоговые входы.

<table>
<thead>
<tr>
<th>Меню</th>
<th>ПАР.</th>
<th>Описание</th>
<th>Ед. изм.</th>
<th>Тип</th>
<th>FB ВБТ</th>
<th>Умолч.</th>
<th>Мин.</th>
<th>Макс.</th>
<th>Доступ</th>
<th>Режим</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.1</td>
<td>1600</td>
<td>Analog input 1X mon</td>
<td>cnt</td>
<td>INT16</td>
<td>16/32BIT</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>ER</td>
<td>F__</td>
</tr>
<tr>
<td>12.13</td>
<td>1650</td>
<td>Analog input 2X mon</td>
<td>cnt</td>
<td>INT16</td>
<td>16/32BIT</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>ER</td>
<td>F__</td>
</tr>
</tbody>
</table>

Отображается значение напряжения на выходе функционального блока соответствующего аналогового входа.

<table>
<thead>
<tr>
<th>Меню</th>
<th>ПАР.</th>
<th>Описание</th>
<th>Ед. изм.</th>
<th>Тип</th>
<th>FB ВБТ</th>
<th>Умолч.</th>
<th>Мин.</th>
<th>Макс.</th>
<th>Доступ</th>
<th>Режим</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.2</td>
<td>1602</td>
<td>Analog inp 1X type</td>
<td>ENUM</td>
<td>-10V..+10V</td>
<td>0</td>
<td>2</td>
<td>ERW</td>
<td>F__</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12.14</td>
<td>1652</td>
<td>Analog inp 2X type</td>
<td>ENUM</td>
<td>-10V..+10V</td>
<td>0</td>
<td>2</td>
<td>ERW</td>
<td>F__</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Выбор типа входа (напряжение или ток). В зависимости от входного сигнала переставьте переключатели на плате расширения. Заводской параметр - входы, установленные на сигналы в виде дифференциального напряжения (-10 В..+10 В).

- 0: -10 В..+10 В
- 1: 0...20 мА, 0...10 В
- 2: 4...20 мА

Опция 0 выбирается для того, чтобы подать напряжение с максимальным значением ±12.5 В (типовое значение ±10 В/5 мА) на соответствующий аналоговый вход. Если сигнал используется как опорный, направление вращения меняется сменой полярности напряжения.

Опция 1 выбирается при подключении напряжения с макс. значением 12.5 В (типовое значение 10 В/5 мА) или токовый сигнал от 0 до 20 мА на соответствующий аналоговый вход. Сигнал должен быть положительным.

Для подачи токового сигнала 4...20 мА на соответствующий аналоговый вход выбирается опция 2. Сигнал должен быть положительным.

<table>
<thead>
<tr>
<th>Меню</th>
<th>ПАР.</th>
<th>Описание</th>
<th>Ед. изм.</th>
<th>Тип</th>
<th>FB ВБТ</th>
<th>Умолч.</th>
<th>Мин.</th>
<th>Макс.</th>
<th>Доступ</th>
<th>Режим</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.3</td>
<td>1604</td>
<td>Analog inp 1X scale</td>
<td>FLOAT</td>
<td>1.0</td>
<td>-10.0</td>
<td>10.0</td>
<td>ERW</td>
<td>F__</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12.15</td>
<td>1654</td>
<td>Analog inp 2X scale</td>
<td>FLOAT</td>
<td>1.0</td>
<td>-10.0</td>
<td>10.0</td>
<td>ERW</td>
<td>F__</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Установка множителя, применяемого к указанному аналоговому входу платы расширения.

Пример:

Опорная скорость привода назначается максимальным внешним напряжением 5 В. При этом значении привод может обеспечить максимально допустимую скорость (установка через Full scale speed).

Параметром Analog inp XX scale вводится коэффициент масштабирования 2 (10 В : 5 В)

<table>
<thead>
<tr>
<th>Меню</th>
<th>ПАР.</th>
<th>Описание</th>
<th>Ед. изм.</th>
<th>Тип</th>
<th>FB ВБТ</th>
<th>Умолч.</th>
<th>Мин.</th>
<th>Макс.</th>
<th>Доступ</th>
<th>Режим</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.4</td>
<td>1606</td>
<td>An inp 1X offset tune</td>
<td>BIT</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>ERW</td>
<td>F__</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12.16</td>
<td>1656</td>
<td>An inp 2X offset tune</td>
<td>BIT</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>ERW</td>
<td>F__</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Команда самонастройки смещения заданного аналогового входа платы расширения. Автоматическая тонкая настройка входа. Для выполнения самонастройки установите входной сигнал в минимальное значение и выполните команду. Условия, создающие смещение, будут компенсированы. Когда выдается эта команда, автоматически выбирается An inp xX offset tune, так, что имеющийся входной сигнал соответствует нулевому значению переменной.
Автоматическая настройка может выполняться, только если соблюдаются следующие условия:
- Входное напряжение меньше 1 В или входной ток меньше 2 мА

Значение, полученное автоматически, можно, при необходимости, изменить вручную через параметр An inp offset xX.

Если напряжение на аналоговом входе больше 1 В, отобразится сообщение “Input value too high”.

<table>
<thead>
<tr>
<th>Меню</th>
<th>ПАР</th>
<th>Описание</th>
<th>Ед. изм.</th>
<th>Тип</th>
<th>FB В/Т</th>
<th>Умолч.</th>
<th>Мин.</th>
<th>Макс.</th>
<th>Доступ</th>
<th>Режим</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.5</td>
<td>1608</td>
<td>An inp 1X gain tune</td>
<td>BIT</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>ERW</td>
<td>F___</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12.17</td>
<td>1658</td>
<td>An inp 2X gain tune</td>
<td>BIT</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>ERW</td>
<td>F___</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Команда самонастройки усиления для заданного аналогового входа. Автоматическая тонкая настройка входа.
Когда выдается эта команда, автоматически выбирается An inp xX gain tune, так, что имеющийся входной сигнал соответствует максимальному значению переменной.
Для выполнения автоматической настройки должны соблюдаться два условия:
- Входное напряжение больше 1 В или входной ток больше 2 мА
- Положительная полярность Найденное значение автоматически назначается и для другого направления вращения.

При необходимости, значение, полученное автоматически, можно изменить вручную через параметр An inp XX gain tune.

Фильтр для измерений по соответствующему аналоговому входу. Этот параметр можно использовать для управления реакцией аналогового входа и снижения возможных шумов и помех.

<table>
<thead>
<tr>
<th>Меню</th>
<th>ПАР</th>
<th>Описание</th>
<th>Ед. изм.</th>
<th>Тип</th>
<th>FB В/Т</th>
<th>Умолч.</th>
<th>Мин.</th>
<th>Макс.</th>
<th>Доступ</th>
<th>Режим</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.6</td>
<td>1610</td>
<td>Analog inp 1X filter</td>
<td>ms</td>
<td>UINT16</td>
<td>10</td>
<td>2</td>
<td>100</td>
<td>ERW</td>
<td>FVS</td>
<td></td>
</tr>
<tr>
<td>12.18</td>
<td>1660</td>
<td>Analog inp 2X filter</td>
<td>ms</td>
<td>UINT16</td>
<td>10</td>
<td>2</td>
<td>100</td>
<td>ERW</td>
<td>FVS</td>
<td></td>
</tr>
</tbody>
</table>

Установка верхнего предела опорной скорости в функции напряжения (или тока) соответствующего аналогового опорного значения платы расширения.

<table>
<thead>
<tr>
<th>Меню</th>
<th>ПАР</th>
<th>Описание</th>
<th>Ед. изм.</th>
<th>Тип</th>
<th>FB В/Т</th>
<th>Умолч.</th>
<th>Мин.</th>
<th>Макс.</th>
<th>Доступ</th>
<th>Режим</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.7</td>
<td>1612</td>
<td>Analog inp 1X top</td>
<td>cnt</td>
<td>INT16</td>
<td>16384</td>
<td>-32768</td>
<td>+32767</td>
<td>ERW</td>
<td>FVS</td>
<td></td>
</tr>
<tr>
<td>12.19</td>
<td>1662</td>
<td>Analog inp 2X top</td>
<td>cnt</td>
<td>INT16</td>
<td>16384</td>
<td>-32768</td>
<td>+32767</td>
<td>ERW</td>
<td>FVS</td>
<td></td>
</tr>
</tbody>
</table>

Установка нижнего предела опорной скорости в функции напряжения (или тока) соответствующего аналогового опорного значения платы расширения.

<table>
<thead>
<tr>
<th>Меню</th>
<th>ПАР</th>
<th>Описание</th>
<th>Ед. изм.</th>
<th>Тип</th>
<th>FB В/Т</th>
<th>Умолч.</th>
<th>Мин.</th>
<th>Макс.</th>
<th>Доступ</th>
<th>Режим</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.8</td>
<td>1614</td>
<td>Analog inp 1X bottom</td>
<td>cnt</td>
<td>INT16</td>
<td>-16384</td>
<td>-32768</td>
<td>+32767</td>
<td>ERW</td>
<td>FVS</td>
<td></td>
</tr>
<tr>
<td>12.20</td>
<td>1664</td>
<td>Analog inp 2X bottom</td>
<td>cnt</td>
<td>INT16</td>
<td>-16384</td>
<td>-32768</td>
<td>+32767</td>
<td>ERW</td>
<td>FVS</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Меню</th>
<th>ПАР</th>
<th>Описание</th>
<th>Ед. изм.</th>
<th>Тип</th>
<th>FB В/Т</th>
<th>Умолч.</th>
<th>Мин.</th>
<th>Макс.</th>
<th>Доступ</th>
<th>Режим</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.9</td>
<td>1616</td>
<td>Analog inp 1X offset</td>
<td>cnt</td>
<td>INT16</td>
<td>0</td>
<td>-32768</td>
<td>+32767</td>
<td>ERW</td>
<td>FVS</td>
<td></td>
</tr>
<tr>
<td>12.21</td>
<td>1666</td>
<td>Analog inp 2X offset</td>
<td>cnt</td>
<td>INT16</td>
<td>0</td>
<td>-32768</td>
<td>+32767</td>
<td>ERW</td>
<td>FVS</td>
<td></td>
</tr>
</tbody>
</table>
Установка величины смещения, алгебраически суммируемого с значением на соответствующем аналоговом входе платы расширения.

<table>
<thead>
<tr>
<th>Меню</th>
<th>ПАР.</th>
<th>Описание</th>
<th>Ед. изм.</th>
<th>Тип</th>
<th>FB Бит</th>
<th>Умолч.</th>
<th>Мин.</th>
<th>Макс.</th>
<th>Доступ</th>
<th>Режим</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.10</td>
<td>1618</td>
<td>Analog inp 1X gain</td>
<td>FLOAT</td>
<td>1.0</td>
<td>-10.0</td>
<td>10.0</td>
<td>ERW</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12.22</td>
<td>1668</td>
<td>Analog inp 2X gain</td>
<td>FLOAT</td>
<td>1.0</td>
<td>-10.0</td>
<td>10.0</td>
<td>ERW</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Этот параметр содержит значение множителя, применяемого к аналоговому опорному значению на плате расширения, вычисленного через функцию `Analog inp gain tune`.

Пример:
Внешнее аналоговое опорное напряжение достигает значения лишь 9,8 В вместо 10 В. 1,020 (10 В: 9,8 В) вводится как параметр `Analog inp x gain`.

Того же результата можно достичь, используя функцию `Analog inp x gain tune`. Этот параметр можно выбрать из клавиатурного меню. На входной клемме должно присутствовать максимальное аналоговое напряжение (в данном случае 9,8 В) положительной полярности. Для запуска самонастройки аналогового опорного напряжения нажмите на клавиатуре клавишу `Enter`.

<table>
<thead>
<tr>
<th>Меню</th>
<th>ПАР.</th>
<th>Описание</th>
<th>Ед. изм.</th>
<th>Тип</th>
<th>FB Бит</th>
<th>Умолч.</th>
<th>Мин.</th>
<th>Макс.</th>
<th>Доступ</th>
<th>Режим</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.11</td>
<td>1626</td>
<td>An inp 1X sign src</td>
<td>LINK</td>
<td>16BIT</td>
<td>6000</td>
<td>0</td>
<td>16384</td>
<td>ERW</td>
<td>FVS</td>
<td></td>
</tr>
<tr>
<td>12.23</td>
<td>1676</td>
<td>An inp 2X sign src</td>
<td>LINK</td>
<td>16BIT</td>
<td>6000</td>
<td>0</td>
<td>16384</td>
<td>ERW</td>
<td>FVS</td>
<td></td>
</tr>
</tbody>
</table>

Выбор исходного значения (источника) сигнала, назначаемого соответствующему дискретному входу платы расширения для выбора направления вращения двигателя. Функции, которые можно связать с дискретными выходами, перечислены в "списке выбора" "L_DIGSEL2".

<table>
<thead>
<tr>
<th>Меню</th>
<th>ПАР.</th>
<th>Описание</th>
<th>Ед. изм.</th>
<th>Тип</th>
<th>FB Бит</th>
<th>Умолч.</th>
<th>Мин.</th>
<th>Макс.</th>
<th>Доступ</th>
<th>Режим</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.12</td>
<td>1632</td>
<td>Analog input 1X dest</td>
<td>ILINK</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>ER</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12.24</td>
<td>1682</td>
<td>Analog input 2X dest</td>
<td>ILINK</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>ER</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Отображается функция, на которую запрограммирован соответствующий аналоговый вход платы расширения, и в соответствии с которой он действует.
Меню 13 - ANALOG OUTPUTS

В зависимости от конфигурации, может быть до двух аналоговых выходов.

Аналоговый выход 1 выдает двуполярный сигнал постоянного напряжения +/-10 В, в том время как аналоговый выход 2 можно запрограммировать для получения выходного сигнала в виде тока 0-20 мА или 4-20 мА или в виде двуполярного постоянного напряжения +/-10 В, в зависимости от назначенного значения параметра.

Примечание
Эти параметры действуют только с платами, имеющими аналоговые выходы.

Меню 13 - ANALOG OUTPUTS

<table>
<thead>
<tr>
<th>Меню</th>
<th>ПАР.</th>
<th>Описание</th>
<th>Ед. изм.</th>
<th>Тип</th>
<th>FB</th>
<th>BIT</th>
<th>Умолч.</th>
<th>Мин.</th>
<th>Макс.</th>
<th>Доступ</th>
<th>Режим</th>
</tr>
</thead>
<tbody>
<tr>
<td>13.1</td>
<td>1850</td>
<td>Analog out 1X src</td>
<td>LINK</td>
<td>16/32BIT</td>
<td>6000</td>
<td>0</td>
<td>16384</td>
<td>ERW</td>
<td>F__</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13.2</td>
<td>1852</td>
<td>Analog out 2X src</td>
<td>LINK</td>
<td>16/32BIT</td>
<td>6000</td>
<td>0</td>
<td>16384</td>
<td>ERW</td>
<td>F__</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Выбор исходного значения (источника) сигналов, которые могут подключаться как переменные, к аналоговым выходам.

Функции, которые можно связать с дискретными выходами, перечислены в "списке выбора" "L_ANOUT".

Меню 13 - ANALOG OUTPUTS

<table>
<thead>
<tr>
<th>Меню</th>
<th>ПАР.</th>
<th>Описание</th>
<th>Ед. изм.</th>
<th>Тип</th>
<th>Умолч.</th>
<th>Мин.</th>
<th>Макс.</th>
<th>Доступ</th>
<th>Режим</th>
</tr>
</thead>
<tbody>
<tr>
<td>13.3</td>
<td>1858</td>
<td>Analog out 1X scale</td>
<td>FLOAT</td>
<td>1.0</td>
<td>-10.0</td>
<td>10.0</td>
<td>ERW</td>
<td>F__</td>
<td></td>
</tr>
<tr>
<td>13.4</td>
<td>1860</td>
<td>Analog out 2X scale</td>
<td>FLOAT</td>
<td>1.0</td>
<td>-10.0</td>
<td>10.0</td>
<td>ERW</td>
<td>F__</td>
<td></td>
</tr>
</tbody>
</table>

Параметр для установки множителя сигнала соответствующего аналогового выхода платы расширения. Его можно использовать как для усиления, так и ослабления входного значения в связанном с ним блоке аналогового выхода.

\[
V_{out} = 10 \times \left(\frac{\text{Stp Var} \times \text{par. 1858 (1860)}}{\text{FS Var}} \right)
\]

- Vout - выходное напряжение на клеммах платы.
- Stp Var - актуальное значение переменной (в единицах переменной)
- FS Var - диапазон шкалы переменной (в единицах переменной)

Пример расчета Analog out Xx scale factor

Для отображения скорости вращения привода используется аналоговый прибор на 0 ... 2 В. Это значит, что для отображения скорости вращения привода напряжение 2 В на аналоговом выходе привода должно соответствовать максимальной скорости вращения. При коэффициенте масштабирования 1 это будет 10 В (Коэффициент масштабирования = 2 В / 10 В = 0,200).

Меню 13 - ANALOG OUTPUTS

<table>
<thead>
<tr>
<th>Меню</th>
<th>ПАР.</th>
<th>Описание</th>
<th>Ед. изм.</th>
<th>Тип</th>
<th>Умолч.</th>
<th>Мин.</th>
<th>Макс.</th>
<th>Доступ</th>
<th>Режим</th>
</tr>
</thead>
<tbody>
<tr>
<td>13.5</td>
<td>1866</td>
<td>Analog out 1X mon</td>
<td>cnt</td>
<td>INT16</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>ER</td>
<td>F__</td>
</tr>
</tbody>
</table>

Отображается фактическое значение напряжения, присутствующем на аналоговом выходе 1 платы расширения.
<table>
<thead>
<tr>
<th>№</th>
<th>ПАР.</th>
<th>Описание</th>
<th>Ед. изм.</th>
<th>Тип</th>
<th>FB</th>
<th>Умнож.</th>
<th>Мин.</th>
<th>Макс.</th>
<th>Доступ</th>
<th>Режим</th>
</tr>
</thead>
<tbody>
<tr>
<td>13.6</td>
<td>1868</td>
<td>Analog out 2X mon</td>
<td>cnt</td>
<td>INT16</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>ER</td>
<td>F__</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Отображается фактическое значение напряжения или тока, присутствующем на аналоговом выходе 2 платы расширения.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13.7</td>
<td>1874</td>
<td>An out 1X absolute</td>
<td>ENUM</td>
<td>INT16</td>
<td>Disable</td>
<td>0</td>
<td>1</td>
<td>ERW</td>
<td>F__</td>
<td></td>
</tr>
<tr>
<td>13.8</td>
<td>1876</td>
<td>An out 2X absolute</td>
<td>ENUM</td>
<td>INT16</td>
<td>Disable</td>
<td>0</td>
<td>1</td>
<td>ERW</td>
<td>F__</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Позволяет выдавать абсолютное значение на аналоговом выходе. Если этот параметр установить в 1, напряжение на аналоговом выходе принимает значение 0 ... 10 В независимо от знака сигнала управления.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>Отключено</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>Включено</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13.9</td>
<td>1882</td>
<td>Analog out 1X min</td>
<td>cnt</td>
<td>INT16</td>
<td>-16384</td>
<td>-32768</td>
<td>+32767</td>
<td>ERW</td>
<td>F__</td>
<td></td>
</tr>
<tr>
<td>13.10</td>
<td>1884</td>
<td>Analog out 1X max</td>
<td>cnt</td>
<td>INT16</td>
<td>-16384</td>
<td>-32768</td>
<td>+32767</td>
<td>ERW</td>
<td>F__</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Установка минимального и максимального значений напряжения на аналоговом выходе 1 платы расширения.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13.11</td>
<td>1890</td>
<td>Analog out 2X min</td>
<td>cnt</td>
<td>INT16</td>
<td>-16384</td>
<td>-32768</td>
<td>+32767</td>
<td>ERW</td>
<td>F__</td>
<td></td>
</tr>
<tr>
<td>13.12</td>
<td>1892</td>
<td>Analog out 2X max</td>
<td>cnt</td>
<td>INT16</td>
<td>16384</td>
<td>-32768</td>
<td>+32767</td>
<td>ERW</td>
<td>F__</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Установка минимального и максимального значений тока или напряжения на аналоговом выходе 2 платы расширения.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13.13</td>
<td>1898</td>
<td>Analog out 2X type</td>
<td>ENUM</td>
<td>-10V..+10V</td>
<td>0</td>
<td>2</td>
<td>ERW</td>
<td>F__</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Выбор запрограммированного сигнала на аналоговом выходе 2 платы расширения. По умолчанию выход запрограммирован на выдачу напряжения.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>0...20 мА</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>4...20 мА</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>-10 В..+10 В</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>При выборе опции 0 на аналоговом выходе 2 используется токовый сигнал 0 ... 20 мА. Сигнал должен быть положительным.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>При выборе опции 1 на аналоговом выходе 2 используется токовый сигнал 4 ... 20 мА.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Опция 2 выбирается для того, чтобы выдавать напряжение с максимальным значением ±12,5 В (типовое значение ±10 В/5 мА) с соответствующего аналогового выхода.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Меню 14 - MOTOR DATA

В этом меню можно ввести данные с паспортной таблички двигателя и "базовые" значения для характеристики напряжение/частота. Для оптимизации работы привода и установки в целом важно ввести правильные данные. Эти данные требуются для того, чтобы выполнить:

a) Вычисление коэффициентов нормализации, необходимых для регулирования
b) Вычисление ориентировочных значений параметров двигателя, необходимых для регулирования.

Необходимо ввести номинальное напряжение, номинальную скорость вращения и номинальный ток. После ввода этих параметров подайте команду Take parameters, чтобы произвести вычисления a) и b). До тех пор, пока команда Take parameters не будет подана, работа двигателя не будет разрешена. Если некоторые результаты противоречивы или если двигатель имеет значительно меньшую мощность, чем привод, отобразится сообщение об ошибке, указывающее на переполнение в числовых данных и на то, что установку параметров необходимо повторить в подменю "Mot plate data".

Пример табличек данных двигателя с указанием мощности в кВт или л. с.

<table>
<thead>
<tr>
<th>Motor & Co.</th>
<th>PAR 2002</th>
<th>PAR 2000</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type: ABCDE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nr 12345-9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Speed 2000 rpm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2004</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2008</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PAR 2010</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Brushless Servomotor</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nr 12345-9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pn 9.614 kW</td>
<td></td>
<td></td>
</tr>
<tr>
<td>To 48 Nm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Io 20.4 A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vn 299 V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tn 46 Nm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ln 19.6 A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ipk 51 A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Duty 51</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fan 220 V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IP 54</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kt 2.35 Nm/V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Io 51 A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ip 54</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Poles 8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Made in</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Weight 38 kg</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Пример табличек данных двигателя с указанием мощности в кВт или л. с.

Меню 14.1 2000 Rated voltage
Установка номинального напряжения двигателя согласно паспортной табличке. Это напряжение, которое должен выдавать привод при номинальной частоте питания двигателя.

Меню 14.2 2002 Rated current
Номинальный ток двигателя при его номинальной мощности (кВт/л. с.) и напряжении (указанных на паспортной табличке). При управлении несколькими двигателями, включенных параллельно, от одного привода (возможно только в режиме SSC) введите значение, которое соответствует сумме номинальных токов двигателей; в этом случае никаких операций "самонастройки" не выполняется.

Меню 14.3 2004 Rated speed
Номинальная скорость вращения двигателя при полной нагрузке в об/мин. Параметр вычисляется путем деления постоянной момента на \(\sqrt{3} \) с подходящим весовым коэффициентом.

Меню 14.4 2008 Pole pairs
Установка числа пар полюсов двигателя.

Меню 14.5 2010 Torque constant
Задание передаточного числа между скоростью вращения двигателя и номинальным током двигателя.

Меню 14.6 2012 EMF constant
Задание константы электродвижущей силы, которая представляет собой соотношение между напряжением двигателя и его номинальной скоростью вращения (можно просчитать деление постоянной момента на \(\sqrt{3} \)).
<table>
<thead>
<tr>
<th>№</th>
<th>ПАР.</th>
<th>Описание</th>
<th>Ед. изм.</th>
<th>Тип</th>
<th>ФБ BIT</th>
<th>Умолч.</th>
<th>Мин.</th>
<th>Макс.</th>
<th>Доступ</th>
<th>Режим</th>
</tr>
</thead>
<tbody>
<tr>
<td>14.7</td>
<td>2020</td>
<td>Take parameters</td>
<td>BIT</td>
<td></td>
<td></td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>RWZ</td>
<td>F__</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Сохраняет набор данных двигателя в приводе. Это команда должна подаваться в последнюю очередь после ввода значений соответствующих данных во все перечисленные выше параметры. Она влечет за собой подсчет коэффициентов нормализации (а) и ориентировочных значений параметров двигателя (b). До тех пор, пока команда Take parameters не будет подана, привод запускаться не будет.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14.8</td>
<td>2024</td>
<td>Autotune still</td>
<td>BIT</td>
<td></td>
<td></td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>RWZ</td>
<td>F__</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Выполняется самонастройка при двигателе, связанном с системой передачи вращения. Процедура самонастройки может вызвать ограниченный поворот вала двигателя. Для выполнения самонастройки следует той же процедуре, что и описанная выше для предыдущего параметра.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14.9</td>
<td>2028</td>
<td>Take status</td>
<td>ENUM</td>
<td></td>
<td></td>
<td>Required</td>
<td>0</td>
<td>0</td>
<td>R</td>
<td>F__</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Индикация статуса сохранения параметров.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>0 Required</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1 Done</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>В этом параметре отображается сообщение Required, когда введенные параметры двигателя необходимо сохранить. Когда они уже сохранены, в параметре индицируется Done.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14.10</td>
<td>2030</td>
<td>Autotune status</td>
<td>ENUM</td>
<td></td>
<td></td>
<td>Required</td>
<td>0</td>
<td>0</td>
<td>R</td>
<td>F__</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Индикация статуса выполнения самонастройки параметров двигателя.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>0 Required</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1 Done</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>В этом параметре отображается сообщение Required, если требуется самонастройка параметров двигателя. Когда самонастройка выполнена, в параметре отображается Done.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14.11</td>
<td>2050</td>
<td>Measured Rs</td>
<td>ohm</td>
<td>FLOAT</td>
<td>CALCF</td>
<td>0.001</td>
<td>200.0</td>
<td>ERWS</td>
<td>F__</td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Измеренное значение сопротивления ротора.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14.12</td>
<td>2052</td>
<td>Measured DTL</td>
<td>V</td>
<td>FLOAT</td>
<td></td>
<td>0.0</td>
<td>0.0</td>
<td>100.0</td>
<td>ERWS</td>
<td>F__</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Измеренное значение компенсации времени запаздывания.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14.13</td>
<td>2054</td>
<td>Measured DTS</td>
<td>V/A</td>
<td>FLOAT</td>
<td></td>
<td>0.0</td>
<td>0.0</td>
<td>100.0</td>
<td>ERWS</td>
<td>F__</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Измеренное значение компенсации градиента.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14.14</td>
<td>2056</td>
<td>Measured Lsig</td>
<td>mH</td>
<td>FLOAT</td>
<td>CALCF</td>
<td>0.1</td>
<td>200.0</td>
<td>ERWS</td>
<td>F__</td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Измеренное значение индуктивности рассеяния.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14.15</td>
<td>2074</td>
<td>Lsig min misurata</td>
<td>mH</td>
<td>FLOAT</td>
<td>CALCF</td>
<td>0.1</td>
<td>300.0</td>
<td>ERWS</td>
<td>F__</td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Значение минимальной индуктивности рассеяния, измеренной в ходе автосамостройки.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14.16</td>
<td>2078</td>
<td>Take tune parameters</td>
<td>BIT</td>
<td></td>
<td></td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>ERWZ</td>
<td>F__</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Сохраняются в приводе данные двигателя, определенные в ходе процедуры самонастройки.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Примечание: Данные не сохраняются в постоянной памяти. Используйте команду "Save Parameters" из меню DRIVE CONFIG для сохранения в энергонезависимой памяти.
Уставка опорного сигнала для всех данных, составляющих процент от скорости (Опорные сигналы, Адаптивное регулирование скорости ...) соответствует 100% значению скорости. Этот параметр можно изменить только при заблокированном инверторе (Enable drive = Disabled). Рекомендуется установить значение этого параметра на номинальную скорость двигателя; в случае изменения рекомендуется повторить процедуру Автонастройки.

Параметр Full scale speed не определяет максимально возможную скорость. В любом случае, максимальное значение процентной доли скорости составляет ± 200% от значения Full scale speed.
Меню15 - ENCODER CONFIG

Для режима управления с замкнутым контуром требуется считывание скорости вращения энкодером на валу двигателя. Для приема сигналов энкодера необходимо заказать специальную плату. В синхронном режиме обратная связь с помощью энкодера очень важна для правильной работы привода.

Примечание
Это меню отображается только при наличии платы обратной связи.

<table>
<thead>
<tr>
<th>Меню</th>
<th>ПАР</th>
<th>Описание</th>
<th>Ед. изм.</th>
<th>Тип</th>
<th>FB ВИТ</th>
<th>Умолч.</th>
<th>Мин.</th>
<th>Макс.</th>
<th>Доступ</th>
<th>Режим</th>
</tr>
</thead>
<tbody>
<tr>
<td>15.1</td>
<td>2100</td>
<td>Encoder pulses</td>
<td>ppr</td>
<td>UINT16</td>
<td>1024</td>
<td>128</td>
<td>16384</td>
<td>RWZ</td>
<td>F__</td>
<td></td>
</tr>
</tbody>
</table>

Установка числа импульсов энкодера в контуре обратной связи. Во время установки для инкрементальных синусоидальных энкодеров + абсолютных энкодеров EnDat, абсолютных энкодеров EnDat Full digital и Hiperface это значение устанавливается автоматически, считыванием числа импульсов инкрементальных энкодеров. При использовании энкодера EnDat Full digital автоматически заданное значение может быть меньше минимального.

<table>
<thead>
<tr>
<th>Меню</th>
<th>ПАР</th>
<th>Описание</th>
<th>Ед. изм.</th>
<th>Тип</th>
<th>FB ВИТ</th>
<th>Умолч.</th>
<th>Мин.</th>
<th>Макс.</th>
<th>Доступ</th>
<th>Режим</th>
</tr>
</thead>
<tbody>
<tr>
<td>15.2</td>
<td>2102</td>
<td>Encoder supply</td>
<td>V</td>
<td>FLOAT</td>
<td>5.2</td>
<td>5.2</td>
<td>CALCF</td>
<td>ERWZ</td>
<td>F__</td>
<td></td>
</tr>
</tbody>
</table>

Установка напряжения питания энкодера, выдаваемого соответствующей опциональной платой. Мин. и макс. значения изменяются в соответствии с типом применяемой платы энкодеров.

<table>
<thead>
<tr>
<th>Тип энкодера</th>
<th>По умолчанию</th>
<th>Мин.</th>
<th>Макс.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enc 1 EXP-DE-1R1F2-ADL</td>
<td>5.2 В</td>
<td>5.2 В</td>
<td>22.0 В</td>
</tr>
<tr>
<td>Enc 2 EXP-SE-1R1F2-ADL</td>
<td>5.2 В</td>
<td>5.2 В</td>
<td>6.0 В</td>
</tr>
<tr>
<td>Enc 3 EXP-SESC-1R1F2-ADL</td>
<td>5.2 В</td>
<td>5.2 В</td>
<td>6.0 В</td>
</tr>
<tr>
<td>Enc 4 EXP-EN/SSI-1R1F2-ADL</td>
<td>5.2 В</td>
<td>5.2 В</td>
<td>10.0 В</td>
</tr>
<tr>
<td>Enc 5 EXP-HIP-1R1F2-ADL</td>
<td>8.0 В</td>
<td>7.0 В</td>
<td>12.0 В</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Меню</th>
<th>ПАР</th>
<th>Описание</th>
<th>Ед. изм.</th>
<th>Тип</th>
<th>FB ВИТ</th>
<th>Умолч.</th>
<th>Мин.</th>
<th>Макс.</th>
<th>Доступ</th>
<th>Режим</th>
</tr>
</thead>
<tbody>
<tr>
<td>15.3</td>
<td>2104</td>
<td>Encoder input config</td>
<td>ENUM</td>
<td>TTL</td>
<td>0</td>
<td>1</td>
<td>ERWZ</td>
<td>F__</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Установка входной конфигурации инкрементального цифрового энкодера, TTL или HTL.

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>HTL</td>
</tr>
<tr>
<td>1</td>
<td>TTL</td>
</tr>
</tbody>
</table>

Этот параметр автоматически устанавливается в HTL, когда значение, установленное в параметре Encoder supply, больше 6,0 В.

<table>
<thead>
<tr>
<th>Меню</th>
<th>ПАР</th>
<th>Описание</th>
<th>Ед. изм.</th>
<th>Тип</th>
<th>FB ВИТ</th>
<th>Умолч.</th>
<th>Мин.</th>
<th>Макс.</th>
<th>Доступ</th>
<th>Режим</th>
</tr>
</thead>
<tbody>
<tr>
<td>15.4</td>
<td>2106</td>
<td>Encoder repetition</td>
<td>ENUM</td>
<td>No division</td>
<td>0</td>
<td>3</td>
<td>ERWZ</td>
<td>F__</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Установка делителя частоты на выходе повторителя сигналов энкодера.

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>No division (Нет деления)</td>
</tr>
<tr>
<td>1</td>
<td>Divide (Деление на) 2</td>
</tr>
<tr>
<td>2</td>
<td>Divide (Деление на) 4</td>
</tr>
<tr>
<td>3</td>
<td>Divide (Деление на) 8</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Меню</th>
<th>ПАР</th>
<th>Описание</th>
<th>Ед. изм.</th>
<th>Тип</th>
<th>FB ВИТ</th>
<th>Умолч.</th>
<th>Мин.</th>
<th>Макс.</th>
<th>Доступ</th>
<th>Режим</th>
</tr>
</thead>
<tbody>
<tr>
<td>15.5</td>
<td>2108</td>
<td>Encoder signal Vpp</td>
<td>V</td>
<td>FLOAT</td>
<td>1</td>
<td>0.8</td>
<td>1.2</td>
<td>ERWZ</td>
<td>F__</td>
<td></td>
</tr>
</tbody>
</table>

Установка значения размаха напряжения сигнала энкодера. Инкрементальные синусоидальные энкодеры и абсолютные SinCos обычно вырабатывают сигналы с размахом напряжения 1 В. Ввиду потери напряжения в кабеле, значение размаха напряжения сигнала, получаемого платой обратной связи, может быть ниже, что вызывает выдачу тревожного сигнала Speed fbk loss. Этот параметр можно использовать для установки значения размаха напряжения инкрементальных синусоидальных энкодеров и абсолютных SinCos энкодеров на входных клеммах платы обратной связи.

<table>
<thead>
<tr>
<th>Меню</th>
<th>ПАР</th>
<th>Описание</th>
<th>Ед. изм.</th>
<th>Тип</th>
<th>FB ВИТ</th>
<th>Умолч.</th>
<th>Мин.</th>
<th>Макс.</th>
<th>Доступ</th>
<th>Режим</th>
</tr>
</thead>
<tbody>
<tr>
<td>15.6</td>
<td>2110</td>
<td>Encoder signal check</td>
<td>ENUM</td>
<td>Check A-B</td>
<td>0</td>
<td>3</td>
<td>ERWZ</td>
<td>F__</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Задание каналов цифрового инкрементального энкодера, которые будут контролироваться для обработки сигнала неисправности Speed fbk loss.

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Check disabled (Проверки нет)</td>
</tr>
</tbody>
</table>
1. Check A-B (Проверка каналов A-B)
2. Check A-B-Z (Проверка каналов A-B-Z)
3. Check A-B-Z-P Проверка A-B-Z-P
4. Check A-B-SE

При установке в 1 проверяются сигналы в каналах A-B.
При установке в 2 проверяются сигналы в каналах A-B-Z.
При установке в 3 проверяются сигналы в каналах A-B-Z и ожидаемое число импульсов на оборот.
При установке на 4 это приложение контролирует потерю обратной связи для асинхронных (single ended, SE) энкодеров.
Если приложение определяет потерю обратной связи, генерируется сигнал Speed fbk loss [22].
Поскольку потеря обратной связи не может быть определена для близких к нулю скоростей, контроль выполняется только при условии, что нулевая точка скорости выше, чем значение, заданное в параметре 4564 SpdFbkLoss threshold. Важно также иметь в виду тот факт, что при работе с нулевой точкой скорости, лишь ненамного превышающей предел, заданный в параметре 4564 SpdFbkLoss threshold, ошибка определения скорости может превышать заданный порог.
В этом случае нужно увеличить значение параметра 4550 SpdRefLoss threshold или параметра 4554 SpdRefLoss holdoff.

Меню ПАР. Описание Ед. изм. Тип FB BIT Умолч. Мин. Макс. Доступ Режим
15.7 Encoder SSI bits
UINT16 25 13 25 ERWZ F__
Установка длины SSI-пакета, определяемой как число циклов тактовой частоты, поскольку для абсолютных SSI-энкодеров, имеющихся на рынке, эта длина может составлять от 13 до 25 бит.

Меню ПАР. Описание Ед. изм. Тип FB BIT Умолч. Мин. Макс. Доступ Режим
15.8 Encoder SSI pos bits
UINT16 25 11 25 ERWZ FVS
Этим параметром устанавливается число бит кода положения SSI-энкодера.

Меню ПАР. Описание Ед. изм. Тип FB BIT Умолч. Мин. Макс. Доступ Режим
15.9 Encoder direction
ENUM Not inverted 0 1 RWZ F__
Установка знака информации, получаемой от инкрементального или абсолютного энкодера.
0 Не инвертируется
1 Инвертируется
При установке в 0 сигналы обратной связи от энкодера не инвертируются.
При установке в 1 сигналы обратной связи от энкодера инвертируются.

Согласно международным стандартам положительные опорные значения связаны с вращением двигателя по часовой стрелке, если смотреть со стороны управления (вала). Для того чтобы обеспечить правильную работу, в алгоритмах регулирования заложено, что положительные опорные значения соответствуют положительным данным измерениям скорости.
Если шкив двигателя установлен на стороне, противоположной стороне управления, он будет вращаться в направлении против часовой стрелки, когда скорость вращения положительная. Для того чтобы шкив вращался в направлении по часовой стрелке, меняется фазировку подключения двигателя, при этом знак показаний скорости меняется на противоположный. Для восстановления правильного знака показаний скорости вращения поменяйте местами подключения сигналов A+ и A- инкрементального энкодера и Sin+ и Sin- абсолютного энкодера. В абсолютных энкодерах Endat и Hiperface такое инвертирование невозможно.

Меню ПАР. Описание Ед. изм. Тип FB BIT Умолч. Мин. Макс. Доступ Режим
15.10 Encoder mode
ENUM Sinus SINCOS CALCI CALCI ERWZ F__
ADL300B: В приводе имеется встроенная плата связи с энкодерами (SinCos и инкрементальные TTL энкодер).
Режим энкодера можно выбрать в соответствии со следующей таблицей:
0 None (Нет)
1 Digital FP = 1 Digital FP (Цифровой FP)
2 Digital F (Цифровой F)
3 Sinus (Синусный) SINCOS (по умолчанию)
5 Sinus (Синусный) ENDAT
6 Sinus (Синусный) SSI
7 Sinus (Синусный) HIPER
8 ENDAT

Примечание
При изменении режим нет необходимости перезапускать привод.
ADL300 Basic с цифровым FP / цифровым F / синусным / синусным SINCOS энкодером и ADL300 Basic с синусным ENDAT / синусным SSI энкодером имеют разные торговые артикулы (см. каталог ADL300).
ADL300A: привод поддерживает различные типы плат связи с энкодером. Режим может выбираться, только если используется плата инкрементального цифрового энкодера. Если используется плата энкодеров EN/SSI, режим автоматически устанавливается приводом согласно типу обнаруженного энкодера. Для всех прочих энкодеров режим устанавливается в соответствии с используемой платой. Эти режимы перечислены в следующей таблице:

<table>
<thead>
<tr>
<th>Плата энкодера</th>
<th>Описание</th>
<th>Удал.</th>
<th>Мин.</th>
<th>Макс.</th>
<th>Доступ</th>
<th>Режим</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 None (Нет)</td>
<td></td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>ERW</td>
<td>F__</td>
</tr>
<tr>
<td>1 Digital FP (Цифровой FP)</td>
<td>EXP-DE-I1R1F2-ADL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 Digital F (Default), Цифровой F (по умолчанию)</td>
<td>EXP-DE-I1R1F2-AD</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 Sinus (Синусный)</td>
<td>EXP-SE-I1R1F2-ADL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4 Sinus (Синусный) SINCOS</td>
<td>EXP-SESC-I1R1F2-ADL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5 Sinus (Синусный) ENDAT</td>
<td>EXP-EN/SSI-I1R1F2-ADL (*)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6 Sinus (Синусный) SSI</td>
<td>EXP-EN/SSI-I1R1F2-ADL (*)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7 Sinus (Синусный) HIPER</td>
<td>EXP-HIP-I1R1F2-ADL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8 ENDAT</td>
<td>EXP-EN/SSI-I1R1F2-ADL (*)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(*) Правильный режим автоматически выбирается платой в соответствии с типом энкодера.

<table>
<thead>
<tr>
<th>Меню</th>
<th>ПАР.</th>
<th>Описание</th>
<th>Ед. изм.</th>
<th>Тип</th>
<th>FB</th>
<th>BIT</th>
<th>Удал.</th>
<th>Мин.</th>
<th>Макс.</th>
<th>Доступ</th>
<th>Режим</th>
</tr>
</thead>
<tbody>
<tr>
<td>15.11</td>
<td>2136</td>
<td>PeripheralEncoder</td>
<td>BIT</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>ERW</td>
<td>F__</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Этот параметр позволяет выбрать расположение энкодера, если он устанавливается прижатым к ротору двигателя. Если выбрано 1, см. Приложение 2.

Примечание: Если выбран периферийный энкодер (опция 1), параметр 4552 (SpdRefLoss activity) в меню ALARM CONFIG необходимо установить в запрет (DISABLE).

<table>
<thead>
<tr>
<th>Меню</th>
<th>ПАР.</th>
<th>Описание</th>
<th>Ед. изм.</th>
<th>Тип</th>
<th>FB</th>
<th>BIT</th>
<th>Удал.</th>
<th>Мин.</th>
<th>Макс.</th>
<th>Доступ</th>
<th>Режим</th>
</tr>
</thead>
<tbody>
<tr>
<td>15.12</td>
<td>2134</td>
<td>Encoder speed filter</td>
<td>ms</td>
<td>FLOAT</td>
<td>2.0</td>
<td>0.1</td>
<td>20.0</td>
<td>ERW</td>
<td>F__</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Установка постоянной времени фильтра, применяемого при считывании импульсов энкодера в цепи обратной связи. Этот параметр влияет как на точность измерения скорости, так и на динамику, получаемую в замкнутом контуре управления. С другой стороны, использование фильтра измерения скорости вращения вводит задержку, которая недопустима в контурах управления высокой динамичности. Низкие значения расширяют полосу частот регулирования, но могут усугубить некоторые помехи. Фильтр применяется к скоростям вращения, указанным в параметре Encoder speed.

<table>
<thead>
<tr>
<th>Меню</th>
<th>ПАР.</th>
<th>Описание</th>
<th>Ед. изм.</th>
<th>Тип</th>
<th>FB</th>
<th>BIT</th>
<th>Удал.</th>
<th>Мин.</th>
<th>Макс.</th>
<th>Доступ</th>
<th>Режим</th>
</tr>
</thead>
<tbody>
<tr>
<td>15.13</td>
<td>2184</td>
<td>Ext motor diam</td>
<td>UINT16</td>
<td>1</td>
<td>1</td>
<td>65535</td>
<td>ERWZ</td>
<td>F__</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Это параметр диаметра D ротора двигателя. Его следует устанавливать только при использовании периферийного энкодера (ПАР2136). См. Приложение 2.

<table>
<thead>
<tr>
<th>Меню</th>
<th>ПАР.</th>
<th>Описание</th>
<th>Ед. изм.</th>
<th>Тип</th>
<th>FB</th>
<th>BIT</th>
<th>Удал.</th>
<th>Мин.</th>
<th>Макс.</th>
<th>Доступ</th>
<th>Режим</th>
</tr>
</thead>
<tbody>
<tr>
<td>15.14</td>
<td>2186</td>
<td>Enc pulley diam</td>
<td>UINT16</td>
<td>1</td>
<td>1</td>
<td>65535</td>
<td>ERWZ</td>
<td>F__</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Это параметр диаметра d шкива инкрементального энкодера. Его следует устанавливать только при использовании периферийного энкодера (ПАР2136). См. Приложение 2.

<table>
<thead>
<tr>
<th>Меню</th>
<th>ПАР.</th>
<th>Описание</th>
<th>Ед. изм.</th>
<th>Тип</th>
<th>FB</th>
<th>BIT</th>
<th>Удал.</th>
<th>Мин.</th>
<th>Макс.</th>
<th>Доступ</th>
<th>Режим</th>
</tr>
</thead>
<tbody>
<tr>
<td>15.15</td>
<td>2084</td>
<td>Theta est kp</td>
<td>FLOAT</td>
<td>0.005</td>
<td>0.0</td>
<td>9999.0</td>
<td>ERW</td>
<td>F__</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Этот параметр позволяет отрегулировать настройку для компенсации энкодера.

<table>
<thead>
<tr>
<th>Меню</th>
<th>ПАР.</th>
<th>Описание</th>
<th>Ед. изм.</th>
<th>Тип</th>
<th>FB</th>
<th>BIT</th>
<th>Удал.</th>
<th>Мин.</th>
<th>Макс.</th>
<th>Доступ</th>
<th>Режим</th>
</tr>
</thead>
<tbody>
<tr>
<td>15.16</td>
<td>2090</td>
<td>EMF speed correction</td>
<td>perc</td>
<td>FLOAT</td>
<td>5.0</td>
<td>0.0</td>
<td>200.0</td>
<td>ERW</td>
<td>F__</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Этот параметр позволяет отрегулировать значение скорости для компенсации, заданной параметром 2084. При скорости выше этого значения компенсация выполняется.

<table>
<thead>
<tr>
<th>Меню</th>
<th>ПАР.</th>
<th>Описание</th>
<th>Ед. изм.</th>
<th>Тип</th>
<th>FB</th>
<th>BIT</th>
<th>Удал.</th>
<th>Мин.</th>
<th>Макс.</th>
<th>Доступ</th>
<th>Режим</th>
</tr>
</thead>
<tbody>
<tr>
<td>15.17</td>
<td>2150</td>
<td>Encoder speed</td>
<td>rpm</td>
<td>INT16</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>ER</td>
<td>F__</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Отображается скорость вращения двигателя, измеренная инкrementальным энкодером, с учетом фильтрации согласно параметру Encoder speed filter.
Меню | ПАР. | Описание | Ед. изм. | Тип | FB | Умолч. | Мин. | Макс. | Доступ | Режим |
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>15.18</td>
<td>2162</td>
<td>Encoder position</td>
<td>cnt</td>
<td>UINT16</td>
<td>16BIT</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>ER</td>
<td>F__</td>
</tr>
</tbody>
</table>

Отображаются показания подсчитанного количества импульсов от инкрементального энкодера. 1 обороту энкодера соответствует значение, введенное в параметре Encoder pulses, умноженное на 4.

Меню | ПАР. | Описание | Ед. изм. | Тип | FB | Умолч. | Мин. | Макс. | Доступ | Режим |
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>15.19</td>
<td>2172</td>
<td>SpdFbkLoss code</td>
<td>UINT32</td>
<td></td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>ER</td>
<td>F__</td>
</tr>
</tbody>
</table>

Отображается тревожный сигнал Speed fbk loss, выдаваемый при неисправности энкодера. Для энкодера каждого типа тревожный сигнал выдается по-разному (ошибка инкрементального сигнала, ошибка абсолютного сигнала, ошибка последовательной связи), так что этот параметр служит для отображения информации об активировавшемся тревожном сигнале. В случае нескольких причин одновременно они все отображаются в этом параметре.

<table>
<thead>
<tr>
<th>Бит</th>
<th>Значение</th>
<th>Название</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0x01</td>
<td>CHA</td>
</tr>
<tr>
<td>1</td>
<td>0x02</td>
<td>CHB</td>
</tr>
<tr>
<td>2</td>
<td>0x04</td>
<td>CHZ</td>
</tr>
<tr>
<td>3</td>
<td>0x08</td>
<td>MOD_INCR</td>
</tr>
<tr>
<td>4</td>
<td>0x10</td>
<td>MOD_ABS</td>
</tr>
<tr>
<td>5</td>
<td>0x20</td>
<td>CRC_CKS_P</td>
</tr>
<tr>
<td>6</td>
<td>0x40</td>
<td>ACK_TMO</td>
</tr>
<tr>
<td>7</td>
<td>0x80</td>
<td>OTE_ERR</td>
</tr>
<tr>
<td>8</td>
<td>0x100</td>
<td>Ошибка установки</td>
</tr>
<tr>
<td>10..15</td>
<td></td>
<td>Свобожно</td>
</tr>
<tr>
<td>16..31</td>
<td></td>
<td>Зависит от энкодера</td>
</tr>
</tbody>
</table>

Дальнейшие подробности см. в описании тревожного сигнала Speed fbk loss и в соответствующем разделе, относящемся к энкодеру соответствующего типа.

Примечание

Для правильной интерпретации причины выдачи тревожного сигнала необходимо преобразовать шестнадцатеричный код, индицируемый в параметре 15.17 SpdFbkLoss, ПАР 2172, в соответствующий двоичный код и свериться с таблицей для энкодера и соответствующим описанием.

Пример для энкодера Endat:

ПАР 2172 = A0H (шестнадцатеричное значение)

В таблице "Speed fbk loss [22] тревожные сигналы абсолютного энкодера EnDat" A0 не указано в столбце значений A0 должно рассматриваться как битовое слово со значением A0 -> 10100000 -> бит 5 и бит 7. Имеют место одновременно две причины:

Бит 5 = 20H Причина: помехи в сигнале SSI, вызывающие ошибку в контрольной сумме или четности
Бит 7 = 80H Причина: Энкодером обнаружена некорректная операция и он сообщает об этом преобразователю через бит ошибки. Тип неправильной операции энкодера указывается в битах 16 ... 31.

Меню | ПАР. | Описание | Ед. изм. | Тип | FB | Умолч. | Мин. | Макс. | Доступ | Режим |
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>15.20</td>
<td>2176</td>
<td>Encoder sync mode</td>
<td>UINT16</td>
<td></td>
<td>1</td>
<td>0</td>
<td>3</td>
<td>ERWZ</td>
<td>F__</td>
<td></td>
</tr>
</tbody>
</table>

Установка периодичности синхронизации между инкрементальной и абсолютной дорожками.

При установке в 0 синхронизация выполняется только при подаче питания.
При установке в 1 синхронизация выполняется каждый раз при разрешении команды пуска.
При установке в 2 синхронизация выполняется через каждые 128 мс.
При установке в 3 синхронизация выполняется всегда, с использованием абсолютного участка.

Эта функция может использоваться только с абсолютными энкодерами, и по умолчанию минимальные и максимальные значения изменяются в соответствии с типом энкодера.

<table>
<thead>
<tr>
<th>Тип энкодера</th>
<th>По умолчанию</th>
<th>Мин.</th>
<th>Макс.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Елс 1</td>
<td>1</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>Елс 2</td>
<td>1</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>Елс 3</td>
<td>1</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>Елс 4</td>
<td>1</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>Елс 5</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>
15.21 2190 Autophase rotation

<table>
<thead>
<tr>
<th>Описание</th>
<th>Ед. изм.</th>
<th>Тип</th>
<th>FB/BIT</th>
<th>Умолч.</th>
<th>Мин.</th>
<th>Макс.</th>
<th>Доступ</th>
<th>Режим</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>BIT</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>RWZ</td>
<td></td>
<td>F__</td>
<td></td>
</tr>
</tbody>
</table>

Этот параметр можно устанавливать для выполнения фазировки энкодера с вращением двигателя: двигатель должен быть освобожден и к нему не должно прилагаться никакой нагрузки (тормоз должен быть снят). Эта процедура обеспечивает самую высокую степень точности.

Для того чтобы выполнить данную команду:
- разомкните контакт разрешения (Enable);
- установите данный параметр в 1 (для команд, посылаемых по каналу последовательной коммуникации);
- нажмите Enter для подтверждения (если команда посылается с клавиатуры);
- при запросе замыкания контакта разрешения подайте сигнал на клемму 9 (Enable);
- по окончании процедуры поступит запрос на размыкание контакта разрешения (Enable), подтверждающего завершение.

Примечание
Дополнительную информацию см. в разделе A3.2 Приложения к Руководству по быстрому запуску.

15.22 2192 Autophase still

<table>
<thead>
<tr>
<th>Описание</th>
<th>Ед. изм.</th>
<th>Тип</th>
<th>FB/BIT</th>
<th>Умолч.</th>
<th>Мин.</th>
<th>Макс.</th>
<th>Доступ</th>
<th>Режим</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>BIT</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>RWZ</td>
<td></td>
<td>F__</td>
<td></td>
</tr>
</tbody>
</table>

Этот параметр можно установить для выполнения фазировки энкодера без хода двигателя: тормоз должен быть наложен.

Для того чтобы выполнить данную команду:
- разомкните контакт разрешения (Enable);
- установите данный параметр в 1;
- нажмите Enter для подтверждения;
- при запросе замыкания контакта разрешения подайте сигнал на клемму 9 (Enable);
- по окончании процедуры поступит запрос на размыкание контакта разрешения (Enable), подтверждающего завершение.

Примечание
Дополнительную информацию см. в разделе A3.2 Приложения к Руководству по быстрому запуску.

15.23 2194 Autophase still mode

<table>
<thead>
<tr>
<th>Описание</th>
<th>Ед. изм.</th>
<th>Тип</th>
<th>FB/BIT</th>
<th>Умолч.</th>
<th>Мин.</th>
<th>Макс.</th>
<th>Доступ</th>
<th>Режим</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ENUM</td>
<td>Modo</td>
<td>1</td>
<td>1</td>
<td>ERW</td>
<td></td>
<td>F__</td>
<td></td>
</tr>
</tbody>
</table>

Можно выбрать два различных метода статического фазирования на основе разных характеристик синхронных двигателей, имеющихся на рынке. Как первую опцию рекомендуется использовать **Режим 1**. Если **Режим 1** не запускается корректно, для двигателя (виду его конструктивных характеристик) требуется другой режим (т. е. **Режим 2**).

- 0 Mode (Режим) 1
- 1 Mode (Режим) 2

15.24 2196 Autophase still run

<table>
<thead>
<tr>
<th>Описание</th>
<th>Ед. изм.</th>
<th>Тип</th>
<th>FB/BIT</th>
<th>Умолч.</th>
<th>Мин.</th>
<th>Макс.</th>
<th>Доступ</th>
<th>Режим</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ENUM</td>
<td>First enable</td>
<td>1</td>
<td>3</td>
<td>ERWZ</td>
<td></td>
<td>F__</td>
<td></td>
</tr>
</tbody>
</table>

Процедура фазирования энкодера запускается следующим образом:

1. При первом разрешении, при принятии первого разрешения после запуска
2. При каждом разрешении, каждый раз, когда привод получает сигнал разрешения
3. Периодически, периодически по n-му сигналу разрешения, что задается в ПАР2198.

15.25 2198 Autophase cnt enable

<table>
<thead>
<tr>
<th>Описание</th>
<th>Ед. изм.</th>
<th>Тип</th>
<th>FB/BIT</th>
<th>Умолч.</th>
<th>Мин.</th>
<th>Макс.</th>
<th>Доступ</th>
<th>Режим</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>UINT16</td>
<td>50</td>
<td>2</td>
<td>65535</td>
<td>ERWZ</td>
<td></td>
<td>F__</td>
<td></td>
</tr>
</tbody>
</table>

Определяет число сигналов разрешения (включений), после которого должно запуститься фазирование энкодера.
Меню 16 - SPEED REG GAINS

Адаптивная скорость предполагает использование разных коэффициентов усиления составляющих в регуляторах скорости, в зависимости от скорости или других величин. Характер работы регулятора скорости можно, следовательно, настроить наилучшим образом под требования применения.

Примечание: Регуляторы тока, магнитного потока и напряжения можно устанавливать процедурой самонастройки. Если самонастройка прошла неудачно, ток и магнитный поток можно настроить вручную (это не относится к регуляторам напряжения, которые должен настраивать пользователь). Регулятор скорости необходимо настраивать вручную. Коэффициенты усиления составляющих обычно настраиваются в соответствии со скоростью привода.

Общие коэффициенты усиления, используемые регулятором скорости, рассчитываются, как показано в следующих примерах. Результаты в безразмерных единицах:

Общий коэффициент усиления пропорциональной составляющей = \(\frac{\text{Speed reg P1 gain (PAR 2200)}}{100\%} \times \text{Speed reg P gain (PAR 2236)} \)

Общий коэффициент усиления интегральной составляющей = \(\frac{\text{Speed reg P1 gain (PAR 2202)}}{100\%} \times \frac{1}{\text{Speed reg I time (PAR 2238)}} \times \text{Общий коэффициент усиления пропорциональной составляющей} \)

<table>
<thead>
<tr>
<th>Меню</th>
<th>ПАР.</th>
<th>Описание</th>
<th>Ед. изм.</th>
<th>Тип</th>
<th>Умолч.</th>
<th>Мин.</th>
<th>Макс.</th>
<th>Доступ</th>
<th>Режим</th>
</tr>
</thead>
<tbody>
<tr>
<td>16.1</td>
<td>2200</td>
<td>Speed reg P1 gain</td>
<td>perc</td>
<td>INT16</td>
<td>100</td>
<td>0</td>
<td>1000</td>
<td>RW</td>
<td>F__</td>
</tr>
</tbody>
</table>

Установка усиления пропорциональной составляющей в регуляторе скорости, уставка 1

<table>
<thead>
<tr>
<th>Меню</th>
<th>ПАР.</th>
<th>Описание</th>
<th>Ед. изм.</th>
<th>Тип</th>
<th>Умолч.</th>
<th>Мин.</th>
<th>Макс.</th>
<th>Доступ</th>
<th>Режим</th>
</tr>
</thead>
<tbody>
<tr>
<td>16.2</td>
<td>2202</td>
<td>Speed reg I1 gain</td>
<td>perc</td>
<td>INT16</td>
<td>100</td>
<td>0</td>
<td>1000</td>
<td>RW</td>
<td>F__</td>
</tr>
</tbody>
</table>

Установка усиления интегральной составляющей в регуляторе скорости, уставка 1. Увеличение значения усиления пропорциональной составляющей повышает пропорциональное действие регулятора.

<table>
<thead>
<tr>
<th>Меню</th>
<th>ПАР.</th>
<th>Описание</th>
<th>Ед. изм.</th>
<th>Тип</th>
<th>Умолч.</th>
<th>Мин.</th>
<th>Макс.</th>
<th>Доступ</th>
<th>Режим</th>
</tr>
</thead>
<tbody>
<tr>
<td>16.3</td>
<td>2204</td>
<td>Speed reg P2 gain</td>
<td>perc</td>
<td>INT16</td>
<td>100</td>
<td>0</td>
<td>1000</td>
<td>RW</td>
<td>F__</td>
</tr>
</tbody>
</table>

Установка усиления пропорциональной составляющей в регуляторе скорости, уставка 2

<table>
<thead>
<tr>
<th>Меню</th>
<th>ПАР.</th>
<th>Описание</th>
<th>Ед. изм.</th>
<th>Тип</th>
<th>Умолч.</th>
<th>Мин.</th>
<th>Макс.</th>
<th>Доступ</th>
<th>Режим</th>
</tr>
</thead>
<tbody>
<tr>
<td>16.4</td>
<td>2206</td>
<td>Speed reg I2 gain</td>
<td>perc</td>
<td>INT16</td>
<td>100</td>
<td>0</td>
<td>1000</td>
<td>RW</td>
<td>F__</td>
</tr>
</tbody>
</table>

Установка усиления интегральной составляющей в регуляторе скорости, уставка 2. Увеличение значения усиления пропорциональной составляющей повышает пропорциональное действие регулятора.

<table>
<thead>
<tr>
<th>Меню</th>
<th>ПАР.</th>
<th>Описание</th>
<th>Ед. изм.</th>
<th>Тип</th>
<th>Умолч.</th>
<th>Мин.</th>
<th>Макс.</th>
<th>Доступ</th>
<th>Режим</th>
</tr>
</thead>
<tbody>
<tr>
<td>16.5</td>
<td>2208</td>
<td>Speed reg P3 gain</td>
<td>perc</td>
<td>INT16</td>
<td>100</td>
<td>0</td>
<td>1000</td>
<td>ERW</td>
<td>F__</td>
</tr>
</tbody>
</table>

Установка усиления пропорциональной составляющей в регуляторе скорости, уставка 3

<table>
<thead>
<tr>
<th>Меню</th>
<th>ПАР.</th>
<th>Описание</th>
<th>Ед. изм.</th>
<th>Тип</th>
<th>Умолч.</th>
<th>Мин.</th>
<th>Макс.</th>
<th>Доступ</th>
<th>Режим</th>
</tr>
</thead>
<tbody>
<tr>
<td>16.6</td>
<td>2210</td>
<td>Speed reg I3 gain</td>
<td>perc</td>
<td>INT16</td>
<td>100</td>
<td>0</td>
<td>1000</td>
<td>ERW</td>
<td>F__</td>
</tr>
</tbody>
</table>

Установка усиления интегральной составляющей в регуляторе скорости, уставка 3. Увеличение значения усиления пропорциональной составляющей повышает пропорциональное действие регулятора.

<table>
<thead>
<tr>
<th>Меню</th>
<th>ПАР.</th>
<th>Описание</th>
<th>Ед. изм.</th>
<th>Тип</th>
<th>Умолч.</th>
<th>Мин.</th>
<th>Макс.</th>
<th>Доступ</th>
<th>Режим</th>
</tr>
</thead>
<tbody>
<tr>
<td>16.7</td>
<td>2228</td>
<td>Speed reg P0 gain</td>
<td>perc</td>
<td>INT16</td>
<td>100</td>
<td>0</td>
<td>1000</td>
<td>ERW</td>
<td>F__</td>
</tr>
</tbody>
</table>

Установка усиления пропорциональной составляющей в регуляторе скорости при нулевой скорости.

<table>
<thead>
<tr>
<th>Меню</th>
<th>ПАР.</th>
<th>Описание</th>
<th>Ед. изм.</th>
<th>Тип</th>
<th>Умолч.</th>
<th>Мин.</th>
<th>Макс.</th>
<th>Доступ</th>
<th>Режим</th>
</tr>
</thead>
<tbody>
<tr>
<td>16.8</td>
<td>2230</td>
<td>Speed reg I0 gain</td>
<td>perc</td>
<td>INT16</td>
<td>100</td>
<td>0</td>
<td>1000</td>
<td>ERW</td>
<td>F__</td>
</tr>
</tbody>
</table>

Установка усиления интегральной составляющей в регуляторе скорости при нулевой скорости. Увеличение значения усиления пропорциональной составляющей повышает пропорциональное действие регулятора.

<table>
<thead>
<tr>
<th>Меню</th>
<th>ПАР.</th>
<th>Описание</th>
<th>Ед. изм.</th>
<th>Тип</th>
<th>Умолч.</th>
<th>Мин.</th>
<th>Макс.</th>
<th>Доступ</th>
<th>Режим</th>
</tr>
</thead>
<tbody>
<tr>
<td>16.9</td>
<td>2218</td>
<td>Gain adp spd thr2_1</td>
<td>perc</td>
<td>FLOAT</td>
<td>85.0</td>
<td>0.0</td>
<td>100.0</td>
<td>ERW</td>
<td>F__</td>
</tr>
</tbody>
</table>

Установка порога скорости для изменения усиления с уставки 1 на уставку 2 или наоборот.
Установка полосы частот, в пределах которой коэффициенты усиления изменяются с уставки 1 на уставку 2 или наоборот. Применение этого параметра обеспечивает гладкий переход от одной уставки к другой.

Установка порога скорости для изменения усиления с уставки 3 на уставку 2 или наоборот.

Установка полосы частот, в пределах которой коэффициенты усиления изменяются с уставки 3 на уставку 2 или наоборот. Применение этого параметра обеспечивает гладкий переход от одной уставки к другой.

Установка порога скорости для изменения усиления с уставки 0 на уставку 2 или наоборот.

Установка полосы частот, в пределах которой коэффициенты усиления изменяются с уставки 0 на уставку 2 или наоборот. Применение этого параметра обеспечивает гладкий переход от одной уставки к другой.

Режимы профиля усиления.

0 Profile 1
1 Profile 21
2 Profile 321
3 Profile 0213

 При установке в 0 используется профиль, показанный на рис. ниже.

 При установке в 1 используется профиль, показанный на рис. ниже.
• При установке в 2 используется профиль, показанный на рис. ниже.

Меню ПАР. Описание Ед. изм. Тип FB ВИТ Умолч. Мин. Макс. Доступ Режим
16.16 2232 Spd reg P gain Inuse perc INT16 16/32BIT 100 0 1000 ER F_
Отображается в процентах текущее значение коэффициента пропорциональной составляющей.

Меню ПАР. Описание Ед. изм. Тип FB ВИТ Умолч. Мин. Макс. Доступ Режим
16.17 2234 Spd reg I gain Inuse perc INT16 16/32BIT 100 0 1000 ER F_
Отображается в процентах текущее значение коэффициента интегральной составляющей.

Меню ПАР. Описание Ед. изм. Тип FB ВИТ Умолч. Мин. Макс. Доступ Режим
16.18 2236 Speed reg P gain N/rpm FLOAT CALCF 0.0 500.0 ERWS F_
Установка коэффициента пропорциональной составляющей в регуляторе скорости.
<table>
<thead>
<tr>
<th>Меню</th>
<th>ПАР</th>
<th>Описание</th>
<th>Ед. изм.</th>
<th>Тип</th>
<th>ФВ В/Т</th>
<th>Умолч.</th>
<th>Мин.</th>
<th>Макс.</th>
<th>Доступ</th>
<th>Режим</th>
</tr>
</thead>
<tbody>
<tr>
<td>16.19</td>
<td>2238</td>
<td>Speed reg I time</td>
<td>ms</td>
<td>FLOAT</td>
<td>CALCF</td>
<td>1.0</td>
<td>5000.0</td>
<td>ERWS</td>
<td>F__</td>
<td></td>
</tr>
</tbody>
</table>

Установка коэффициента интегральной составляющей в регуляторе скорости. Уменьшение значения времени интегрирования повышает интегральное действие регулятора.

<table>
<thead>
<tr>
<th>Меню</th>
<th>ПАР</th>
<th>Описание</th>
<th>Ед. изм.</th>
<th>Тип</th>
<th>ФВ В/Т</th>
<th>Умолч.</th>
<th>Мин.</th>
<th>Макс.</th>
<th>Доступ</th>
<th>Режим</th>
</tr>
</thead>
<tbody>
<tr>
<td>16.20</td>
<td>2240</td>
<td>Inertia</td>
<td>kgm²</td>
<td>FLOAT</td>
<td>SIZE</td>
<td>0.001</td>
<td>100.0</td>
<td>RWZS</td>
<td>F__</td>
<td></td>
</tr>
</tbody>
</table>

Установка общего момента инерции оборудования применительно к валу двигателя. Когда этот параметр изменяется, все значения усиления регулятора скорости заново инициализируются в соответствии со значением, указанным в ПАР 2242. Повышение динамической реакции регулятора скорости при изменении опорного значения можно модифицировать изменением значения тока на этапе ускорения/замедления, с учетом прилагаемого момента инерции механизма.

<table>
<thead>
<tr>
<th>Меню</th>
<th>ПАР</th>
<th>Описание</th>
<th>Ед. изм.</th>
<th>Тип</th>
<th>ФВ В/Т</th>
<th>Умолч.</th>
<th>Мин.</th>
<th>Макс.</th>
<th>Доступ</th>
<th>Режим</th>
</tr>
</thead>
<tbody>
<tr>
<td>16.21</td>
<td>2242</td>
<td>Bandwidth</td>
<td>rad/s</td>
<td>FLOAT</td>
<td>SIZE</td>
<td>1.0</td>
<td>500.0</td>
<td>RWZS</td>
<td>F__</td>
<td></td>
</tr>
</tbody>
</table>

Установка полосы частот. Увеличение этого параметра ускоряет динамическую реакцию системы и делает систему более жесткой.
Меню 17 - REGULATOR PARAM

<table>
<thead>
<tr>
<th>№</th>
<th>Описание</th>
<th>Ед. изм.</th>
<th>Тип</th>
<th>Умол.</th>
<th>Мин.</th>
<th>Макс.</th>
<th>Доступ</th>
<th>Режим</th>
</tr>
</thead>
<tbody>
<tr>
<td>17.1</td>
<td>Current reg P gain</td>
<td>V/A</td>
<td>FLOAT</td>
<td>CALCF</td>
<td>0.0</td>
<td>0.0</td>
<td>ERWS</td>
<td>F__</td>
</tr>
<tr>
<td></td>
<td>Установка коэффициента пропорциональной составляющей в регуляторе тока.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17.2</td>
<td>Current reg I time</td>
<td>ms</td>
<td>FLOAT</td>
<td>CALCF</td>
<td>0.01</td>
<td>10000.0</td>
<td>ERWS</td>
<td>F__</td>
</tr>
<tr>
<td></td>
<td>Установка коэффициента интегральной составляющей в регуляторе тока.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17.3</td>
<td>Voltage reg P gain</td>
<td>Wb/V</td>
<td>FLOAT</td>
<td>CALCF</td>
<td>0.0</td>
<td>0.0</td>
<td>ERWS</td>
<td>F__</td>
</tr>
<tr>
<td></td>
<td>Установка коэффициента пропорциональной составляющей в регуляторе напряжения.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17.4</td>
<td>Voltage reg I time</td>
<td>s</td>
<td>FLOAT</td>
<td>CALCF</td>
<td>0.1</td>
<td>100.0</td>
<td>ERWS</td>
<td>F__</td>
</tr>
<tr>
<td></td>
<td>Установка коэффициента интегральной составляющей в регуляторе напряжения.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17.5</td>
<td>Dead time limit</td>
<td>V</td>
<td>FLOAT</td>
<td>SIZE</td>
<td>0.0</td>
<td>50.0</td>
<td>ERWS</td>
<td>F__</td>
</tr>
<tr>
<td></td>
<td>Установка значения компенсации времени запаздывания напряжения.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Функция компенсации времени запаздывания (Dead time compensation) компенсирует искажение выходного напряжения, вызванное падением напряжения на IGBT-транзисторах и их коммутиционными характеристиками.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Искажение выходного напряжения может привести к неравномерному вращению двигателя.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17.6</td>
<td>Dead time slope</td>
<td>V/A</td>
<td>FLOAT</td>
<td>SIZE</td>
<td>0.0</td>
<td>200.0</td>
<td>ERWS</td>
<td>F__</td>
</tr>
<tr>
<td></td>
<td>Установка значения наклона линии компенсации времени запаздывания.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17.7</td>
<td>Voltage base</td>
<td>V</td>
<td>FLOAT</td>
<td>CALCF</td>
<td>50.0</td>
<td>690.0</td>
<td>ERWS</td>
<td>F__</td>
</tr>
<tr>
<td></td>
<td>Задание базового напряжения двигателя. Этот параметр подсчитывается автоматически в процедуре самонастройки.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17.8</td>
<td>Voltage margin</td>
<td>perc</td>
<td>FLOAT</td>
<td>CALCF</td>
<td>5.0</td>
<td>10.0</td>
<td>ERWS</td>
<td>F__</td>
</tr>
<tr>
<td></td>
<td>Установка запаса по регулированию напряжения в соответствии с имеющимся напряжением. В случае, когда установка базового напряжения близка к фактическому вводному напряжению или равна ему, параметр Voltage margin представляет допустимый запас по регулированию напряжения для обеспечения быстрого изменения тока при внезапном скачкообразном изменении приложенной нагрузки.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Значение 5% обеспечивает очень быструю реакцию на скачкообразное изменение нагрузки, но за счет потери в выходном напряжении и, следовательно, снижения выходной мощности.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>При минимальном значении (1%) достигается максимальное выходное напряжение (98%) от напряжения питания сети, но с потерей качества в динамической реакции.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17.9</td>
<td>Magnet current lim</td>
<td>A</td>
<td>FLOAT</td>
<td>CALCF</td>
<td>0.0</td>
<td>0.0</td>
<td>ERWS</td>
<td>F__</td>
</tr>
<tr>
<td></td>
<td>Установка тока намагничивания для работы на скоростях, больших, чем номинальная скорость вращения двигателя.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Меню 18 - TORQUE CONFIG

<table>
<thead>
<tr>
<th>Меню</th>
<th>ПАР.</th>
<th>Описание</th>
<th>Ед. изм.</th>
<th>Тип</th>
<th>FB BIT</th>
<th>Умолч.</th>
<th>Мин.</th>
<th>Макс.</th>
<th>Доступ</th>
<th>Режим</th>
</tr>
</thead>
<tbody>
<tr>
<td>18.1</td>
<td>2350</td>
<td>Torque curr lim Pos</td>
<td>A</td>
<td>FLOAT</td>
<td>16/32BIT</td>
<td>CALC</td>
<td>0.0</td>
<td>CALC</td>
<td>ERWS</td>
<td>F___</td>
</tr>
</tbody>
</table>

Установка предела действующего момента привода для положительного направления тока (вращение по часовой стрелке и торможение против часовой стрелки).

<table>
<thead>
<tr>
<th>Меню</th>
<th>ПАР.</th>
<th>Описание</th>
<th>Ед. изм.</th>
<th>Тип</th>
<th>FB BIT</th>
<th>Умолч.</th>
<th>Мин.</th>
<th>Макс.</th>
<th>Доступ</th>
<th>Режим</th>
</tr>
</thead>
<tbody>
<tr>
<td>18.2</td>
<td>2352</td>
<td>Torque curr lim Neg</td>
<td>A</td>
<td>FLOAT</td>
<td>16/32BIT</td>
<td>CALC</td>
<td>0.0</td>
<td>CALC</td>
<td>ERWS</td>
<td>F___</td>
</tr>
</tbody>
</table>

Установка предела действующего момента привода для отрицательного направления тока (вращение против часовой стрелки и торможение по часовой стрелке).

<table>
<thead>
<tr>
<th>Меню</th>
<th>ПАР.</th>
<th>Описание</th>
<th>Ед. изм.</th>
<th>Тип</th>
<th>FB BIT</th>
<th>Умолч.</th>
<th>Мин.</th>
<th>Макс.</th>
<th>Доступ</th>
<th>Режим</th>
</tr>
</thead>
<tbody>
<tr>
<td>18.3</td>
<td>2354</td>
<td>Torque curr lim sel</td>
<td>ENUM</td>
<td>Sorg limcoppia</td>
<td>0</td>
<td>3</td>
<td>ERWZ</td>
<td>F___</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Установка характера работы привода в условиях ограничения тока.

0 - Отключено
1 - T clim +/-
2 - T clim mot/gen
3 - T limit src

При установке в 0 никакого специального типа ограничения тока не задается.

При установке в 1 ограничение активного положительного момента равно Torque curr lim Pos, а ограничение отрицательного активного момента равно Torque curr lim Neg.

Ограничения момента при Torque curr lim Sel = 1

<table>
<thead>
<tr>
<th>speed</th>
<th>torque</th>
<th>torque</th>
</tr>
</thead>
<tbody>
<tr>
<td>Torque curr lim Neg</td>
<td>Torque curr lim Pos</td>
<td>Torque curr lim Neg</td>
</tr>
</tbody>
</table>

1 – Если скорость вращения двигателя > +1% от Rated speed, предел активного положительного момента равен Torque curr lim Pos, а предел отрицательного активного момента равен Torque curr lim Neg.

2 – Если скорость вращения двигателя < -1% от Rated speed, активный положительный момент равен Torque curr lim Neg, а активный отрицательный момент равен Torque curr lim Pos.

4 – Если -1% или двигатель не вращается < скорость вращения двигателя < +1% от Rated speed, активный положительный момент равен Torque curr lim Pos, а активный отрицательный момент равен Torque curr lim Neg.

При установке в 3 ограничения момента симметричны. Опорный момент - это значение Torque curr lim Pos. Этот режим не работает при управлении SSC.

<table>
<thead>
<tr>
<th>Меню</th>
<th>ПАР.</th>
<th>Описание</th>
<th>Ед. изм.</th>
<th>Тип</th>
<th>FB BIT</th>
<th>Умолч.</th>
<th>Мин.</th>
<th>Макс.</th>
<th>Доступ</th>
<th>Режим</th>
</tr>
</thead>
<tbody>
<tr>
<td>18.4</td>
<td>2358</td>
<td>Torque limit src</td>
<td>LINK</td>
<td>16/32BIT</td>
<td>3726</td>
<td>0</td>
<td>16384</td>
<td>ERWZ</td>
<td>F___</td>
<td></td>
</tr>
</tbody>
</table>

Выбор исходного значения (источника) сигнала, используемого для текущего ограничения момента. Сигналы, которые можно связать с данной функцией, перечислены в списке выбора "L_LIM".

ADL300 • Функциональное описание и список параметров 75
<table>
<thead>
<tr>
<th>Меню</th>
<th>ПАР.</th>
<th>Описание</th>
<th>Ед. изм.</th>
<th>Тип</th>
<th>FB ВИТ</th>
<th>Умолч.</th>
<th>Мин.</th>
<th>Макс.</th>
<th>Доступ</th>
<th>Режим</th>
</tr>
</thead>
<tbody>
<tr>
<td>18.5</td>
<td>2360</td>
<td>Torque climPos Inuse</td>
<td>A</td>
<td>FLOAT</td>
<td>16/32BIT</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>ER</td>
<td>F__</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Отображается значение ограничения положительного момента, используемого в данный момент.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18.6</td>
<td>2362</td>
<td>Torque climNeg Inuse</td>
<td>A</td>
<td>FLOAT</td>
<td>16/32BIT</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>ER</td>
<td>F__</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Отображается значение ограничения отрицательного момента, используемого в данный момент.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18.7</td>
<td>2380</td>
<td>Dig torque ref 1</td>
<td>perc</td>
<td>FLOAT</td>
<td>16/32BIT</td>
<td>0.0</td>
<td>-300.0</td>
<td>300.0</td>
<td>ERW</td>
<td>F__</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Численная установка опорного момента. Текущее опорное значение пропорционально активному току двигателя и определяет величину момента. Знак определяет направление момента.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18.8</td>
<td>2382</td>
<td>Torque ref 1 src</td>
<td>LINK</td>
<td>FLOAT</td>
<td>16/32BIT</td>
<td>3104</td>
<td>0</td>
<td>16384</td>
<td>ERWZ</td>
<td>F__</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Выбор исходного значения (источника) сигнала, используемого в качестве опорного момента. Сигналы, которые можно связать с данной функцией, перечислены в списке выбора "L_VREF".</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18.9</td>
<td>2384</td>
<td>Torque ref filter</td>
<td>ms</td>
<td>FLOAT</td>
<td></td>
<td>1.0</td>
<td>0.1</td>
<td>10.0</td>
<td>ERW</td>
<td>F__</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Установка фильтра для опорного момента.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18.10</td>
<td>2386</td>
<td>Torque ref</td>
<td>perc</td>
<td>FLOAT</td>
<td>16/32BIT</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>ER</td>
<td>F__</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Отображается значение опорного момента.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Меню 19 - FUNCTIONS

Меню 19.1 - FUNCTIONS/INERTIA COMP

Повышение динамической реакции регулятора скорости при изменении опорного значения можно модифицировать изменением значения тока на этапе ускорения/замедления, с учетом прилагаемого момента инерции механизма. Эти параметры рассчитываются по контуру скорости процедуры самонастройки, но пользователь может также установить их автоматически.

Примечание
Это меню не отображается, если активно лифтовое приложение.

<table>
<thead>
<tr>
<th>Меню</th>
<th>ПАР.</th>
<th>Описание</th>
<th>Ед. изм.</th>
<th>Тип</th>
<th>FB БИТ</th>
<th>Умолч.</th>
<th>Мин.</th>
<th>Макс.</th>
<th>Доступ</th>
<th>Режим</th>
</tr>
</thead>
<tbody>
<tr>
<td>19.1.1</td>
<td>3100</td>
<td>Inertia comp</td>
<td>kgm²</td>
<td>FLOAT</td>
<td>0.0</td>
<td>0.0</td>
<td>100.0</td>
<td>ERWS</td>
<td>F__</td>
<td></td>
</tr>
</tbody>
</table>

Общее значение коэффициента инерции на валу двигателя в кгм², определенного во время процедуры самонастройки. Если оно известно, пользователь может ввести его вручную.

<table>
<thead>
<tr>
<th>Меню</th>
<th>ПАР.</th>
<th>Описание</th>
<th>Ед. изм.</th>
<th>Тип</th>
<th>FB БИТ</th>
<th>Умолч.</th>
<th>Мин.</th>
<th>Макс.</th>
<th>Доступ</th>
<th>Режим</th>
</tr>
</thead>
<tbody>
<tr>
<td>19.1.2</td>
<td>3102</td>
<td>Inertia comp filter</td>
<td>ms</td>
<td>UINT16</td>
<td>30</td>
<td>1</td>
<td>100</td>
<td>ERW</td>
<td>F__</td>
<td></td>
</tr>
</tbody>
</table>

Установка фильтра для компенсации момента. Этот фильтр снижает помехи за счет снижения различения скорости в блоках, в которых задействован момент инерции.

<table>
<thead>
<tr>
<th>Меню</th>
<th>ПАР.</th>
<th>Описание</th>
<th>Ед. изм.</th>
<th>Тип</th>
<th>FB БИТ</th>
<th>Умолч.</th>
<th>Мин.</th>
<th>Макс.</th>
<th>Доступ</th>
<th>Режим</th>
</tr>
</thead>
<tbody>
<tr>
<td>19.1.3</td>
<td>3104</td>
<td>Inertia comp mon</td>
<td>perc</td>
<td>FLOAT</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>ER</td>
<td>F__</td>
<td></td>
</tr>
</tbody>
</table>

Отображается значение компенсации момента инерции в функциональном блоке.

<table>
<thead>
<tr>
<th>Меню</th>
<th>ПАР.</th>
<th>Описание</th>
<th>Ед. изм.</th>
<th>Тип</th>
<th>FB БИТ</th>
<th>Умолч.</th>
<th>Мин.</th>
<th>Макс.</th>
<th>Доступ</th>
<th>Режим</th>
</tr>
</thead>
<tbody>
<tr>
<td>19.1.4</td>
<td>3108</td>
<td>Inertia comp mode</td>
<td>ENUM</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td>Internal</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>External</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Режим компенсации инерции.

Меню 19.2 - FUNCTIONS/MOTOR OVERLOAD

Функция контроля перегрузки по току представляет собой встроенную логику защиты двигателя от перегрева. Эта защита представлена характеристиками тепловой защиты по алгоритму T и имитации действия теплового реле для двигателя, управляемого приводом ADL300.

<table>
<thead>
<tr>
<th>Меню</th>
<th>ПАР.</th>
<th>Описание</th>
<th>Ед. изм.</th>
<th>Тип</th>
<th>FB БИТ</th>
<th>Умолч.</th>
<th>Мин.</th>
<th>Макс.</th>
<th>Доступ</th>
<th>Режим</th>
</tr>
</thead>
<tbody>
<tr>
<td>19.2.1</td>
<td>3200</td>
<td>Motor ovld enable</td>
<td>BIT</td>
<td></td>
<td></td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>ERW</td>
<td>F__</td>
</tr>
</tbody>
</table>

Разрешает контроль над перегрузкой двигателя по току.

<table>
<thead>
<tr>
<th>Меню</th>
<th>ПАР.</th>
<th>Описание</th>
<th>Ед. изм.</th>
<th>Тип</th>
<th>FB БИТ</th>
<th>Умолч.</th>
<th>Мин.</th>
<th>Макс.</th>
<th>Доступ</th>
<th>Режим</th>
</tr>
</thead>
<tbody>
<tr>
<td>19.2.2</td>
<td>3202</td>
<td>Motor ovld factor</td>
<td>perc</td>
<td>FLOAT</td>
<td>150.0</td>
<td>100.0</td>
<td>300.0</td>
<td>ERWS</td>
<td>F__</td>
<td></td>
</tr>
</tbody>
</table>

Установка значения для перегрузки двигателя. Значение в процентах от номинального тока двигателя (параметр 2002 Rated current).

<table>
<thead>
<tr>
<th>Меню</th>
<th>ПАР.</th>
<th>Описание</th>
<th>Ед. изм.</th>
<th>Тип</th>
<th>FB БИТ</th>
<th>Умолч.</th>
<th>Мин.</th>
<th>Макс.</th>
<th>Доступ</th>
<th>Режим</th>
</tr>
</thead>
<tbody>
<tr>
<td>19.2.3</td>
<td>3204</td>
<td>Motor ovld time</td>
<td>s</td>
<td>FLOAT</td>
<td>30.0</td>
<td>10.0</td>
<td>300.0</td>
<td>ERWS</td>
<td>F__</td>
<td></td>
</tr>
</tbody>
</table>

Установка длительности перегрузки двигателя в секундах. Представляет собой промежуток в который защита ("Перегрузка двигателя") действует, если значение тока двигателя превышает уставку перегрузки в параметре Motor ovld factor. Этот тревожный сигнал можно назначить программируемому дискретному выходу сигнализации об отключении двигателя (Motor overload trip).

Время отключения зависит от значения тока двигателя следующим образом:
Меню ПАР. Описание Ед. изм. Тип FB В/Т Умолч. Мин. Макс. Доступ Режим

<table>
<thead>
<tr>
<th>№</th>
<th>ПАР</th>
<th>Описание</th>
<th>Ед. изм.</th>
<th>Тип</th>
<th>FB В/Т</th>
<th>Умолч.</th>
<th>Мин.</th>
<th>Макс.</th>
<th>Доступ</th>
<th>Режим</th>
</tr>
</thead>
<tbody>
<tr>
<td>19.2.4</td>
<td>3206</td>
<td>Motor service factor</td>
<td>perc</td>
<td>FLOAT</td>
<td>100.0</td>
<td>25.0</td>
<td>200.0</td>
<td></td>
<td>ERWS</td>
<td>FVS</td>
</tr>
</tbody>
</table>

Установка значения коэффициента перегрузки двигателя. Это разница между пиковым и номинальным токами. Используется для расчета тепловой модели двигателя.

Меню ПАР. Описание Ед. изм. Тип FB В/Т Умолч. Мин. Макс. Доступ Режим

<table>
<thead>
<tr>
<th>№</th>
<th>ПАР</th>
<th>Описание</th>
<th>Ед. изм.</th>
<th>Тип</th>
<th>FB В/Т</th>
<th>Умолч.</th>
<th>Мин.</th>
<th>Макс.</th>
<th>Доступ</th>
<th>Режим</th>
</tr>
</thead>
<tbody>
<tr>
<td>19.2.5</td>
<td>3216</td>
<td>Motor fan type</td>
<td>ENUM</td>
<td></td>
<td></td>
<td>Servo fan 0</td>
<td>1</td>
<td></td>
<td>ERW</td>
<td>FVS</td>
</tr>
</tbody>
</table>

Этот параметр используется для определения системы охлаждения двигателя.

0 Автоматический вентилятор
1 Внешний вентилятор

Установка "Автоматический вентилятор" указывает на наличие вентиляторного блока, закрепленного на валу двигателя, который, поэтому, вращается со скоростью, пропорциональной скорости вращения двигателя. Такое охлаждение не очень эффективно при низких скоростях вращения двигателя.

Установка "Внешний вентилятор" указывает на наличие независимого вентиляторного блока, который, поэтому, всегда вращается с номинальной скоростью. Это обеспечивает оптимальную эффективность охлаждения для всех скоростей вращения двигателя.

Когда текущая скорость вращения двигателя ниже (ПАР 2004 Rated speed / 2) и ПАР 3216 Motor fan type = Автоматический вентилятор; время срабатывания функции MOTOR OVERLOAD должно быть уменьшено ввиду недостаточного охлаждения.

При скорости вращения ниже (ПАР 2004 Rated speed / 2) время срабатывания защиты уменьшается снижением постоянного тока в функции MOTOR OVERLOAD.

Когда скорость вращения двигателя равна (ПАР 2004 Rated speed / 2), постоянный ток в функции ЗАЩИТЫ ДВИГАТЕЛЯ равен ПАР 2002 Rated current * ПАР 3206 Motor service factor, при более низких значениях это ограничение изменяется линейно с ПАР 2002 Rated current * 3206 Motor service factor * ПАР 3218 Motor derat factor, пока скорость вращения двигателя не достигнет нуля.

Ток перегрузки в функции MOTOR OVERLOAD определяется произведением ПАР 2002 Rated current * 3206 Motor service factor * ПАР 3202 Motor ovld factor, и это максимальный ток, который может протекать через двигатель. Если функция MOTOR OVERLOAD включена, привод автоматически устанавливает ограничение тока по моменту, так, что максимальный выходной ток привода не превышает этого значения.

При работе функции MOTOR OVERLOAD ток, равный уровню перегрузки, подается в двигатель не дольше времени, установленного в ПАР 3204 Motor ovld time, чем ниже скорость вращения двигателя, тем меньше допустимое время (см. рис. в начале раздела).

Меню ПАР. Описание Ед. изм. Тип FB В/Т Умолч. Мин. Макс. Доступ Режим

<table>
<thead>
<tr>
<th>№</th>
<th>ПАР</th>
<th>Описание</th>
<th>Ед. изм.</th>
<th>Тип</th>
<th>FB В/Т</th>
<th>Умолч.</th>
<th>Мин.</th>
<th>Макс.</th>
<th>Доступ</th>
<th>Режим</th>
</tr>
</thead>
<tbody>
<tr>
<td>19.2.6</td>
<td>3218</td>
<td>Motor derat factor</td>
<td>perc</td>
<td>FLOAT</td>
<td>50.0</td>
<td>0.0</td>
<td>100.0</td>
<td></td>
<td>ERWS</td>
<td>FVS</td>
</tr>
</tbody>
</table>

Этот параметр используется для задания коэффициента разгрузки. Его значение выражается в процентах от ПАР 2002 Rated current * ПАР 3206 Motor service factor.

Когда текущая скорость вращения двигателя ниже (ПАР 2004 Rated speed / 2) и ПАР 3216 Motor fan type = Автоматический вентилятор; время срабатывания защиты должно быть уменьшено ввиду недостаточного охлаждения.

При скорости вращения ниже (ПАР 2004 Rated speed / 2) время срабатывания защиты уменьшается снижением постоянного тока в функции MOTOR OVERLOAD.
Когда скорость вращения двигателя равна (ПАР 2004 Rated speed / 2), постоянный ток в функции MOTOR OVERLOAD равен ПАР 2002 Rated current * ПАР 3206 Motor service factor, при более низких значениях это ограничение изменяется линейно с ПАР 2002 Rated current * 3206 Motor service factor * ПАР 3218 Motor derat factor, пока скорость вращения двигателя не достигнет нуля.

Ток перегрузки в функции MOTOR OVERLOAD определяется произведением ПАР 2002 Rated current * 3206 Motor service factor, и это максимальный ток, который может протекать в двигателе. Если функция MOTOR OVERLOAD включена, привод автоматически устанавливает ограничение тока по моменту так, что максимальный выходной ток привода не превышает этого значения.

При работе функции MOTOR OVERLOAD ток, равный уровню перегрузки, подается в двигатель не дольше времени, установленного в ПАР 3204 Motor ovid time, чем ниже скорость вращения двигателя, тем меньше допустимое время (см. график в начале раздела).

После истечения установленного времени функция MOTOR OVERLOAD автоматически устанавливает ограничение тока по моменту так, что макс. выходной ток привода не превышает постоянный ток, определяемый функцией MOTOR OVERLOAD.

Когда текущая скорость двигателя превышает (ПАР 2004 Rated speed / 2) и ПАР 3216 Motor fan type = Автоматический вентилятор, постоянный ток не уменьшается, поскольку охлаждение достаточное.

Когда ПАР 3216 Motor fan type = Внешний вентилятор, постоянный ток не снижается, поскольку охлаждение достаточное.

Меню 19.3 - FUNCTIONS/BRES OVERLOAD

<table>
<thead>
<tr>
<th>Меню</th>
<th>ПАР</th>
<th>Описание</th>
<th>Ед. изм.</th>
<th>Тип</th>
<th>FB BIT</th>
<th>Умолч.</th>
<th>Мин.</th>
<th>Макс.</th>
<th>Доступ</th>
<th>Режим</th>
</tr>
</thead>
<tbody>
<tr>
<td>19.3.1</td>
<td>3250</td>
<td>Bres control</td>
<td>BIT</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>ERWZ</td>
<td>F__</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Разрешается подключение внешнего тормозного резистора и соответствующее управление при перегрузке.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Меню</th>
<th>ПАР</th>
<th>Описание</th>
<th>Ед. изм.</th>
<th>Тип</th>
<th>FB BIT</th>
<th>Умолч.</th>
<th>Мин.</th>
<th>Макс.</th>
<th>Доступ</th>
<th>Режим</th>
</tr>
</thead>
<tbody>
<tr>
<td>19.3.2</td>
<td>3252</td>
<td>Bres value</td>
<td>ohm</td>
<td>FLOAT</td>
<td>SIZE</td>
<td>7.0</td>
<td>1000.0</td>
<td>ERWS</td>
<td>F__</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Установка значения внешнего тормозного резистора в омах.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Меню</th>
<th>ПАР</th>
<th>Описание</th>
<th>Ед. изм.</th>
<th>Тип</th>
<th>FB BIT</th>
<th>Умолч.</th>
<th>Мин.</th>
<th>Макс.</th>
<th>Доступ</th>
<th>Режим</th>
</tr>
</thead>
<tbody>
<tr>
<td>19.3.3</td>
<td>3254</td>
<td>Bres cont power</td>
<td>kW</td>
<td>FLOAT</td>
<td>SIZE</td>
<td>0.1</td>
<td>100.0</td>
<td>ERWS</td>
<td>F__</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Установка мощности, которая может непрерывно рассеиваться на внешнем тормозном резисторе.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Меню</th>
<th>ПАР</th>
<th>Описание</th>
<th>Ед. изм.</th>
<th>Тип</th>
<th>FB BIT</th>
<th>Умолч.</th>
<th>Мин.</th>
<th>Макс.</th>
<th>Доступ</th>
<th>Режим</th>
</tr>
</thead>
<tbody>
<tr>
<td>19.3.4</td>
<td>3256</td>
<td>Bres overload factor</td>
<td>FLOAT</td>
<td>SIZE</td>
<td>1.5</td>
<td>10.0</td>
<td>ERWS</td>
<td>F__</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Установка коэффициента перегрузки внешнего резистора.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Меню</th>
<th>ПАР</th>
<th>Описание</th>
<th>Ед. изм.</th>
<th>Тип</th>
<th>FB BIT</th>
<th>Умолч.</th>
<th>Мин.</th>
<th>Макс.</th>
<th>Доступ</th>
<th>Режим</th>
</tr>
</thead>
<tbody>
<tr>
<td>19.3.5</td>
<td>3258</td>
<td>Bres overload time</td>
<td>s</td>
<td>FLOAT</td>
<td>SIZE</td>
<td>0.5</td>
<td>50.0</td>
<td>ERWS</td>
<td>F__</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Установка времени подключения внешнего тормозного резистора при перегрузке.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
В приводе ADL300 может храниться два независимых набора параметров. Их можно выбирать с клавиатуры или посредством внешних команд. Это позволяет быстро и автоматически изменить все параметры привода в соответствии с различными условиями работы. Например, можно попеременно управлять двумя двигателями с разными характеристиками. В эти два набора параметров лифтовые параметры не входят. Это позволяет переключать все параметры привода двух разных групп, имея в то же время набор параметров для приложения.

Меню 19.4 - FUNCTIONS/DOUBLE PAR SET

Данной функцией набор параметров 0 копируется в набор 1. Набор параметров 1 необходимо запрограммировать правильными значениями до разрешения управления двойным набором параметров. Когда первый набор готов, второй можно активировать следующим образом:

1. Активируйте управление двойным набором параметров, установив параметр разрешения 3300 Par set enable.
2. Скопируйте набор 0 в набор 1 командой 3306 Par set 0 to 1 copy.
3. Активируйте набор 1 c помощью параметра 3302 Par set select src.
4. Измените, как необходимо, параметры в наборе 1.
5. Сохраните параметры.
Используемый набор параметров можно изменять изменением источника из параметра 3302 Par set select src.

Эту операцию можно выполнять только на заблокированном приводе.

Когда активен двойной набор параметров, после номера каждого параметра на клавиатуре отображается номер набора параметров.

Изменение и сохранение параметров:

Когда активен двойной набор параметров, любой параметра, который нужно изменить в обоих наборах, необходимо изменять отдельно в каждом наборе.

Параметры сохраняются только в наборе, который активен в данный момент. Для сохранения обоих наборов необходимо сначала сохранить один, затем выбрать и сохранить другой.

Для постоянного сохранения данных (даже при отключенном приводе) подайте команду Save parameters (меню DRIVE CONFIG).

Внимание
Любые изменения параметров, относящихся к наборам параметров, произведенные при разрешении набора, будут утрачены при следующем переключении если не подать команду Par set 0 to 1 copy.

Меню 19.5 - FUNCTIONS/COMPARE

Эта функция позволяет сравнивать два сигнала или две величины.

<table>
<thead>
<tr>
<th>Меню</th>
<th>ПАР.</th>
<th>Описание</th>
<th>Ед. изм.</th>
<th>Тип</th>
<th>FB ВТ</th>
<th>Умнож.</th>
<th>Мин.</th>
<th>Макс.</th>
<th>Доступ</th>
<th>Режим</th>
</tr>
</thead>
<tbody>
<tr>
<td>19.5.1</td>
<td>3650</td>
<td>Dig compare input 1</td>
<td>perc</td>
<td>FLOAT</td>
<td>32BIT</td>
<td>0.0</td>
<td>-100.0</td>
<td>100.0</td>
<td>ERW</td>
<td>F__</td>
</tr>
</tbody>
</table>

Установка цифрового значения первого элемента сравнения.

<table>
<thead>
<tr>
<th>Меню</th>
<th>ПАР.</th>
<th>Описание</th>
<th>Ед. изм.</th>
<th>Тип</th>
<th>FB ВТ</th>
<th>Умнож.</th>
<th>Мин.</th>
<th>Макс.</th>
<th>Доступ</th>
<th>Режим</th>
</tr>
</thead>
<tbody>
<tr>
<td>19.5.2</td>
<td>3652</td>
<td>Dig compare input 2</td>
<td>perc</td>
<td>FLOAT</td>
<td>32BIT</td>
<td>0.0</td>
<td>-100.0</td>
<td>100.0</td>
<td>ERW</td>
<td>F__</td>
</tr>
</tbody>
</table>

Установка цифрового значения второго элемента сравнения.

<table>
<thead>
<tr>
<th>Меню</th>
<th>ПАР.</th>
<th>Описание</th>
<th>Ед. изм.</th>
<th>Тип</th>
<th>FB ВТ</th>
<th>Умнож.</th>
<th>Мин.</th>
<th>Макс.</th>
<th>Доступ</th>
<th>Режим</th>
</tr>
</thead>
<tbody>
<tr>
<td>19.5.3</td>
<td>3660</td>
<td>Compare input 1 src</td>
<td>LINK</td>
<td>32BIT</td>
<td>3650</td>
<td>0</td>
<td>16384</td>
<td>ERW</td>
<td>F__</td>
<td></td>
</tr>
</tbody>
</table>

Выбор исходного значения (источника) сигнала, используемого как первый элемент сравнения. Сигналы, которые можно выбрать для функции сравнения, перечислены в списке выбора "L_CMP".

<table>
<thead>
<tr>
<th>Меню</th>
<th>ПАР.</th>
<th>Описание</th>
<th>Ед. изм.</th>
<th>Тип</th>
<th>FB ВТ</th>
<th>Умнож.</th>
<th>Мин.</th>
<th>Макс.</th>
<th>Доступ</th>
<th>Режим</th>
</tr>
</thead>
<tbody>
<tr>
<td>19.5.4</td>
<td>3662</td>
<td>Compare input 2 src</td>
<td>LINK</td>
<td>32BIT</td>
<td>3652</td>
<td>0</td>
<td>16384</td>
<td>ERW</td>
<td>F__</td>
<td></td>
</tr>
</tbody>
</table>

Выбор исходного значения (источника) сигнала, используемого как второй элемент сравнения. Сигналы, которые можно выбрать для функции сравнения, перечислены в списке выбора "L_CMP".

<table>
<thead>
<tr>
<th>Меню</th>
<th>ПАР.</th>
<th>Описание</th>
<th>Ед. изм.</th>
<th>Тип</th>
<th>FB ВТ</th>
<th>Умнож.</th>
<th>Мин.</th>
<th>Макс.</th>
<th>Доступ</th>
<th>Режим</th>
</tr>
</thead>
<tbody>
<tr>
<td>19.5.5</td>
<td>3670</td>
<td>Compare function</td>
<td>ENUM</td>
<td>Nessuna</td>
<td>0</td>
<td>8</td>
<td>ERW</td>
<td>F__</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Установка разрешения вывода результата сравнения Compare input 2 и Compare input 1 в Cmp output.

При установке в 0 компаратор не работает.

При установке в 1 выход компаратора устанавливается, если Compare digital inp 1 находится в пределах окна, получаемого из значения Compare digital inp 2 ± допуск, установленный в параметре Comparator Window.

При установке в 2 выход компаратора устанавливается, когда Compare digital inp 1 не находится в окне, полученном из значения Compare digital inp 2 ± допуск, установленный в параметре Comparator Window.

При установке в 3 выход компаратора устанавливается, когда Compare input 1 меньше, чем Compare input 2.

При установке в 4 выход компаратора устанавливается, когда Compare input 1 больше, чем Compare input 2.
При установке в 5 выход компаратора устанавливается, если Compare digital inp 1 находится в пределах окна, получаемого из абсолютного значения Compare digital inp 2 ± допуск, установленный в параметре Comparator Window.

При установке в 6 выход компаратора устанавливается, если Compare digital inp 1 не находится в пределах окна, получаемого из абсолютного значения Compare digital inp 2 ± допуск, установленный в параметре Comparator Window.

При установке в 7 выход компаратора устанавливается, когда абсолютное значение Compare digital inp 1 меньше, чем абсолютное значение Compare digital inp 2.

При установке в 8 выход компаратора устанавливается, когда абсолютное значение Compare digital inp 1 больше, чем абсолютное значение Compare digital inp 2.

Меню ПАР. Описание Ед. изм. Тип FB ВИТ Умолч. Мин. Макс. Доступ Режим
19.5.6 3672 Compare window perc FLOAT 0.0 0.0 100.0 ERW F__
Установка окна допуска для сравнения сигналов Compare input 1 и Compare input 2.

Меню ПАР. Описание Ед. изм. Тип FB ВИТ Умолч. Мин. Макс. Доступ Режим
19.5.7 3674 Compare delay s FLOAT 0.0 0.0 30.0 ERW F__
Установка задержки для сигнализации о результате сравнения.

Меню ПАР. Описание Ед. изм. Тип FB ВИТ Умолч. Мин. Макс. Доступ Режим
19.5.8 3676 Compare output BIT 16BIT 0 0 1 ER F__
Отображается состояние выхода компаратора.
0 Результат сравнения отрицательный
1 Результат сравнения положительный

Меню 19.6 - FUNCTIONS/PADS

Общие переменные, используемые для обмена данными между различными элементами системы шин. Они подобны переменным ПЛК. Выносные клавиатуры (PAD) могут использоваться, например, для выдачи информации из полевой шины на опциональную плату. Все выносные клавиатуры можно считывать, и можно производить в них запись.

Меню ПАР. Описание Ед. изм. Тип FB ВИТ Умолч. Мин. Макс. Доступ Режим
19.6.1 3700 Lift enable INT32 32BIT 0 0 0 ERW F__
19.6.2 3702 Run cont mon INT32 32BIT 0 0 0 ERW F__
19.6.3 3704 Up cont mon INT32 32BIT 0 0 0 ERW F__
19.6.4 3706 Down cont mon INT32 32BIT 0 0 0 ERW F__
19.6.5 3708 Brake cont mon INT32 32BIT 0 0 0 ERW F__
19.6.6 3710 Lift dc brake INT32 32BIT 0 0 0 ERW F__
19.6.7 3712 Brake 2 mon INT32 32BIT 0 0 0 ERW F__
19.6.8 3714 Door open mon INT32 32BIT 0 0 0 ERW F__
19.6.9 3716 Lift start INT32 32BIT 0 0 0 ERW F__
19.6.10 3718 Pad 10 INT32 32BIT 0 0 0 ERW F__
19.6.11 3720 Lift status word INT32 32BIT 0 0 0 ERW F__
19.6.12 3722 Pad 12 INT32 32BIT 0 0 0 ERW F__
19.6.13 3724 Pad 13 INT32 32BIT 0 0 0 ERW F__
19.6.14 3726 Ramp down limit INT32 32BIT 0 0 0 ERW F__
19.6.15 3728 PAD 15 INT32 32BIT 0 0 0 ERW F__
19.6.16 3730 Lift wdec input INT32 32BIT 0 0 0 ERW F__

Общая установка 32-битных переменных. Параметры PAD можно использовать как поддерживающие параметры для отправки значений, записываемых полевой шиной, линией последовательной связи, и т. п., в аналоговые или дискретные выходы.
Функция “Подсчет числа изменений направления” предназначена для того, чтобы отслеживать износ тросов или ремней, сигнализировать необходимость техобслуживания или замены и блокировать лифт после достижения эксплуатационных пределов. Эта функция, доступная только для наладчиков, защищена специальным паролем.

Износ тросов традиционно оценивается с помощью “числа изменений направления движения”: максимальное значение указано в сертификате, который предоставляется производителем тросов.

Специальный счетчик отмечает каждое изменение направления; при замене тросов он обнуляется.

На цифровом выходе могут подаваться следующие сигналы, внесенные в список L_DIGSEL1: PAR 3420 Ropes change req mon, PAR 3422 Direction change mon и PAR 3424 Dir change cnt zero.

<table>
<thead>
<tr>
<th>Меню</th>
<th>ПАР.</th>
<th>Описание</th>
<th>Ед. изм.</th>
<th>Тип</th>
<th>FB ВИТ</th>
<th>Умолч.</th>
<th>Мин.</th>
<th>Макс.</th>
<th>Доступ</th>
<th>Режим</th>
</tr>
</thead>
<tbody>
<tr>
<td>19.7.1</td>
<td>3400</td>
<td>Direction cnt enable</td>
<td>ENUM</td>
<td>Disable</td>
<td>0</td>
<td>1</td>
<td>ERW</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Активирует функцию “Подсчет числа изменений направления”.

<table>
<thead>
<tr>
<th>Меню</th>
<th>ПАР.</th>
<th>Описание</th>
<th>Ед. изм.</th>
<th>Тип</th>
<th>FB ВИТ</th>
<th>Умолч.</th>
<th>Мин.</th>
<th>Макс.</th>
<th>Доступ</th>
<th>Режим</th>
</tr>
</thead>
<tbody>
<tr>
<td>19.7.2</td>
<td>3402</td>
<td>Max direction cnt</td>
<td>UINT32</td>
<td>0</td>
<td>0</td>
<td>2147483647</td>
<td>ERW</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Устанавливает максимально допустимое число изменений направления.

ВХОДНЫЕ параметры

- PAR 3400 Direction cnt enable
 - Активирует функцию подсчета числа изменений направления

- PAR 3408 Dir cnt password
 - Пароль сброса счетчика

- PAR 3402 Max direction cnt
 - Макс. число изменений направления

- PAR 3404 Ropes change thr
 - Порог превентивной эксплуатации

- PAR 3406 Direction cnt reset
 - Сброс счетчика числа изменений направления

ВЫХОДНЫЕ параметры

- PAR 3412 Ropes usage
 - Процент эксплуатации тросов

- PAR 3416 Prev direct counter
 - Остаточный срок предыдущего комплекта тросов

- PAR 3418 No of cnt reset
 - Число замен тросов

- PAR 3424 Dir change cnt zero
 - Блокировка лифта

Цифровые выходы

- PAR 3404 Ropes change thr
 - Аварийный сигнал износа тросов

<table>
<thead>
<tr>
<th>Меню</th>
<th>ПАР.</th>
<th>Описание</th>
<th>Ед. изм.</th>
<th>Тип</th>
<th>FB ВИТ</th>
<th>Умолч.</th>
<th>Мин.</th>
<th>Макс.</th>
<th>Доступ</th>
<th>Режим</th>
</tr>
</thead>
<tbody>
<tr>
<td>19.7.1</td>
<td>3400</td>
<td>Direction cnt enable</td>
<td>ENUM</td>
<td>Disable</td>
<td>0</td>
<td>1</td>
<td>ERW</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Активирует функцию “Подсчет числа изменений направления”.

<table>
<thead>
<tr>
<th>Меню</th>
<th>ПАР.</th>
<th>Описание</th>
<th>Ед. изм.</th>
<th>Тип</th>
<th>FB ВИТ</th>
<th>Умолч.</th>
<th>Мин.</th>
<th>Макс.</th>
<th>Доступ</th>
<th>Режим</th>
</tr>
</thead>
<tbody>
<tr>
<td>19.7.2</td>
<td>3402</td>
<td>Max direction cnt</td>
<td>UINT32</td>
<td>0</td>
<td>0</td>
<td>2147483647</td>
<td>ERW</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Устанавливает максимально допустимое число изменений направления.

Обновление встроенной программы

В процессе обновления встроенную программу все параметры, относящиеся к данной функции, сохраняются. Чтобы была исключена возможность их перезаписи с помощью Gefran eXpress, эти параметры не обновляются при выполнении операции Write all target parameters.

Замена привода

В случае замены привода можно сохранить конфигурацию функции "Подсчет числа изменений направления" в системе клавиатуры (PAR 3434 Save to keypad) и перезагрузить ее на новый привод (PAR 3436 Load from keypad).

Password

Все параметры этой функции, доступной только для наладчиков, защищены специальным паролем. Управление паролем происходит с помощью параметров PAR 3408 Dir cnt password и PAR 3410 Dir cnt new password.
19.7.3 3404 Ropes change thr

<table>
<thead>
<tr>
<th>Описание</th>
<th>Ед. изм.</th>
<th>Тип</th>
<th>FB ВИТ</th>
<th>Умолч.</th>
<th>Мин.</th>
<th>Макс.</th>
<th>Доступ</th>
<th>Режим</th>
</tr>
</thead>
<tbody>
<tr>
<td>Устанавливает эксплуатационный порог, выше которого генерируется аварийный сигнал Rope change, указывающий необходимость замены тросов.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Когда параметр 3412 Ropes usage превышает этот порог, привод продолжает работать, но остается активный аварийный сигнал, напоминающий о необходимости замены.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

19.7.4 3406 Direction cnt reset

<table>
<thead>
<tr>
<th>Описание</th>
<th>Ед. изм.</th>
<th>Тип</th>
<th>FB ВИТ</th>
<th>Умолч.</th>
<th>Мин.</th>
<th>Макс.</th>
<th>Доступ</th>
<th>Режим</th>
</tr>
</thead>
<tbody>
<tr>
<td>Позволяет выполнить сброс, чтобы привести счетчик числа изменений направления к начальному значению параметра 3402 Max direction cnt (значение, определенное производителем тросов).</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Эта операция, защищенная паролем, выполняется после замены тросов.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Выполнение этой команды приводит к следующим операциям:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1. значение счетчика 3414 Direction counter копируется в параметр 3416 Prev direct counter,</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. значение параметра 3414 No of cnt reset возрастает,</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. счетчик 3414 Direction counter переключается на значение 3402 Max direction cnt и, как следствие, параметр 3412 Ropes usage устанавливается на 0.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

19.7.5 3408 Dir cnt password

<table>
<thead>
<tr>
<th>Описание</th>
<th>Ед. изм.</th>
<th>Тип</th>
<th>FB ВИТ</th>
<th>Умолч.</th>
<th>Мин.</th>
<th>Макс.</th>
<th>Доступ</th>
<th>Режим</th>
</tr>
</thead>
<tbody>
<tr>
<td>Этот параметр нужен для ввода пароля (не более 4 цифр) для защиты меню "Подсчет числа изменений направления". Отображение пароля активно только в процессе ввода, поэтому при выходе из этого режима отображается 0.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>После того, как пароль введен, его можно изменить путем ввода нового пароля в параметр PAR 3410 Dir cnt new password.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Пароль не сбрасывается при загрузке заводских уставок и сохраняется даже при обновлении встроенной программы.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Внимание: если пароль забыт, необходимо обратиться в центр технической поддержки Gefran.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

19.7.6 3410 Dir cnt new password

<table>
<thead>
<tr>
<th>Описание</th>
<th>Ед. изм.</th>
<th>Тип</th>
<th>FB ВИТ</th>
<th>Умолч.</th>
<th>Мин.</th>
<th>Макс.</th>
<th>Доступ</th>
<th>Режим</th>
</tr>
</thead>
<tbody>
<tr>
<td>Этот параметр позволяет ввести новый пароль взамен пароля, введенного в параметре par 3408 Dir cnt password.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Допускается комбинация не более чем 4 цифр. Для доступа к этому параметру необходимо разблокировать меню, введя старый пароль в параметр PAR 3408.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Чтобы новый пароль стал действующим, его необходимо ввести дважды.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

19.7.7 3412 Ropes usage

<table>
<thead>
<tr>
<th>Описание</th>
<th>Ед. изм.</th>
<th>Тип</th>
<th>FB ВИТ</th>
<th>Умолч.</th>
<th>Мин.</th>
<th>Макс.</th>
<th>Доступ</th>
<th>Режим</th>
</tr>
</thead>
<tbody>
<tr>
<td>Отображает счетчик износа тросов (в процентах) параметра 3402 Max direction cnt.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Когда параметр PAR 3412 = 100% (что соответствует PAR 3414 = 0), это значит, что тросы отслужили свой срок и требуют замены: привод завершает текущий цикл хода, а затем блокируется.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Отключив и вновь включив привод, можно выполнить один цикл хода: это может потребоваться для перевода кабины в положение, наиболее удобное для проведения работ.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Чтобы отменить блокировку, необходимо выполнить сброс счетчика числа изменений направления.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

19.7.8 3414 Direction counter

<table>
<thead>
<tr>
<th>Описание</th>
<th>Ед. изм.</th>
<th>Тип</th>
<th>FB ВИТ</th>
<th>Умолч.</th>
<th>Мин.</th>
<th>Макс.</th>
<th>Доступ</th>
<th>Режим</th>
</tr>
</thead>
<tbody>
<tr>
<td>Отображает обратный отсчет числа изменений направления, оставшихся до достижения срока службы тросов.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Когда PAR 3414 = "0", тросы требуют замены (соответствует PAR 3412 = 100%): привод завершает текущий цикл хода, а затем блокируется.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Отключив и вновь включив привод, можно выполнить один цикл хода: это может потребоваться для перевода кабины в положение, наиболее удобное для проведения работ.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Чтобы отменить блокировку, необходимо выполнить сброс счетчика числа изменений направления (см. PAR 3406 Direction cnt reset).

<table>
<thead>
<tr>
<th>Меню</th>
<th>ПАР.</th>
<th>Описание</th>
<th>Ед. изм.</th>
<th>Тип</th>
<th>ФБ BIT</th>
<th>Умолч.</th>
<th>Мин.</th>
<th>Макс.</th>
<th>Доступ</th>
<th>Режим</th>
</tr>
</thead>
<tbody>
<tr>
<td>19.7.9</td>
<td>3416</td>
<td>Prev direct counter</td>
<td>UINT32</td>
<td>32BIT</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>ER</td>
<td>FVS</td>
<td></td>
</tr>
</tbody>
</table>

Отображает число изменений направления, оставшихся для предыдущего комплекта тросов (копируется значение PAR 3414 Direction counter до выполнения сброса). Это число остается постоянным до следующей замены тросов.

<table>
<thead>
<tr>
<th>Меню</th>
<th>ПАР.</th>
<th>Описание</th>
<th>Ед. изм.</th>
<th>Тип</th>
<th>ФБ BIT</th>
<th>Умолч.</th>
<th>Мин.</th>
<th>Макс.</th>
<th>Доступ</th>
<th>Режим</th>
</tr>
</thead>
<tbody>
<tr>
<td>19.7.10</td>
<td>3418</td>
<td>No of cnt reset</td>
<td>UINT32</td>
<td>32BIT</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>ER</td>
<td>FVS</td>
<td></td>
</tr>
</tbody>
</table>

Отображается число выполненных изменений направления.

<table>
<thead>
<tr>
<th>Меню</th>
<th>ПАР.</th>
<th>Описание</th>
<th>Ед. изм.</th>
<th>Тип</th>
<th>ФБ BIT</th>
<th>Умолч.</th>
<th>Мин.</th>
<th>Макс.</th>
<th>Доступ</th>
<th>Режим</th>
</tr>
</thead>
<tbody>
<tr>
<td>19.7.11</td>
<td>3420</td>
<td>Ropes change req mon</td>
<td>BIT</td>
<td>16BIT</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>ER</td>
<td>FVS</td>
<td></td>
</tr>
</tbody>
</table>

Активируется, когда процент износа тросов (установленный в параметре PAR 3412 Ropes usage) превышает запрограммированный порог (PAR 3404 Ropes change thr).

Этот сигнал вводится в список L_DIGSEL1 и может подаваться на цифровой выход.

<table>
<thead>
<tr>
<th>Меню</th>
<th>ПАР.</th>
<th>Описание</th>
<th>Ед. изм.</th>
<th>Тип</th>
<th>ФБ BIT</th>
<th>Умолч.</th>
<th>Мин.</th>
<th>Макс.</th>
<th>Доступ</th>
<th>Режим</th>
</tr>
</thead>
<tbody>
<tr>
<td>19.7.12</td>
<td>3434</td>
<td>Save to keypad</td>
<td>BIT</td>
<td></td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>ERWZ</td>
<td>FVS</td>
<td></td>
</tr>
</tbody>
</table>

Позволяет сохранить конфигурацию функции “Подсчет числа изменений направления” в системе клавиатуры.

Набор параметров сохраняется в специальной зоне клавиатуры, отделенной от зоны других параметров (PAR 590 Save par to keypad).

<table>
<thead>
<tr>
<th>Меню</th>
<th>ПАР.</th>
<th>Описание</th>
<th>Ед. изм.</th>
<th>Тип</th>
<th>ФБ BIT</th>
<th>Умолч.</th>
<th>Мин.</th>
<th>Макс.</th>
<th>Доступ</th>
<th>Режим</th>
</tr>
</thead>
<tbody>
<tr>
<td>19.7.13</td>
<td>3436</td>
<td>Load from keypad</td>
<td>BIT</td>
<td></td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>ERWZ</td>
<td>FVS</td>
<td></td>
</tr>
</tbody>
</table>

Позволяет загрузить на новый привод конфигурацию функции “Подсчет числа изменений направления”, сохраненную в системе клавиатуры в параметре PAR 3434 Save to keypad.
Меню 20 - COMMUNICATION
Меню 20.1 - COMMUNICATION/RS232

Привод ADL300 оборудован стандартным портом (9-контактный соединитель sub-D) для подключения последовательной линии RS232, используемой для связи привода с ПК (через конфигурационное ПО GF-eXpress).

<table>
<thead>
<tr>
<th>Меню</th>
<th>ПАР.</th>
<th>Описание</th>
<th>Ед. изм.</th>
<th>Тип</th>
<th>FB</th>
<th>Умолч.</th>
<th>Мин.</th>
<th>Макс.</th>
<th>Доступ</th>
<th>Режим</th>
</tr>
</thead>
<tbody>
<tr>
<td>20.1.1</td>
<td>3800</td>
<td>Drive address</td>
<td>UINT16</td>
<td>1</td>
<td>1</td>
<td>255</td>
<td>ERW</td>
<td>F__</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Задание адреса, соответствующего приводу, для связи через последовательную линию RS232.

<table>
<thead>
<tr>
<th>Меню</th>
<th>ПАР.</th>
<th>Описание</th>
<th>Ед. изм.</th>
<th>Тип</th>
<th>FB</th>
<th>Умолч.</th>
<th>Мин.</th>
<th>Макс.</th>
<th>Доступ</th>
<th>Режим</th>
</tr>
</thead>
<tbody>
<tr>
<td>20.1.2</td>
<td>3802</td>
<td>Serial baudrate</td>
<td>ENUM</td>
<td>38400</td>
<td>0</td>
<td>2</td>
<td>ERW</td>
<td>F__</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Установка скорости последовательной коммуникации RS232 (скорости передачи данных).

<table>
<thead>
<tr>
<th>Меню</th>
<th>ПАР.</th>
<th>Описание</th>
<th>Ед. изм.</th>
<th>Тип</th>
<th>FB</th>
<th>Умолч.</th>
<th>Мин.</th>
<th>Макс.</th>
<th>Доступ</th>
<th>Режим</th>
</tr>
</thead>
<tbody>
<tr>
<td>20.1.3</td>
<td>3810</td>
<td>Serial parameter</td>
<td>ENUM</td>
<td>None,8,1</td>
<td>0</td>
<td>3</td>
<td>ERW</td>
<td>F__</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Установка формата передачи данных по последовательному каналу RS232.

<table>
<thead>
<tr>
<th>Меню</th>
<th>ПАР.</th>
<th>Описание</th>
<th>Ед. изм.</th>
<th>Тип</th>
<th>FB</th>
<th>Умолч.</th>
<th>Мин.</th>
<th>Макс.</th>
<th>Доступ</th>
<th>Режим</th>
</tr>
</thead>
<tbody>
<tr>
<td>20.1.4</td>
<td>3804</td>
<td>Serial protocol</td>
<td>ENUM</td>
<td>Modbus</td>
<td>0</td>
<td>1</td>
<td>ERW</td>
<td>F__</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Установка последовательного коммуникационного протокола:

<table>
<thead>
<tr>
<th>Меню</th>
<th>ПАР.</th>
<th>Описание</th>
<th>Ед. изм.</th>
<th>Тип</th>
<th>FB</th>
<th>Умолч.</th>
<th>Мин.</th>
<th>Макс.</th>
<th>Доступ</th>
<th>Режим</th>
</tr>
</thead>
<tbody>
<tr>
<td>20.1.5</td>
<td>3806</td>
<td>Serial delay</td>
<td>ms</td>
<td>UINT16</td>
<td>0</td>
<td>0</td>
<td>1000</td>
<td>ERW</td>
<td>F__</td>
<td></td>
</tr>
</tbody>
</table>

Установка минимальной задержки между принятием приводом последнего байта и началом его отклика. Эта задержка устраивает конфликты на последовательной линии при использовании интерфейса RS232, в котором нет установки автоматического переключения "прием-передача". Этот параметр касается только использования стандартного протокола RS232.

Пример: если задержка переключения "прием-передача" на ведущем устройстве составляет 20 мс, параметр Ser answer delay необходимо установить в значение не менее 20 мс: 22 мс

<table>
<thead>
<tr>
<th>Меню</th>
<th>ПАР.</th>
<th>Описание</th>
<th>Ед. изм.</th>
<th>Тип</th>
<th>FB</th>
<th>Умолч.</th>
<th>Мин.</th>
<th>Макс.</th>
<th>Доступ</th>
<th>Режим</th>
</tr>
</thead>
<tbody>
<tr>
<td>20.1.6</td>
<td>3808</td>
<td>Serial swap data</td>
<td>BIT</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>ERW</td>
<td>F__</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

При использовании протокола Modbus этот параметр обеспечивает обмен данными при считывании старшего и младшего байтов слова для параметров в формате с плавающей запятой типа FLOAT.
Меню 20.2 - COMMUNICATION/FIELDBUS CONFIG

<table>
<thead>
<tr>
<th>Меню</th>
<th>ПАР.</th>
<th>Описание</th>
<th>Ед. изм.</th>
<th>Тип</th>
<th>FB B/IT</th>
<th>Умолч.</th>
<th>Мин.</th>
<th>Макс.</th>
<th>Доступ</th>
<th>Режим</th>
</tr>
</thead>
<tbody>
<tr>
<td>20.2.1</td>
<td>4000</td>
<td>Fieldbus type</td>
<td>ENUM</td>
<td>Spento</td>
<td>0</td>
<td>2</td>
<td>ERW</td>
<td>F___</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Установка типа используемой полевой шины</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>0 Отключено</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1 CANopen</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>10 DS417</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>При установке в 0 никакой полевой шины не выбрано.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>При установке в 1 выбирается полевая шина профиля CANopen.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>При установке в 10 выбирается полевая шина DS417.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>CiA 417 - это приложение MDPLC. Конфигурирование см. в руководстве по CiA 417.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20.2.2</td>
<td>4004</td>
<td>Fieldbus baudrate</td>
<td>ENUM</td>
<td>500k</td>
<td>0</td>
<td>4</td>
<td>ERW</td>
<td>F___</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Установка скорости коммуникационной сети (скорости передачи данных).</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>0 Автоматически</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1 125k</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>2 250k</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3 500k</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>4 1M</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20.2.3</td>
<td>4006</td>
<td>Fieldbus address</td>
<td>INT16</td>
<td>2</td>
<td>0</td>
<td>255</td>
<td>ERW</td>
<td>F___</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Установка узлового сетевого адреса привода для подключения к локальной сети.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20.2.4</td>
<td>4010</td>
<td>Fieldbus M->S enable</td>
<td>ENUM</td>
<td>Enable</td>
<td>0</td>
<td>1</td>
<td>ERWZ</td>
<td>F___</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Установка разрешения обновления данных полевой шины</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>0 Запрет</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1 Разрешение</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>При установке в 0 возможность отправки команд и опорных значений из привода в ПЛК заблокирована.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>При установке в 1 возможность отправки команд и опорных значений из привода в ПЛК разрешена.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20.2.5</td>
<td>4012</td>
<td>Fieldbus alarm mode</td>
<td>INT32</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>ERWZ</td>
<td>F___</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Установка режима выдачи тревожных сигналов Opt Bus Fault alarm.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>0 Запрет</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1 Разрешение</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>При установке в 0 тревожный сигнал выдается только если коммуникация с полевой шиной нарушена при работающем приводе.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>При установке в 1 тревожный сигнал выдается только если коммуникация с полевой шиной нарушена при заблокированном приводе.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20.2.6</td>
<td>4014</td>
<td>Fieldbus state</td>
<td>ENUM</td>
<td>Arresto</td>
<td>0</td>
<td>2</td>
<td>ER</td>
<td>F___</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Отображается логическое состояние подключения полевой шины. Это значение зависит от типа используемой шины.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>0 Stop (Остановка)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1 Pre operational (Предоперационное)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>2 Operational (Операционное)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Меню 20.3 - COMMUNICATION/FIELDBUS M2S

<table>
<thead>
<tr>
<th>Меню</th>
<th>ПАР.</th>
<th>Описание</th>
<th>Ед. изм.</th>
<th>Тип</th>
<th>FB ВИТ</th>
<th>Умолч.</th>
<th>Мин.</th>
<th>Макс.</th>
<th>Доступ</th>
<th>Режим</th>
</tr>
</thead>
<tbody>
<tr>
<td>20.3.1</td>
<td>4020</td>
<td>Fieldbus M->S1 ipa</td>
<td>FBM2SIPA</td>
<td>0</td>
<td>0</td>
<td>20000</td>
<td>ERW</td>
<td>F__</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20.3.5</td>
<td>4030</td>
<td>Fieldbus M->S2 ipa</td>
<td>FBM2SIPA</td>
<td>0</td>
<td>0</td>
<td>20000</td>
<td>ERW</td>
<td>F__</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20.3.9</td>
<td>4040</td>
<td>Fieldbus M->S3 ipa</td>
<td>FBM2SIPA</td>
<td>0</td>
<td>0</td>
<td>20000</td>
<td>ERW</td>
<td>F__</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20.3.13</td>
<td>4050</td>
<td>Fieldbus M->S4 ipa</td>
<td>FBM2SIPA</td>
<td>0</td>
<td>0</td>
<td>20000</td>
<td>ERW</td>
<td>F__</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20.3.17</td>
<td>4060</td>
<td>Fieldbus M->S5 ipa</td>
<td>FBM2SIPA</td>
<td>0</td>
<td>0</td>
<td>20000</td>
<td>ERW</td>
<td>F__</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20.3.21</td>
<td>4070</td>
<td>Fieldbus M->S6 ipa</td>
<td>FBM2SIPA</td>
<td>0</td>
<td>0</td>
<td>20000</td>
<td>ERW</td>
<td>F__</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20.3.25</td>
<td>4080</td>
<td>Fieldbus M->S7 ipa</td>
<td>FBM2SIPA</td>
<td>0</td>
<td>0</td>
<td>20000</td>
<td>ERW</td>
<td>F__</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20.3.29</td>
<td>4090</td>
<td>Fieldbus M->S8 ipa</td>
<td>FBM2SIPA</td>
<td>0</td>
<td>0</td>
<td>20000</td>
<td>ERW</td>
<td>F__</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20.3.33</td>
<td>4100</td>
<td>Fieldbus M->S9 ipa</td>
<td>FBM2SIPA</td>
<td>0</td>
<td>0</td>
<td>20000</td>
<td>ERW</td>
<td>F__</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20.3.37</td>
<td>4110</td>
<td>Fieldbus M->S10 ipa</td>
<td>FBM2SIPA</td>
<td>0</td>
<td>0</td>
<td>20000</td>
<td>ERW</td>
<td>F__</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20.3.41</td>
<td>4120</td>
<td>Fieldbus M->S11 ipa</td>
<td>FBM2SIPA</td>
<td>0</td>
<td>0</td>
<td>20000</td>
<td>ERW</td>
<td>F__</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20.3.45</td>
<td>4130</td>
<td>Fieldbus M->S12 ipa</td>
<td>FBM2SIPA</td>
<td>0</td>
<td>0</td>
<td>20000</td>
<td>ERW</td>
<td>F__</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20.3.49</td>
<td>4140</td>
<td>Fieldbus M->S13 ipa</td>
<td>FBM2SIPA</td>
<td>0</td>
<td>0</td>
<td>20000</td>
<td>ERW</td>
<td>F__</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20.3.53</td>
<td>4150</td>
<td>Fieldbus M->S14 ipa</td>
<td>FBM2SIPA</td>
<td>0</td>
<td>0</td>
<td>20000</td>
<td>ERW</td>
<td>F__</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20.3.57</td>
<td>4160</td>
<td>Fieldbus M->S15 ipa</td>
<td>FBM2SIPA</td>
<td>0</td>
<td>0</td>
<td>20000</td>
<td>ERW</td>
<td>F__</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20.3.61</td>
<td>4170</td>
<td>Fieldbus M->S16 ipa</td>
<td>FBM2SIPA</td>
<td>0</td>
<td>0</td>
<td>20000</td>
<td>ERW</td>
<td>F__</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Установка параметра, связанного с шинным каналом. По умолчанию действует установка 0, что соответствует отсутствию подключенного сигнала. Если подключен параметр sorg (источник), канал и параметр можно также связать изменением параметра sorg в его меню. При установке параметра формат также автоматически устанавливается в системный.

<table>
<thead>
<tr>
<th>Меню</th>
<th>ПАР.</th>
<th>Описание</th>
<th>Ед. изм.</th>
<th>Тип</th>
<th>FB ВИТ</th>
<th>Умолч.</th>
<th>Мин.</th>
<th>Макс.</th>
<th>Доступ</th>
<th>Режим</th>
</tr>
</thead>
<tbody>
<tr>
<td>20.3.2</td>
<td>4022</td>
<td>Fieldbus M->S1 sys</td>
<td>ENUM</td>
<td>Not assigned</td>
<td>0</td>
<td>10</td>
<td>ERW</td>
<td>F__</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20.3.6</td>
<td>4032</td>
<td>Fieldbus M->S2 sys</td>
<td>ENUM</td>
<td>Not assigned</td>
<td>0</td>
<td>10</td>
<td>ERW</td>
<td>F__</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20.3.10</td>
<td>4042</td>
<td>Fieldbus M->S3 sys</td>
<td>ENUM</td>
<td>Not assigned</td>
<td>0</td>
<td>10</td>
<td>ERW</td>
<td>F__</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20.3.14</td>
<td>4052</td>
<td>Fieldbus M->S4 sys</td>
<td>ENUM</td>
<td>Not assigned</td>
<td>0</td>
<td>10</td>
<td>ERW</td>
<td>F__</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20.3.18</td>
<td>4062</td>
<td>Fieldbus M->S5 sys</td>
<td>ENUM</td>
<td>Not assigned</td>
<td>0</td>
<td>10</td>
<td>ERW</td>
<td>F__</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20.3.22</td>
<td>4072</td>
<td>Fieldbus M->S6 sys</td>
<td>ENUM</td>
<td>Not assigned</td>
<td>0</td>
<td>10</td>
<td>ERW</td>
<td>F__</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20.3.26</td>
<td>4082</td>
<td>Fieldbus M->S7 sys</td>
<td>ENUM</td>
<td>Not assigned</td>
<td>0</td>
<td>10</td>
<td>ERW</td>
<td>F__</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20.3.30</td>
<td>4092</td>
<td>Fieldbus M->S8 sys</td>
<td>ENUM</td>
<td>Not assigned</td>
<td>0</td>
<td>10</td>
<td>ERW</td>
<td>F__</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20.3.34</td>
<td>4102</td>
<td>Fieldbus M->S9 sys</td>
<td>ENUM</td>
<td>Not assigned</td>
<td>0</td>
<td>10</td>
<td>ERW</td>
<td>F__</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20.3.38</td>
<td>4112</td>
<td>Fieldbus M->S10 sys</td>
<td>ENUM</td>
<td>Not assigned</td>
<td>0</td>
<td>10</td>
<td>ERW</td>
<td>F__</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20.3.42</td>
<td>4122</td>
<td>Fieldbus M->S11 sys</td>
<td>ENUM</td>
<td>Not assigned</td>
<td>0</td>
<td>10</td>
<td>ERW</td>
<td>F__</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20.3.46</td>
<td>4132</td>
<td>Fieldbus M->S12 sys</td>
<td>ENUM</td>
<td>Not assigned</td>
<td>0</td>
<td>10</td>
<td>ERW</td>
<td>F__</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20.3.50</td>
<td>4142</td>
<td>Fieldbus M->S13 sys</td>
<td>ENUM</td>
<td>Not assigned</td>
<td>0</td>
<td>10</td>
<td>ERW</td>
<td>F__</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20.3.54</td>
<td>4152</td>
<td>Fieldbus M->S14 sys</td>
<td>ENUM</td>
<td>Not assigned</td>
<td>0</td>
<td>10</td>
<td>ERW</td>
<td>F__</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20.3.58</td>
<td>4162</td>
<td>Fieldbus M->S15 sys</td>
<td>ENUM</td>
<td>Not assigned</td>
<td>0</td>
<td>10</td>
<td>ERW</td>
<td>F__</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20.3.62</td>
<td>4172</td>
<td>Fieldbus M->S16 sys</td>
<td>ENUM</td>
<td>Not assigned</td>
<td>0</td>
<td>10</td>
<td>ERW</td>
<td>F__</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Установка формата данных, принимаемых по каналу. Когда запрограммирован параметр src, формат автоматически программируется под соответствующую систему. Если параметр src сброшен в значение null, формат не изменяется. Формат можно выбрать из следующего списка, согласно параметру, выбранному как источник.

- 0 — Не назначен
- 1 — Count 16
- 2 — Count 32
- 3 — Fill 16
- 4 — Fill 32
- 5 — Mdplc 16
- 6 — Mdplc 32
- 7 — EU
- 8 — EU float
- 9 — Par 16
- 10 — Par 32

При установке в 0 канал не назначен.
При установке в 1 назначаются 16-битные данные.
При установке в 2 назначаются 32-битные данные.
При установке в 3 в канале зарезервированы 16-битные данные, не используется.
При установке в 4 в канале зарезервированы 32-битные данные, не используется.
При установке в 5 назначаются 16-битные данные, используемые MDPLC.
При установке в 6 назначаются 32-битные данные, используемые MDPLC.
При установке в 7 данные назначаются в технических единицах как 16-битное целое.
При установке в 8 данные назначаются в технических единицах как 32-битное целое.
При установке в 9 данные назначаются в технических единицах как 16-битное целое, но не в реальном времени (5-10 мс)
При установке в 10 данные назначаются в технических единицах как 32-битное целое или в формате с плавающей запятой, но не в реальном времени (5-10 мс)

Если параметр sys не назначен, никакой из последующих каналов не считывается, даже если он запрограммирован.

Параметры Div M->Sx fieldbus можно использовать для увеличения разрешения данных, отправляемых на шину к приводу в соответствующем канале в режимах обмена данными в формате технических единиц, в том числе, с плавающей запятой. Значение параметра используется приводом как разделитель входящих данных, так что можно передавать данные в виде чисел с десятичными знаками.
При отправке данных необходимо убедиться, что максимальное значение в битах укладывается в 16-битное целое. Если задать разделитель как "Fieldbus M->Sn div = 1000, максимальное значение, которое можно использовать для обмена данными, составляет 32,768 (32768/1000).

Пример: Div M->Sx fieldbus = 10, M->S1 fieldbus par = Ramp ref src 1, Sys M->S1 fieldbus = единицы измерения. Если ПЛК отправляет десятичное значение 1000, значение первого слова ramp ref 1 на приводе будет 1000/10 = 100.
Меню 20.4 - COMMUNICATION/FIELDBUS S2M

<table>
<thead>
<tr>
<th>Меню</th>
<th>ПАР.</th>
<th>Описание</th>
<th>Ед. изм.</th>
<th>Тип</th>
<th>FB ВИТ</th>
<th>Умолч.</th>
<th>Мин.</th>
<th>Макс.</th>
<th>Доступ</th>
<th>Режим</th>
</tr>
</thead>
<tbody>
<tr>
<td>20.4.1</td>
<td>4180</td>
<td>Fieldbus S->M1 ipa</td>
<td>FBS2MIPA</td>
<td>0 0</td>
<td>20000</td>
<td>ERW</td>
<td>F__</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20.4.5</td>
<td>4190</td>
<td>Fieldbus S->M2 ipa</td>
<td>FBS2MIPA</td>
<td>0 0</td>
<td>20000</td>
<td>ERW</td>
<td>F__</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20.4.9</td>
<td>4200</td>
<td>Fieldbus S->M3 ipa</td>
<td>FBS2MIPA</td>
<td>0 0</td>
<td>20000</td>
<td>ERW</td>
<td>F__</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20.4.13</td>
<td>4210</td>
<td>Fieldbus S->M4 ipa</td>
<td>FBS2MIPA</td>
<td>0 0</td>
<td>20000</td>
<td>ERW</td>
<td>F__</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20.4.17</td>
<td>4220</td>
<td>Fieldbus S->M5 ipa</td>
<td>FBS2MIPA</td>
<td>0 0</td>
<td>20000</td>
<td>ERW</td>
<td>F__</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20.4.21</td>
<td>4230</td>
<td>Fieldbus S->M6 ipa</td>
<td>FBS2MIPA</td>
<td>0 0</td>
<td>20000</td>
<td>ERW</td>
<td>F__</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20.4.25</td>
<td>4240</td>
<td>Fieldbus S->M7 ipa</td>
<td>FBS2MIPA</td>
<td>0 0</td>
<td>20000</td>
<td>ERW</td>
<td>F__</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20.4.29</td>
<td>4250</td>
<td>Fieldbus S->M8 ipa</td>
<td>FBS2MIPA</td>
<td>0 0</td>
<td>20000</td>
<td>ERW</td>
<td>F__</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20.4.33</td>
<td>4260</td>
<td>Fieldbus S->M9 ipa</td>
<td>FBS2MIPA</td>
<td>0 0</td>
<td>20000</td>
<td>ERW</td>
<td>F__</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20.4.37</td>
<td>4270</td>
<td>Fieldbus S->M10 ipa</td>
<td>FBS2MIPA</td>
<td>0 0</td>
<td>20000</td>
<td>ERW</td>
<td>F__</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20.4.41</td>
<td>4280</td>
<td>Fieldbus S->M11 ipa</td>
<td>FBS2MIPA</td>
<td>0 0</td>
<td>20000</td>
<td>ERW</td>
<td>F__</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20.4.45</td>
<td>4290</td>
<td>Fieldbus S->M12 ipa</td>
<td>FBS2MIPA</td>
<td>0 0</td>
<td>20000</td>
<td>ERW</td>
<td>F__</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20.4.49</td>
<td>4300</td>
<td>Fieldbus S->M13 ipa</td>
<td>FBS2MIPA</td>
<td>0 0</td>
<td>20000</td>
<td>ERW</td>
<td>F__</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20.4.53</td>
<td>4310</td>
<td>Fieldbus S->M14 ipa</td>
<td>FBS2MIPA</td>
<td>0 0</td>
<td>20000</td>
<td>ERW</td>
<td>F__</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20.4.57</td>
<td>4320</td>
<td>Fieldbus S->M15 ipa</td>
<td>FBS2MIPA</td>
<td>0 0</td>
<td>20000</td>
<td>ERW</td>
<td>F__</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20.4.61</td>
<td>4330</td>
<td>Fieldbus S->M16 ipa</td>
<td>FBS2MIPA</td>
<td>0 0</td>
<td>20000</td>
<td>ERW</td>
<td>F__</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Установка параметра, связанного с шинным каналом. По умолчанию действует установка 0, что соответствует отсутствию подключенного сигнала. Если подключен параметр sorg (источник), канал и параметр можно также связать изменением параметра sorg в его меню. При установке параметра формат также автоматически устанавливается в системный.

<table>
<thead>
<tr>
<th>Меню</th>
<th>ПАР.</th>
<th>Описание</th>
<th>Ед. изм.</th>
<th>Тип</th>
<th>FB ВИТ</th>
<th>Умолч.</th>
<th>Мин.</th>
<th>Макс.</th>
<th>Доступ</th>
<th>Режим</th>
</tr>
</thead>
<tbody>
<tr>
<td>20.4.2</td>
<td>4182</td>
<td>Fieldbus S->M1 sys</td>
<td>ENUM</td>
<td>Не назначен</td>
<td>0 10</td>
<td>ERW</td>
<td>F__</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20.4.6</td>
<td>4192</td>
<td>Fieldbus S->M2 sys</td>
<td>ENUM</td>
<td>Не назначен</td>
<td>0 10</td>
<td>ERW</td>
<td>F__</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20.4.10</td>
<td>4202</td>
<td>Fieldbus S->M3 sys</td>
<td>ENUM</td>
<td>Не назначен</td>
<td>0 10</td>
<td>ERW</td>
<td>F__</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20.4.14</td>
<td>4212</td>
<td>Fieldbus S->M4 sys</td>
<td>ENUM</td>
<td>Не назначен</td>
<td>0 10</td>
<td>ERW</td>
<td>F__</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20.4.18</td>
<td>4222</td>
<td>Fieldbus S->M5 sys</td>
<td>ENUM</td>
<td>Не назначен</td>
<td>0 10</td>
<td>ERW</td>
<td>F__</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20.4.22</td>
<td>4232</td>
<td>Fieldbus S->M6 sys</td>
<td>ENUM</td>
<td>Не назначен</td>
<td>0 10</td>
<td>ERW</td>
<td>F__</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20.4.26</td>
<td>4242</td>
<td>Fieldbus S->M7 sys</td>
<td>ENUM</td>
<td>Не назначен</td>
<td>0 10</td>
<td>ERW</td>
<td>F__</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20.4.30</td>
<td>4252</td>
<td>Fieldbus S->M8 sys</td>
<td>ENUM</td>
<td>Не назначен</td>
<td>0 10</td>
<td>ERW</td>
<td>F__</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20.4.34</td>
<td>4262</td>
<td>Fieldbus S->M9 sys</td>
<td>ENUM</td>
<td>Не назначен</td>
<td>0 10</td>
<td>ERW</td>
<td>F__</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20.4.38</td>
<td>4272</td>
<td>Fieldbus S->M10 sys</td>
<td>ENUM</td>
<td>Не назначен</td>
<td>0 10</td>
<td>ERW</td>
<td>F__</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20.4.42</td>
<td>4282</td>
<td>Fieldbus S->M11 sys</td>
<td>ENUM</td>
<td>Не назначен</td>
<td>0 10</td>
<td>ERW</td>
<td>F__</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20.4.46</td>
<td>4292</td>
<td>Fieldbus S->M12 sys</td>
<td>ENUM</td>
<td>Не назначен</td>
<td>0 10</td>
<td>ERW</td>
<td>F__</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20.4.50</td>
<td>4302</td>
<td>Fieldbus S->M13 sys</td>
<td>ENUM</td>
<td>Не назначен</td>
<td>0 10</td>
<td>ERW</td>
<td>F__</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20.4.54</td>
<td>4312</td>
<td>Fieldbus S->M14 sys</td>
<td>ENUM</td>
<td>Не назначен</td>
<td>0 10</td>
<td>ERW</td>
<td>F__</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20.4.58</td>
<td>4322</td>
<td>Fieldbus S->M15 sys</td>
<td>ENUM</td>
<td>Не назначен</td>
<td>0 10</td>
<td>ERW</td>
<td>F__</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20.4.62</td>
<td>4332</td>
<td>Fieldbus S->M16 sys</td>
<td>ENUM</td>
<td>Не назначен</td>
<td>0 10</td>
<td>ERW</td>
<td>F__</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Установка формата данных, отправляемых в канал. Когда запрограммирован параметр src, формат автоматически программируется как EU или MDPLC 16. Если параметр src сброшен в значение null, формат данных не изменяется. Формат можно выбрать из следующего списка:

0 Not assigned (Не назначен)
1 Count 16
2 Count 32
3 Fill 16
4 Fill 32
5 Mdplc 16
6 Mdplc 32
7 EU
8 EU float
9 Par 16
10 Par 32

При установке в 0 канал не назначен.
При установке в 1 назначаются 16-битные данные.
При установке в 2 назначаются 32-битные данные.
При установке в 3 в канале зарезервированы 16-битные данные, не используется.
При установке в 4 в канале зарезервированы 32-битные данные, не используются.
При установке в 5 назначаются 16-битные данные, используемые MDPLC.
При установке в 6 назначаются 32-битные данные, используемые MDPLC.
При установке в 7 данные назначаются в технических единицах как 16-битное целое.
При установке в 8 данные назначаются в технических единицах как 32-битное целое.
При установке в 9 данные назначаются в технических единицах как 16-битное целое, но не в реальном времени (5-10 мс)
При установке в 10 данные назначаются в технических единицах как 32-битное целое или в формате с плавающей запятой, но не в реальном времени (5-10 мс)

Если параметр sys не назначен, никакие данные из последующих каналов не передаются, даже если они запрограммированы.

<table>
<thead>
<tr>
<th>Меню</th>
<th>ПАР.</th>
<th>Описание</th>
<th>Ед. изм.</th>
<th>Тип</th>
<th>ФВ Б/Т</th>
<th>Умнож.</th>
<th>Мин.</th>
<th>Макс.</th>
<th>Доступ</th>
<th>Режим</th>
</tr>
</thead>
<tbody>
<tr>
<td>20.4.3</td>
<td>4184</td>
<td>Dig Fieldbus S->M1</td>
<td>INT32</td>
<td>32BIT</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>ERW</td>
<td>F__</td>
<td></td>
</tr>
<tr>
<td>20.4.7</td>
<td>4194</td>
<td>Dig Fieldbus S->M2</td>
<td>INT32</td>
<td>32BIT</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>ERW</td>
<td>F__</td>
<td></td>
</tr>
<tr>
<td>20.4.11</td>
<td>4204</td>
<td>Dig Fieldbus S->M3</td>
<td>INT32</td>
<td>32BIT</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>ERW</td>
<td>F__</td>
<td></td>
</tr>
<tr>
<td>20.4.15</td>
<td>4214</td>
<td>Dig Fieldbus S->M4</td>
<td>INT32</td>
<td>32BIT</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>ERW</td>
<td>F__</td>
<td></td>
</tr>
<tr>
<td>20.4.19</td>
<td>4224</td>
<td>Dig Fieldbus S->M5</td>
<td>INT32</td>
<td>32BIT</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>ERW</td>
<td>F__</td>
<td></td>
</tr>
<tr>
<td>20.4.23</td>
<td>4234</td>
<td>Dig Fieldbus S->M6</td>
<td>INT32</td>
<td>32BIT</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>ERW</td>
<td>F__</td>
<td></td>
</tr>
<tr>
<td>20.4.27</td>
<td>4244</td>
<td>Dig Fieldbus S->M7</td>
<td>INT32</td>
<td>32BIT</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>ERW</td>
<td>F__</td>
<td></td>
</tr>
<tr>
<td>20.4.31</td>
<td>4254</td>
<td>Dig Fieldbus S->M8</td>
<td>INT32</td>
<td>32BIT</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>ERW</td>
<td>F__</td>
<td></td>
</tr>
<tr>
<td>20.4.35</td>
<td>4264</td>
<td>Dig Fieldbus S->M9</td>
<td>INT32</td>
<td>32BIT</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>ERW</td>
<td>F__</td>
<td></td>
</tr>
<tr>
<td>20.4.39</td>
<td>4274</td>
<td>Dig Fieldbus S->M10</td>
<td>INT32</td>
<td>32BIT</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>ERW</td>
<td>F__</td>
<td></td>
</tr>
<tr>
<td>20.4.43</td>
<td>4284</td>
<td>Dig Fieldbus S->M11</td>
<td>INT32</td>
<td>32BIT</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>ERW</td>
<td>F__</td>
<td></td>
</tr>
<tr>
<td>20.4.47</td>
<td>4294</td>
<td>Dig Fieldbus S->M12</td>
<td>INT32</td>
<td>32BIT</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>ERW</td>
<td>F__</td>
<td></td>
</tr>
<tr>
<td>20.4.51</td>
<td>4304</td>
<td>Dig Fieldbus S->M13</td>
<td>INT32</td>
<td>32BIT</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>ERW</td>
<td>F__</td>
<td></td>
</tr>
<tr>
<td>20.4.55</td>
<td>4314</td>
<td>Dig Fieldbus S->M14</td>
<td>INT32</td>
<td>32BIT</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>ERW</td>
<td>F__</td>
<td></td>
</tr>
<tr>
<td>20.4.59</td>
<td>4324</td>
<td>Dig Fieldbus S->M15</td>
<td>INT32</td>
<td>32BIT</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>ERW</td>
<td>F__</td>
<td></td>
</tr>
<tr>
<td>20.4.63</td>
<td>4334</td>
<td>Dig Fieldbus S->M16</td>
<td>INT32</td>
<td>32BIT</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>ERW</td>
<td>F__</td>
<td></td>
</tr>
<tr>
<td>20.4.4</td>
<td>4186</td>
<td>Fieldbus S->M1 mul</td>
<td>FLOAT</td>
<td>1.0</td>
<td>0</td>
<td>1000.0</td>
<td>ERW</td>
<td>F__</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20.4.8</td>
<td>4196</td>
<td>Fieldbus S->M2 mul</td>
<td>FLOAT</td>
<td>1.0</td>
<td>0</td>
<td>1000.0</td>
<td>ERW</td>
<td>F__</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20.4.12</td>
<td>4206</td>
<td>Fieldbus S->M3 mul</td>
<td>FLOAT</td>
<td>1.0</td>
<td>0</td>
<td>1000.0</td>
<td>ERW</td>
<td>F__</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20.4.16</td>
<td>4216</td>
<td>Fieldbus S->M4 mul</td>
<td>FLOAT</td>
<td>1.0</td>
<td>0</td>
<td>1000.0</td>
<td>ERW</td>
<td>F__</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20.4.20</td>
<td>4226</td>
<td>Fieldbus S->M5 mul</td>
<td>FLOAT</td>
<td>1.0</td>
<td>0</td>
<td>1000.0</td>
<td>ERW</td>
<td>F__</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20.4.24</td>
<td>4236</td>
<td>Fieldbus S->M6 mul</td>
<td>FLOAT</td>
<td>1.0</td>
<td>0</td>
<td>1000.0</td>
<td>ERW</td>
<td>F__</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20.4.28</td>
<td>4246</td>
<td>Fieldbus S->M7 mul</td>
<td>FLOAT</td>
<td>1.0</td>
<td>0</td>
<td>1000.0</td>
<td>ERW</td>
<td>F__</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20.4.32</td>
<td>4256</td>
<td>Fieldbus S->M8 mul</td>
<td>FLOAT</td>
<td>1.0</td>
<td>0</td>
<td>1000.0</td>
<td>ERW</td>
<td>F__</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20.4.36</td>
<td>4266</td>
<td>Fieldbus S->M9 mul</td>
<td>FLOAT</td>
<td>1.0</td>
<td>0</td>
<td>1000.0</td>
<td>ERW</td>
<td>F__</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20.4.40</td>
<td>4276</td>
<td>Fieldbus S->M10 mul</td>
<td>FLOAT</td>
<td>1.0</td>
<td>0</td>
<td>1000.0</td>
<td>ERW</td>
<td>F__</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20.4.44</td>
<td>4286</td>
<td>Fieldbus S->M11 mul</td>
<td>FLOAT</td>
<td>1.0</td>
<td>0</td>
<td>1000.0</td>
<td>ERW</td>
<td>F__</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20.4.48</td>
<td>4296</td>
<td>Fieldbus S->M12 mul</td>
<td>FLOAT</td>
<td>1.0</td>
<td>0</td>
<td>1000.0</td>
<td>ERW</td>
<td>F__</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20.4.52</td>
<td>4306</td>
<td>Fieldbus S->M13 mul</td>
<td>FLOAT</td>
<td>1.0</td>
<td>0</td>
<td>1000.0</td>
<td>ERW</td>
<td>F__</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20.4.56</td>
<td>4316</td>
<td>Fieldbus S->M14 mul</td>
<td>FLOAT</td>
<td>1.0</td>
<td>0</td>
<td>1000.0</td>
<td>ERW</td>
<td>F__</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20.4.60</td>
<td>4326</td>
<td>Fieldbus S->M15 mul</td>
<td>FLOAT</td>
<td>1.0</td>
<td>0</td>
<td>1000.0</td>
<td>ERW</td>
<td>F__</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20.4.64</td>
<td>4336</td>
<td>Fieldbus S->M16 mul</td>
<td>FLOAT</td>
<td>1.0</td>
<td>0</td>
<td>1000.0</td>
<td>ERW</td>
<td>F__</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Параметры "Fieldbus S->Mx mul" - это множители, которые привод применяет перед отправкой данных в шину, поэтому можно повысить разрешение некоторых значений, считываемых в режиме EU и EU_FLOAT, используя также и десятичные дроби.

Если параметр sys не назначен, никакие данные из последующих каналов не передаются, даже если они запрограммированы.

Пользователь может изменять системные параметры M->S и S->M. Непротиворечивость параметра sys с назначенным параметром проверяется.

При установке в 4 в канале зарезервированы 32-битные данные, не используются.
При установке в 5 назначаются 16-битные данные, используемые MDPLC.
При установке в 6 назначаются 32-битные данные, используемые MDPLC.
При установке в 7 данные назначаются в технических единицах как 16-битное целое.
При установке в 8 данные назначаются в технических единицах как 32-битное целое.
При установке в 9 данные назначаются в технических единицах как 16-битное целое, но не в реальном времени (5-10 мс)
При установке в 10 данные назначаются в технических единицах как 32-битное целое или в формате с плавающей запятой, но не в реальном времени (5-10 мс)

При установке в 4 в канале зарезервированы 32-битные данные, не используются.
При установке в 5 назначаются 16-битные данные, используемые MDPLC.
При установке в 6 назначаются 32-битные данные, используемые MDPLC.
При установке в 7 данные назначаются в технических единицах как 16-битное целое.
При установке в 8 данные назначаются в технических единицах как 32-битное целое.
При установке в 9 данные назначаются в технических единицах как 16-битное целое, но не в реальном времени (5-10 мс)
При установке в 10 данные назначаются в технических единицах как 32-битное целое или в формате с плавающей запятой, но не в реальном времени (5-10 мс)

Если параметр sys не назначен, никакие данные из последующих каналов не передаются, даже если они запрограммированы.

Параметры "Fieldbus S->Mx mul" - это множители, которые привод применяет перед отправкой данных в шину, поэтому можно повысить разрешение некоторых значений, считываемых в режиме EU и EU_FLOAT, используя также и десятичные дроби.

Если параметр sys не назначен, никакие данные из последующих каналов не передаются, даже если они запрограммированы.

Параметры "Fieldbus S->Mx mul" - это множители, которые привод применяет перед отправкой данных в шину, поэтому можно повысить разрешение некоторых значений, считываемых в режиме EU и EU_FLOAT, используя также и десятичные дроби.
Пример: Fieldbus S->Mx mul = 10, S->M1 fieldbus par = Motor speed, Sys S->M1 fieldbus = EU.
Если двигатель вращается со скоростью 100 об/мин., ПЛК в процессе обмена считывает в первом слове значение 100 * 10 = 1000.

МЕНЮ 20.5 - COMMUNICATION/WORD COMP

<table>
<thead>
<tr>
<th>Меню</th>
<th>ПАР.</th>
<th>Описание</th>
<th>Ед. изм.</th>
<th>Тип</th>
<th>FB BIT</th>
<th>Умолч.</th>
<th>Мин.</th>
<th>Макс.</th>
<th>Доступ</th>
<th>Режим</th>
</tr>
</thead>
<tbody>
<tr>
<td>20.5.1</td>
<td>4400</td>
<td>Word bit0 src</td>
<td>LINK</td>
<td>16BIT</td>
<td>6000</td>
<td>0</td>
<td>16384</td>
<td></td>
<td>ERW</td>
<td>F__</td>
</tr>
<tr>
<td>20.5.2</td>
<td>4402</td>
<td>Word bit1 src</td>
<td>LINK</td>
<td>16BIT</td>
<td>6000</td>
<td>0</td>
<td>16384</td>
<td></td>
<td>ERW</td>
<td>F__</td>
</tr>
<tr>
<td>20.5.3</td>
<td>4404</td>
<td>Word bit2 src</td>
<td>LINK</td>
<td>16BIT</td>
<td>6000</td>
<td>0</td>
<td>16384</td>
<td></td>
<td>ERW</td>
<td>F__</td>
</tr>
<tr>
<td>20.5.4</td>
<td>4406</td>
<td>Word bit3 src</td>
<td>LINK</td>
<td>16BIT</td>
<td>6000</td>
<td>0</td>
<td>16384</td>
<td></td>
<td>ERW</td>
<td>F__</td>
</tr>
<tr>
<td>20.5.5</td>
<td>4408</td>
<td>Word bit4 src</td>
<td>LINK</td>
<td>16BIT</td>
<td>6000</td>
<td>0</td>
<td>16384</td>
<td></td>
<td>ERW</td>
<td>F__</td>
</tr>
<tr>
<td>20.5.6</td>
<td>4410</td>
<td>Word bit5 src</td>
<td>LINK</td>
<td>16BIT</td>
<td>6000</td>
<td>0</td>
<td>16384</td>
<td></td>
<td>ERW</td>
<td>F__</td>
</tr>
<tr>
<td>20.5.7</td>
<td>4412</td>
<td>Word bit6 src</td>
<td>LINK</td>
<td>16BIT</td>
<td>6000</td>
<td>0</td>
<td>16384</td>
<td></td>
<td>ERW</td>
<td>F__</td>
</tr>
<tr>
<td>20.5.8</td>
<td>4414</td>
<td>Word bit7 src</td>
<td>LINK</td>
<td>16BIT</td>
<td>6000</td>
<td>0</td>
<td>16384</td>
<td></td>
<td>ERW</td>
<td>F__</td>
</tr>
<tr>
<td>20.5.9</td>
<td>4416</td>
<td>Word bit8 src</td>
<td>LINK</td>
<td>16BIT</td>
<td>6000</td>
<td>0</td>
<td>16384</td>
<td></td>
<td>ERW</td>
<td>F__</td>
</tr>
<tr>
<td>20.5.10</td>
<td>4418</td>
<td>Word bit9 src</td>
<td>LINK</td>
<td>16BIT</td>
<td>6000</td>
<td>0</td>
<td>16384</td>
<td></td>
<td>ERW</td>
<td>F__</td>
</tr>
<tr>
<td>20.5.11</td>
<td>4420</td>
<td>Word bit10 src</td>
<td>LINK</td>
<td>16BIT</td>
<td>6000</td>
<td>0</td>
<td>16384</td>
<td></td>
<td>ERW</td>
<td>F__</td>
</tr>
<tr>
<td>20.5.12</td>
<td>4422</td>
<td>Word bit11 src</td>
<td>LINK</td>
<td>16BIT</td>
<td>6000</td>
<td>0</td>
<td>16384</td>
<td></td>
<td>ERW</td>
<td>F__</td>
</tr>
<tr>
<td>20.5.13</td>
<td>4424</td>
<td>Word bit12 src</td>
<td>LINK</td>
<td>16BIT</td>
<td>6000</td>
<td>0</td>
<td>16384</td>
<td></td>
<td>ERW</td>
<td>F__</td>
</tr>
<tr>
<td>20.5.14</td>
<td>4426</td>
<td>Word bit13 src</td>
<td>LINK</td>
<td>16BIT</td>
<td>6000</td>
<td>0</td>
<td>16384</td>
<td></td>
<td>ERW</td>
<td>F__</td>
</tr>
<tr>
<td>20.5.15</td>
<td>4428</td>
<td>Word bit14 src</td>
<td>LINK</td>
<td>16BIT</td>
<td>6000</td>
<td>0</td>
<td>16384</td>
<td></td>
<td>ERW</td>
<td>F__</td>
</tr>
<tr>
<td>20.5.16</td>
<td>4430</td>
<td>Word bit15 src</td>
<td>LINK</td>
<td>16BIT</td>
<td>6000</td>
<td>0</td>
<td>16384</td>
<td></td>
<td>ERW</td>
<td>F__</td>
</tr>
</tbody>
</table>

Выбор исходного значения (источника) сигнала, используемого для кодирования в Word comp. Эта функция позволяет пользователю составлять одно слово из 16 сигналов, каждый из которых можно выбрать из имеющихся в списке выбора "L_DIGSEL1".

Значения с размерами, разбитыми на части, преобразуются в одно слово.

Word comp mon

Отображается выходное значение Word comp в шестнадцатеричном виде.
Меню 20.6 - COMMUNICATION/WORD COMP

<table>
<thead>
<tr>
<th>№</th>
<th>PAP</th>
<th>Описание</th>
<th>Ед. изм.</th>
<th>Тип</th>
<th>FB</th>
<th>Умолч.</th>
<th>Мин.</th>
<th>Макс.</th>
<th>Доступ</th>
<th>Режим</th>
</tr>
</thead>
<tbody>
<tr>
<td>20.6.1</td>
<td>4450</td>
<td>Dig word decomp</td>
<td>UINT32</td>
<td>16BIT</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>ERW</td>
<td>F__</td>
</tr>
</tbody>
</table>

Установка дискретного входа, декодируемого блоком "Word decomp".

<table>
<thead>
<tr>
<th>№</th>
<th>PAP</th>
<th>Описание</th>
<th>Ед. изм.</th>
<th>Тип</th>
<th>FB</th>
<th>Умолч.</th>
<th>Мин.</th>
<th>Макс.</th>
<th>Доступ</th>
<th>Режим</th>
</tr>
</thead>
<tbody>
<tr>
<td>20.6.2</td>
<td>4452</td>
<td>Word decomp src</td>
<td>LINK</td>
<td>16BIT</td>
<td>4450</td>
<td>0</td>
<td>16384</td>
<td>ERW</td>
<td>F__</td>
<td></td>
</tr>
</tbody>
</table>

Выбор исходного значения (источника) слова, декодируемого блоком Word decomp. Каждый декодируемый бит из состава слова, связывается с выходным каналом блока Word decomp. Переменные, которые можно использовать для этой функции, можно определить среди приведенных в списке выбора "L_WDECOMP".

![Diagram](Word_decomp.png)

Отображаются отдельные биты, составляющие выбранное слово.
Меню 21 - ALARM CONFIG

В меню ALARM CONFIG задается тип воздействия тревожных сигналов, имеющихся в приводе.

- Сохранение статуса тревожного сигнала
- Реакция привода на тревожный сигнал
- Автоматический перезапуск
- Сброс тревожного сигнала

Для некоторых тревожных сигналов характер воздействия можно задавать по отдельности, в то время как для других выполняется Блокировка привода. Отдельные сигналы можно также отправлять на программируемый дискретный выход.

Действия

Игнорирование
Тревожный сигнал не включается в список тревожных сигналов, не включается в журнал тревожных сигналов, не производится сигнализация через дискретные выходы, команды на привод не изменяются.

Предупреждение
Тревожный сигнал включается в список тревожных сигналов, включается в журнал тревожных сигналов, производится сигнализация через дискретные выходы, информация о первом тревожном сигнале обновляется, информация о выдаче тревожных сигналов обновляется, команды на привод не изменяются.

Блокировка привода
Тревожный сигнал включается в список тревожных сигналов, включается в журнал тревожных сигналов, производится сигнализация через дискретные выходы, информация о первом тревожном сигнале обновляется, информация о выдаче тревожных сигналов обновляется, выдается команда на остановку и блокировку двигателя, который останавливается по инерции.

Остановка
Тревожный сигнал включается в список тревожных сигналов, включается в журнал тревожных сигналов, производится сигнализация через дискретные выходы, информация о первом тревожном сигнале обновляется, информация о выдаче тревожных сигналов обновляется, выдается команда на остановку. Когда достигается нулевая скорость, привод блокируется. Если действует режим управления по рампе, привод доводит двигатель до нулевой скорости по времени рампы; когда активируется сигнал Speed delay 0, привод блокируется. Если действует режим управления по скорости, привод доводит двигатель до нулевой скорости по времени, определяемому нагрузкой; когда активируется сигнал Speed delay 0, привод блокируется. Если действует режим управления по моменту, привод доводит двигатель до нулевой скорости по времени, определяемому нагрузкой; когда активируется сигнал Speed delay 0, привод блокируется.

Быстрая остановка
Тревожный сигнал включается в список тревожных сигналов, включается в журнал тревожных сигналов, производится сигнализация через дискретные выходы, информация о первом тревожном сигнале обновляется, информация о выдаче тревожных сигналов обновляется, выдается команда быстрой остановки. Когда достигается нулевая скорость, привод блокируется. Если действует режим управления по рампе, привод доводит двигатель до нулевой скорости по времени рампы быстрой остановки (время замедления 3); когда активируется сигнал Speed delay 0, привод блокируется. Если действует режим управления по скорости, привод доводит двигатель до нулевой скорости с максимально возможным током; когда активируется сигнал Speed delay 0, привод блокируется. Если действует режим управления по моменту, привод доводит двигатель до нулевой скорости по времени, определяемому нагрузкой; когда активируется сигнал Speed delay 0, привод блокируется.

Тревожные сигналы с Действием = Игнорирование или Предупреждение можно разрешить одновременно. Если разрешен тревожный сигнал с Действием = Остановка или Быстрая остановка и разрешен тревожный сигнал с Действием, отличающимся от Игнорирования или Предупреждения, привод останавливается и блокируется. Остановкой привода управляют не все тревожные сигналы. В следующей таблице показаны возможности установки Действия для отдельных тревожных сигналов.

<table>
<thead>
<tr>
<th>Alarm (Тревожный сигнал)</th>
<th>Ignore (Игнорирование)</th>
<th>Warning (Предупреждение)</th>
<th>Disable drive (Блокировка привода)</th>
<th>Stop (Остановка)</th>
<th>Fast stop (Быстрая остановка)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ExtFlt</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Motor OT</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Overspeed</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>SpdRefLoss</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>SpdFbkLoss</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Alarm (Тревожный сигнал)</td>
<td>Ignore (Игнорирование)</td>
<td>Warning (Предупреждение)</td>
<td>Disable drive (Блокировка привода)</td>
<td>Stop (Остановка)</td>
<td>Fast stop (Быстрая остановка)</td>
</tr>
<tr>
<td>--------------------------</td>
<td>------------------------</td>
<td>---------------------------</td>
<td>----------------------------------</td>
<td>-----------------</td>
<td>-----------------------------</td>
</tr>
<tr>
<td>Drive ovld</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Motor ovld</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Bres ovld</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>InAir</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>PhLoss</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Opt Bus</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Mot PhLoss</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>

Меню ПАР. Описание Ед. изм. Тип FB ВИТ Умолч. Мин. Макс. Доступ Режим

21.1 4500 Fault reset src LINK 16BIT 6000 0 16384 RW F__
Выбор исходного значения (источника) сигнала, используемого для сброса привода после тревожного сигнала.
Клеммы, которые можно использовать для этой функции, можно определить среди приведенных в списке выбора "L_DIGSEL2".

21.2 4502 ExtFlt src LINK 16BIT 6000 0 16384 RW F__
Выбор исходного значения (источника) используемого сигнала как входа внешнего тревожного сигнала ExtFlt.
Клеммы, которые можно использовать для этой функции, можно определить среди приведенных в списке выбора "L_DIGSEL2".

21.3 4504 ExtFlt activity ENUM Disable 0 4 RW F__
Установка характера работы привода в случае внешнего сигнала неисправности ExtFlt. Этот тревожный сигнал указывает на срабатывание защиты привода по внешним сигналам.
0 Ignore (Игнорирование)
1 Warning (Предупреждение)
2 Disable (Запрет)
3 Stop (Остановка)
4 Fast stop (Быстрая остановка)

21.4 4506 ExtFlt restart ENUM Disable 0 1 RW F__
Разрешение автоматического перезапуска внешним тревожным сигналом ExtFlt.
0 Запрет
1 Разрешение

21.5 4508 ExtFlt restart time ms UINT16 1000 120 30000 RW F__
Установка времени, после которого тревожный сигнал External Fault должен быть сброшен для выполнения автоматического перезапуска.

21.6 4510 ExtFlt holdoff ms UINT16 0 0 10000 RW F__
Установка задержки между появлением тревожного сигнала ExtFlt и разрешения сигнализации. Если условие тревожной сигнализации выполняется, привод будет ожидать заданное время до снятия блокировки. Если сигнал состояния неисправности за установленное время снимется, привод не будет выдавать тревожный сигнал.

21.7 4520 MotorOT src LINK 16BIT 6000 0 16384 RW F__
Выбор исходного значения (источника) сигнала, используемого для тревожного сигнала перегрева MotorOT.
Клемма, которую можно использовать для этой функции, можно выбрать среди приведенных в списке выбора "L_DIGSEL2".

21.8 4522 MotorOT activity ENUM Arvisa 0 4 RW F__
Установка характера работы привода в случае тревожного сигнала перегрева двигателя MotorOT. Этот сигнал указывает на то, что температура двигателя слишком высока.
<table>
<thead>
<tr>
<th>Меню</th>
<th>Пар.</th>
<th>Описание</th>
<th>Ед. изм.</th>
<th>Тип</th>
<th>FB ВИТ</th>
<th>Умолч.</th>
<th>Мин.</th>
<th>Макс.</th>
<th>Доступ</th>
<th>Режим</th>
</tr>
</thead>
<tbody>
<tr>
<td>21.9</td>
<td>4524</td>
<td>MotorOT restart</td>
<td>ENUM</td>
<td>Disable</td>
<td>0</td>
<td>1</td>
<td>RW</td>
<td>F__</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Меню</td>
<td>Пар.</td>
<td>Описание</td>
<td>Ед. изм.</td>
<td>Тип</td>
<td>FB ВИТ</td>
<td>Умолч.</td>
<td>Мин.</td>
<td>Макс.</td>
<td>Доступ</td>
<td>Режим</td>
</tr>
<tr>
<td>------</td>
<td>------</td>
<td>-----------</td>
<td>---------</td>
<td>-----</td>
<td>--------</td>
<td>--------</td>
<td>-----</td>
<td>-----</td>
<td>--------</td>
<td>-------</td>
</tr>
<tr>
<td>21.10</td>
<td>4526</td>
<td>MotorOT restart time</td>
<td>ms</td>
<td>UINT16</td>
<td>1000</td>
<td>120</td>
<td>30000</td>
<td>RW</td>
<td>F__</td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Меню</td>
<td>Пар.</td>
<td>Описание</td>
<td>Ед. изм.</td>
<td>Тип</td>
<td>FB ВИТ</td>
<td>Умолч.</td>
<td>Мин.</td>
<td>Макс.</td>
<td>Доступ</td>
<td>Режим</td>
</tr>
<tr>
<td>------</td>
<td>------</td>
<td>-----------</td>
<td>---------</td>
<td>-----</td>
<td>--------</td>
<td>--------</td>
<td>-----</td>
<td>-----</td>
<td>--------</td>
<td>-------</td>
</tr>
<tr>
<td>21.11</td>
<td>4528</td>
<td>MotorOT holdoff</td>
<td>ms</td>
<td>UINT16</td>
<td>1000</td>
<td>0</td>
<td>30000</td>
<td>RW</td>
<td>F__</td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Меню</td>
<td>Пар.</td>
<td>Описание</td>
<td>Ед. изм.</td>
<td>Тип</td>
<td>FB ВИТ</td>
<td>Умолч.</td>
<td>Мин.</td>
<td>Макс.</td>
<td>Доступ</td>
<td>Режим</td>
</tr>
<tr>
<td>------</td>
<td>------</td>
<td>-----------</td>
<td>---------</td>
<td>-----</td>
<td>--------</td>
<td>--------</td>
<td>-----</td>
<td>-----</td>
<td>--------</td>
<td>-------</td>
</tr>
<tr>
<td>21.12</td>
<td>4540</td>
<td>Overspeed threshold</td>
<td>rpm</td>
<td>INT16</td>
<td>INT32</td>
<td>CALCI</td>
<td>0</td>
<td>CALCI</td>
<td>RW</td>
<td>F__</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Меню</td>
<td>Пар.</td>
<td>Описание</td>
<td>Ед. изм.</td>
<td>Тип</td>
<td>FB ВИТ</td>
<td>Умолч.</td>
<td>Мин.</td>
<td>Макс.</td>
<td>Доступ</td>
<td>Режим</td>
</tr>
<tr>
<td>------</td>
<td>------</td>
<td>-----------</td>
<td>---------</td>
<td>-----</td>
<td>--------</td>
<td>--------</td>
<td>-----</td>
<td>-----</td>
<td>--------</td>
<td>-------</td>
</tr>
<tr>
<td>21.13</td>
<td>4542</td>
<td>Overspeed activity</td>
<td>ENUM</td>
<td>Disable</td>
<td>0</td>
<td>4</td>
<td>RW</td>
<td>F__</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Меню</td>
<td>Пар.</td>
<td>Описание</td>
<td>Ед. изм.</td>
<td>Тип</td>
<td>FB ВИТ</td>
<td>Умолч.</td>
<td>Мин.</td>
<td>Макс.</td>
<td>Доступ</td>
<td>Режим</td>
</tr>
<tr>
<td>------</td>
<td>------</td>
<td>-----------</td>
<td>---------</td>
<td>-----</td>
<td>--------</td>
<td>--------</td>
<td>-----</td>
<td>-----</td>
<td>--------</td>
<td>-------</td>
</tr>
<tr>
<td>21.14</td>
<td>4544</td>
<td>Overspeed holdoff</td>
<td>ms</td>
<td>UINT16</td>
<td>0</td>
<td>0</td>
<td>5000</td>
<td>RW</td>
<td>F__</td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Меню</td>
<td>Пар.</td>
<td>Описание</td>
<td>Ед. изм.</td>
<td>Тип</td>
<td>FB ВИТ</td>
<td>Умолч.</td>
<td>Мин.</td>
<td>Макс.</td>
<td>Доступ</td>
<td>Режим</td>
</tr>
<tr>
<td>------</td>
<td>------</td>
<td>-----------</td>
<td>---------</td>
<td>-----</td>
<td>--------</td>
<td>--------</td>
<td>-----</td>
<td>-----</td>
<td>--------</td>
<td>-------</td>
</tr>
<tr>
<td>21.15</td>
<td>4550</td>
<td>SpdRefLoss threshold</td>
<td>rpm</td>
<td>INT16</td>
<td>100</td>
<td>0</td>
<td>CALCI</td>
<td>RW</td>
<td>F__</td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Меню</td>
<td>Пар.</td>
<td>Описание</td>
<td>Ед. изм.</td>
<td>Тип</td>
<td>FB ВИТ</td>
<td>Умолч.</td>
<td>Мин.</td>
<td>Макс.</td>
<td>Доступ</td>
<td>Режим</td>
</tr>
<tr>
<td>------</td>
<td>------</td>
<td>-----------</td>
<td>---------</td>
<td>-----</td>
<td>--------</td>
<td>--------</td>
<td>-----</td>
<td>-----</td>
<td>--------</td>
<td>-------</td>
</tr>
<tr>
<td>21.16</td>
<td>4552</td>
<td>SpdRefLoss activity</td>
<td>ENUM</td>
<td>Avvisa</td>
<td>0</td>
<td>4</td>
<td>RW</td>
<td>F__</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Разрешение автоматического перезапуска внешним тревожным сигналом перегрева двигателя MotorOT.

Установка времени, после которого тревожный сигнал Motor Overtemperature должен быть сброшен для выполнения автоматического перезапуска.

Установка задержки между появлением тревожного сигнала MotorOT и разрешением сигнализации. Если условие тревожной сигнализации выполняется, привод будет ожидать заданное время до выдачи тревожного сигнала. Если сигнал состояния неисправности за установленное время снимается, привод не будет выдавать тревожный сигнал.

Установка порога, при превышении которого разрешается тревожный сигнал Overspeed.

Установка характера работы привода в случае тревожного сигнала превышения скорости вращения двигателя MotorOT. Этот тревожный сигнал указывает на то, что скорость вращения двигателя превышает порог, установленный в параметрах Speed ref top lim и Speed ref bottom lim в меню COMMANDS.

Установка задержки между появлением тревожного сигнала Overspeed и разрешением сигнализации. Если условие тревожной сигнализации выполняется, привод будет ожидать заданное время до выдачи тревожного сигнала. Если сигнал состояния неисправности за установленное время снимается, привод не будет выдавать тревожный сигнал.

Установка порога, при значении ниже которого выдается тревожный сигнал потери опорной скорости SpdRefLoss.

Установка характера работы привода в случае тревожного сигнала потери опорной скорости SpdRefLoss. Этот тревожный сигнал указывает на то, что разница между опорным значением скорости регулятора и фактическим значением скорости вращения двигателя больше 100 об/мин.

Если параметр 2354 установлен в значение, отличное от нуля, этот тревожный сигнал должен быть заблокирован (= 0 Игнорировать).

Этот тревожный сигнал необходимо заблокировать (= 1 Запрет), когда ПАР2132 установлен в значение Digital FP, либо Digital F, либо Sinus.

Этот тревожный сигнал необходимо заблокировать (= 1 Запрет), когда ПАР 2136 установлен в значение Peripheral Encoder.
Задержка между сигналом выполнения условия тревожного сигнала Speed ref loss и активацией этого тревожного сигнала. Если условие тревожной сигнализации выполняется, привод будет ожидать заданное время до выдачи тревожного сигнала. Если сигнал состояния неисправности за установленное время снимается, привод не будет выдавать тревожный сигнал.

Отображается характер работы привода при наступлении тревожного сигнала Speed fbk loss. Этот тревожный сигнал указывает на потерю сигналов от энкодера в контуре обратной связи. В зависимости от типа энкодера тревожный сигнал Speed fbk loss генерируется по-разному (энкодер инкрементального сигнала, ошибка абсолютного сигнала, ошибка последовательной передачи).

Для абсолютных энкодеров Endat и Hiperface, после выдачи тревожного сигнала требуется отправка на энкодер команды сброса; во время этой процедуры проверяется, передает ли энкодер на привод тревожный сигнал об опасной ситуации и выдается ли сигнал по этой причине.

Причина тревожного сигнала Speed fbk loss и информация, получаемая от энкодера, отображаются в параметре 2172 SpdFbkLoss code.

Установка задержки между выдачей тревожного сигнала о потере обратной связи SpdFbkLoss и появлением сигнализации. Если условие тревожной сигнализации выполняется, привод будет ожидать заданное время до выдачи тревожного сигнала. Если сигнал состояния неисправности за установленное время снимается, привод не будет выдавать тревожный сигнал.

Если применяются инкрементальные цифровые энкодеры в режиме несимметричного выхода, с помощью этого параметра задается порог, вне которого привод выполняет действие, заданное в параметре 4560 SpdFbkLoss activity.

Установка характера работы привода в случае тревожного сигнала перегрузки привода Drive ovd. Этот тревожный сигнал указывает на то, что достигнут порог перегрузки привода.

Установка характера работы привода в случае тревожного сигнала перегрузки двигателя Motor ovd. Этот тревожный сигнал указывает на то, что достигнут порог перегрузки двигателя.
Варианты работы при возникновении тревоги

<table>
<thead>
<tr>
<th>Меню</th>
<th>PAR.</th>
<th>Описание</th>
<th>Ед. изм.</th>
<th>Тип</th>
<th>FB ВБ</th>
<th>Умолч.</th>
<th>Мин.</th>
<th>Макс.</th>
<th>Доступ</th>
<th>Режим</th>
</tr>
</thead>
<tbody>
<tr>
<td>21.23</td>
<td>4574</td>
<td>Bres ovld activity</td>
<td>ENUM</td>
<td>Disable</td>
<td>0</td>
<td>4</td>
<td>ERW</td>
<td>F__</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Установка характера работы привода в случае тревожного сигнала перегрузки тормозного резистора **Bres ovld**. Этот тревожный сигнал указывает на то, что достигнут порог перегрузки тормозного резистора.

- **Ignore (Игнорирование)**
- **Warning (Предупреждение)**
- **Disable (Запрет)**
- **Stop (Остановка)**
- **Fast stop (Быстрая остановка)**

Установка времени, после которого тревожный сигнал HT sensor должен быть сброшен для выполнения автоматического перезапуска.

<table>
<thead>
<tr>
<th>Меню</th>
<th>PAR.</th>
<th>Описание</th>
<th>Ед. изм.</th>
<th>Тип</th>
<th>FB ВБ</th>
<th>Умолч.</th>
<th>Мин.</th>
<th>Макс.</th>
<th>Доступ</th>
<th>Режим</th>
</tr>
</thead>
<tbody>
<tr>
<td>21.25</td>
<td>4584</td>
<td>HTsens restart time</td>
<td>ms</td>
<td>UINT16</td>
<td>20000</td>
<td>120</td>
<td>60000</td>
<td>ERW</td>
<td>F__</td>
<td></td>
</tr>
</tbody>
</table>

Установка времени задержки между выдачей тревожного сигнала InAir и появлением этого сигнала.

<table>
<thead>
<tr>
<th>Меню</th>
<th>PAR.</th>
<th>Описание</th>
<th>Ед. изм.</th>
<th>Тип</th>
<th>FB ВБ</th>
<th>Умолч.</th>
<th>Мин.</th>
<th>Макс.</th>
<th>Доступ</th>
<th>Режим</th>
</tr>
</thead>
<tbody>
<tr>
<td>21.28</td>
<td>4604</td>
<td>InAir restart time</td>
<td>ms</td>
<td>UINT16</td>
<td>1000</td>
<td>120</td>
<td>30000</td>
<td>ERW</td>
<td>F__</td>
<td></td>
</tr>
</tbody>
</table>

Установка характера работы привода в случае тревожного сигнала Desat.

<table>
<thead>
<tr>
<th>Меню</th>
<th>PAR.</th>
<th>Описание</th>
<th>Ед. изм.</th>
<th>Тип</th>
<th>FB ВБ</th>
<th>Умолч.</th>
<th>Мин.</th>
<th>Макс.</th>
<th>Доступ</th>
<th>Режим</th>
</tr>
</thead>
<tbody>
<tr>
<td>21.30</td>
<td>4610</td>
<td>Desat restart</td>
<td>ENUM</td>
<td>Disable</td>
<td>0</td>
<td>1</td>
<td>ERW</td>
<td>F__</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Разрешение автоматического перезапуска внешним тревожным сигналом отсутствия насыщения **Desat**. Этот тревожный сигнал указывает на короткое замыкание между фазами двигателя или силового моста.

- **Ignore (Игнорирование)**
- **Warning (Предупреждение)**
- **Disable (Запрет)**
- **Stop (Остановка)**
- **Fast stop (Быстрая остановка)**
Установка времени, после которого тревожный сигнал Desaturation должен быть сброшен для выполнения автоматического перезапуска. (Время активности сигнала + 1000 мс).

Разрешение автоматического перезапуска внешним тревожным сигналом токовой перегрузки привода Overcurrent. Этот тревожный сигнал указывает на токовую перегрузку (либо на короткое замыкание между фазами либо на землю).

Разрешение автоматического перезапуска внешним тревожным сигналом Overvoltage. Этот тревожный сигнал указывает на чрезмерное напряжение в промежуточной цепи (в звене постоянного напряжения).

Разрешение автоматического перезапуска внешним тревожным сигналом Undervoltage. Этот тревожный сигнал указывает на чрезмерное низкое напряжение в промежуточной цепи (в звене постоянного напряжения).

Установка характера работы привода в случае тревожного сигнала обрыва фазы. Этот тревожный сигнал указы-
вает на отсутствие фазы в питании привода.

<table>
<thead>
<tr>
<th>ПАР</th>
<th>Описание</th>
<th>Ед. изм.</th>
<th>Тип</th>
<th>FB/ВТ</th>
<th>Умолч.</th>
<th>Мин.</th>
<th>Макс.</th>
<th>Доступ</th>
<th>Режим</th>
</tr>
</thead>
<tbody>
<tr>
<td>21.41 4662 PhLoss restart</td>
<td>ENUM</td>
<td>Disable</td>
<td>0</td>
<td>1</td>
<td>ERW</td>
<td>F__</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Разрешение автоматического перезапуска внешним тревожным сигналом обрыва фазы.

0 Запрет
1 Разрешение

Меню ПАР Описание Ед. изм. Тип FB ВТ Умолч. Мин. Макс. Доступ Режим
21.42 4664 PhLoss restart time ms UINT16 1000 120 10000 ERW F__

Установка времени, после которого тревожный сигнал Phase loss должен быть сброшен для выполнения автоматического перезапуска. (Время активности сигнала + 100 мс).

Меню ПАР Описание Ед. изм. Тип FB ВТ Умолч. Мин. Макс. Доступ Режим
21.43 4668 PhLoss output test ENUM Enable 0 2 ERWZ F__

Разрешение проверки пропуска фазы на выходе.

0 Запрет
1 Разрешение
2 При подаче питания

При установке в 0 проверка заблокирована.
При установке в 1 приводом выполняется проверка наличия всех фаз на выходе каждый раз, когда на него поступает команда пуска.
При установке в 2 приводом выполняется проверка наличия всех фаз на выходе только первый раз, когда на него поступает команда пуска, после подачи питания.

Примечание
Во время этой проверки тормоз двигателя должен быть наложен!

Меню ПАР Описание Ед. изм. Тип FB ВТ Умолч. Мин. Макс. Доступ Режим
21.44 4654 Mot PhLoss activity ENUM Ignore 0 4 ERW FVS

Функция «Пропадание фазы двигателя» определяет обрыв одной фазы соединения между приводом и двигателем. Эта функция срабатывает и во время вращения двигателя. Функция пропадания фазы конфигурируется параметрами 4654-4656-4674 и 4678.

Аварийный сигнал «Пропадание фазы двигателя» обозначает обрыв фазы двигателя. Этот параметр управляет генерацией аварийного сигнала.

0 Ignore (Игнорирование)
1 Warning (Предупреждение)
2 Disable (Запрет)
3 Stop (Остановка)
4 Fast stop (Быстрая остановка)

Меню ПАР Описание Ед. изм. Тип FB ВТ Умолч. Мин. Макс. Доступ Режим
21.45 4656 Mot PhLoss holdoff ms UINT16 800 200 10000 ERW FVS

Задает время, в течение которого должны выполняться условия аварийного сигнала, прежде чем аварийный сигнал генерируется.

Меню ПАР Описание Ед. изм. Тип FB ВТ Умолч. Мин. Макс. Доступ Режим
21.46 4674 Mot PhLoss speed thr rpm INT16 10 10 32000 ERW FVS

В случае обрыва связи между фазой двигателя и приводом аварийный сигнал генерируется при условии, что превышен порог скорости, заданный в этом параметре.

Его можно использовать, чтобы ограничивать аварийный сигнал при очень низких скоростях во время переходных процессов пуска и остановки, когда внешние шумы могут создавать ложные срабатывания аварийного сигнала.

Меню ПАР Описание Ед. изм. Тип FB ВТ Умолч. Мин. Макс. Доступ Режим
21.47 4678 Mot PhLoss code UINT32 0 0 0 ER FVS
Это шестнадцатеричное значение содержит информацию о типе обнаруженной неисправности и о фазе двигателя, для которой обнаружена неисправность.

<table>
<thead>
<tr>
<th>Номер</th>
<th>Описание</th>
<th>Функция</th>
<th>Мин.</th>
<th>Макс.</th>
<th>Доступ</th>
<th>Режим</th>
</tr>
</thead>
<tbody>
<tr>
<td>0x0001</td>
<td>Ошибка для фазы U при работе двигателя</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0x0002</td>
<td>Ошибка для фазы V при работе двигателя</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0x0004</td>
<td>Ошибка для фазы W при работе двигателя</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0x0008</td>
<td>Ошибка для фазы U при работе двигателя с потерей нулевой отметки скорости</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0x0010</td>
<td>Ошибка для фазы V при работе двигателя с потерей нулевой отметки скорости</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0x0020</td>
<td>Ошибка для фазы W при работе двигателя с потерей нулевой отметки скорости</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0x0040</td>
<td>Ошибка для фазы U на этапе намагничивания (только для асинхронных двигателей)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0x0080</td>
<td>Ошибка для фазы V на этапе намагничивания (только для асинхронных двигателей)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0x0100</td>
<td>Ошибка для фазы W на этапе намагничивания (только для асинхронных двигателей)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0x0200</td>
<td>Ошибка для фазы U при отключенном двигателе (только для асинхронных двигателей)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0x0400</td>
<td>Ошибка для фазы V при отключенном двигателе (только для асинхронных двигателей)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0x0800</td>
<td>Ошибка для фазы W при отключенном двигателе (только для асинхронных двигателей)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

В некоторых случаях несколько битов отображаются одновременно. В зависимости от типа неисправности, может случиться, что обрыв одной фазы приводит к отсутствию циркуляции тока и в двух других фазах; при этом отображаемый код указывает на отсутствие всех трех фаз, в то время как обрыв произошел только в одной фазе.

<table>
<thead>
<tr>
<th>Меню</th>
<th>ПАР.</th>
<th>Описание</th>
<th>Ед. изм.</th>
<th>Тип</th>
<th>FB BIT</th>
<th>Умолч.</th>
<th>Мин.</th>
<th>Макс.</th>
<th>Доступ</th>
<th>Режим</th>
</tr>
</thead>
<tbody>
<tr>
<td>21.48</td>
<td>4670</td>
<td>Optionbus activity</td>
<td>ENUM</td>
<td>Disable</td>
<td>0</td>
<td>4</td>
<td>ERW</td>
<td>F__</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Установка характера работы привода в случае тревожного сигнала “Opt Bus Fault”.
0 Ignore (Игнорирование)
1 Warning (Предупреждение)
2 Disable (Запрет)
3 Stop (Остановка)
4 Fast stop (Быстрая остановка)

<table>
<thead>
<tr>
<th>Меню</th>
<th>ПАР.</th>
<th>Описание</th>
<th>Ед. изм.</th>
<th>Тип</th>
<th>FB BIT</th>
<th>Умолч.</th>
<th>Мин.</th>
<th>Макс.</th>
<th>Доступ</th>
<th>Режим</th>
</tr>
</thead>
<tbody>
<tr>
<td>21.49</td>
<td>4680</td>
<td>GroundFault thr</td>
<td>perc</td>
<td>FLOAT</td>
<td>10.0</td>
<td>0.0</td>
<td>150.0</td>
<td>ERWS</td>
<td>F__</td>
<td></td>
</tr>
</tbody>
</table>

Установка порога срабатывания тревожного сигнала замыкания на землю Ground Fault.

<table>
<thead>
<tr>
<th>Меню</th>
<th>ПАР.</th>
<th>Описание</th>
<th>Ед. изм.</th>
<th>Тип</th>
<th>FB BIT</th>
<th>Умолч.</th>
<th>Мин.</th>
<th>Макс.</th>
<th>Доступ</th>
<th>Режим</th>
</tr>
</thead>
<tbody>
<tr>
<td>21.50</td>
<td>4700</td>
<td>Alarm dig sel 1</td>
<td>ENUM</td>
<td>Сигнализации нет</td>
<td>0</td>
<td>40</td>
<td>ERW</td>
<td>F__</td>
<td></td>
<td></td>
</tr>
<tr>
<td>21.51</td>
<td>4702</td>
<td>Alarm dig sel 2</td>
<td>ENUM</td>
<td>Сигнализации нет</td>
<td>0</td>
<td>40</td>
<td>ERW</td>
<td>F__</td>
<td></td>
<td></td>
</tr>
<tr>
<td>21.52</td>
<td>4704</td>
<td>Alarm dig sel 3</td>
<td>ENUM</td>
<td>Сигнализации нет</td>
<td>0</td>
<td>40</td>
<td>ERW</td>
<td>F__</td>
<td></td>
<td></td>
</tr>
<tr>
<td>21.53</td>
<td>4706</td>
<td>Alarm dig sel 4</td>
<td>ENUM</td>
<td>Сигнализации нет</td>
<td>0</td>
<td>40</td>
<td>ERW</td>
<td>F__</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Установка разрешения тревожной сигнализации через дискретный выход. Дискретный выход выбирается с помощью параметров Alm dig out mon 1+4, которые можно взять из списка параметров L_DIGSEL1.

0 No alarm
1 Overvoltage
2 Undervoltage
3 Ground fault
4 Overcurrent
5 Desaturation
6 MultiUndervolt
7 MultiOvercurr
8 MultiDesat
9 Heatsink OT
10 HeatsinkS OTUT
11 Intakeair OT
12 Motor OT
13 Drive overload
14 Motor overload
15 Bres overload
16 Phaseloss
17 Opt Bus fault
18 Opt 1 IO fault
19 Opt 2 IO fault
20 Opt Enc fault
21 External fault
22 Speed fbk loss
23 Overspeed
24 Speed ref loss
25 Emg stop alarm
26 Power down
27 Phase loss out
28 OV safety
29 Safety failure
30 Mot phase loss
31 Ropes change
32 Not Used
33 Plc1 fault
34 Plc2 fault
35 Plc3 fault
36 Plc4 fault
37 Plc5 fault
38 Plc6 fault
39 Plc7 fault
40 Plc8 fault

Меню ПАР. Описание Ед. изм. Тип FB ВИТ Умолч. Мин. Макс. Доступ Режим

21.54 4720 Alm autoreset time s FLOAT 0.0 0.0 60.0 ERW F__
Установка интервала времени, который должен пройти до выполнения автоматического сброса.
Если тревожных сигналов нет, привод устанавливается в перезапуск.
Если какие-либо тревожные сигналы все еще есть, привод производит новую попытку автоматического сброса.
При каждой попытке сброса значение счетчика увеличивается. Если достигается предел числа попыток сброса,
установленный в параметре Alm autoreset number, привод больше не производит попыток сброса, а ожидает пере-
запуска пользователем.
Когда выполняется автоматический сброс или сброс пользователем, и тревожных сигналов нет, счетчик установлива-
ется в нуль.
Если параметр установлен в 0, эта функция заблокирована.

Меню ПАР. Описание Ед. изм. Тип FB ВИТ Умолч. Мин. Макс. Доступ Режим

21.55 4722 Alm autoreset number UINT16 20 0 100 ERW F__
Установка максимального числа попыток перезапуска.
Меню 23 - ALARM LOG

Это меню относится к журналу, в котором сохраняются появившиеся тревожные сигналы с указанием времени их наступления (относительно параметра Time drive power on). Тревожные сигналы отображаются, начиная с самого недавнего (№1) и до самого далеко отстоящего по времени (№30). Может отображаться до 30 записей тревожных сигналов. Субкод используется обслуживающим персоналом для выявления особенностей тревожного сигнала. Для перелистывания страниц журнала тревожных сигналов используются кнопки ▲ и ▼. Журнал тревожных сигналов не может быть удален.

<table>
<thead>
<tr>
<th>Номер тревожного сигнала</th>
<th>Описание тревожного сигнала</th>
<th>Субкод</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>PhaseLoss</td>
<td>110:32 0000H</td>
</tr>
<tr>
<td>2</td>
<td>Undervoltage</td>
<td>110:25 0000H</td>
</tr>
<tr>
<td>3</td>
<td>SpdFbkLoss</td>
<td>110:20 0000H</td>
</tr>
<tr>
<td>4</td>
<td>Overspeed</td>
<td>109:25 0000H</td>
</tr>
</tbody>
</table>

Субкод

Время появления тревожного сигнала

Номер тревожного сигнала
ПАРАМЕТРЫ, ИМЕЮЩИЕСЯ В СПИСКАХ ВЫБОРА, НО НЕ ОТОБРАЖАЮЩИЕСЯ

В данном списке перечислены параметры, которые не отображаются на клавиатуре, но являются в то же время частью списков выбора. Эти параметры можно использовать как источник (SOURCE) входных сигналов для функциональных блоков. (См. раздел А – Программирование).

<table>
<thead>
<tr>
<th>№</th>
<th>Описание</th>
<th>Ед. изм.</th>
<th>Тип</th>
<th>ФБ</th>
<th>Умолч.</th>
<th>Мин.</th>
<th>Макс.</th>
<th>Доступ</th>
<th>Режим</th>
</tr>
</thead>
<tbody>
<tr>
<td>262</td>
<td>Motor speed nofilter</td>
<td>rpm</td>
<td>INT16</td>
<td>16BIT</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>ER</td>
<td>F__</td>
</tr>
<tr>
<td></td>
<td>В этом параметре отображается скорость вращения двигателя, не обработанная фильтром.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>362</td>
<td>Drive overload trip</td>
<td>BIT</td>
<td>16BIT</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>ER</td>
<td>F__</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Этот сигнал указывает на то, что привод находится в состоянии сигнализации перегрузки.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>366</td>
<td>Drive overload 80%</td>
<td>BIT</td>
<td>16BIT</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>ER</td>
<td>F__</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Этот сигнал указывает на то, что приводом достигнута 80% нагрева по тепловой модели (перегрузка привода).</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>626</td>
<td>Ramp ref out mon</td>
<td>rpm</td>
<td>INT16</td>
<td>16BIT</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>ER</td>
<td>F__</td>
</tr>
<tr>
<td></td>
<td>В этом параметре отображается опорное выходное значение функционального блока опорной рампы.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>760</td>
<td>Ramp out mon</td>
<td>rpm</td>
<td>INT16</td>
<td>16BIT</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>ER</td>
<td>F__</td>
</tr>
<tr>
<td></td>
<td>В этом параметре отображается опорное выходное значение функционального блока рампы.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>764</td>
<td>Ramp acc state</td>
<td>BIT</td>
<td>16BIT</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>ER</td>
<td>F__</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Этот сигнал указывает на активность рампы ускорения.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>766</td>
<td>Ramp dec state</td>
<td>BIT</td>
<td>16BIT</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>ER</td>
<td>F__</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Этот сигнал указывает на активность рампы замедления.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>934</td>
<td>Ref is 0</td>
<td>BIT</td>
<td>16BIT</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>ER</td>
<td>F__</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Этот сигнал активен, когда опорное значение ниже предела, заданного в параметре 930 Reference 0 threshold.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>936</td>
<td>Ref is 0 delay</td>
<td>BIT</td>
<td>16BIT</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>ER</td>
<td>F__</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Этот параметр активен, когда опорное значение ниже предела, заданного в параметре 930 Reference 0 threshold. Этот сигнал выдается через время задержки, заданное в параметре 932 Reference delay 0.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>944</td>
<td>Speed is 0</td>
<td>BIT</td>
<td>16BIT</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>ER</td>
<td>F__</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Этот параметр активен, когда скорость вращения ниже порога, установленного в параметре 940 Speed 0 threshold.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>946</td>
<td>Speed is 0 delay</td>
<td>BIT</td>
<td>16BIT</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>ER</td>
<td>F__</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Этот сигнал активен, когда опорное значение ниже порога, установленного в параметре 940 Speed 0 threshold. Этот сигнал активируется через время задержки, заданное в параметре 940 Speed 0 delay.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Меню | ПАР | Описание | Ед. изм. | Тип | FB ВИТ | Умолч. | Мин. | Макс. | Доступ | Режим |
--- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- |
- | 1060 | Sequencer status | UINT16 | 16BIT | 0 | 0 | 0 | | ER | F__ |
Этот сигнал указывает "состояния механизма", которые управляют работой привода.
STS_INIT | 0 |
STS_MAGN | 1 |
STS_STOP | 2 |
STS_START | 3 |
STS_FS_STOP | 4 |
STS_FS_START | 5 |
STS_QSTOP | 6 |
STS_FS_MAGN | 7 |
STS_W_QSTOP | 8 |
STS_READY | 9 |
STS_MAGN_START | 10 |
STS_ALM_DISABLED | 11 |
STS_ALM_END_ACTION | 12 |
STS_ALM_STOP | 13 |
STS_FS_MAGN | 14 |
STS_READY_START | 16 |
STS_ADD_TO_NORMAL | 17 |
STS_ALM_NO_RESTART | 18 |
STS_FS_MAGN_START | 19 |

Меню	ПАР	Описание	Ед. изм.	Тип	FB ВИТ	Умолч.	Мин.	Макс.	Доступ	Режим
- | 1062 | Drive OK | BIT | 16BIT | 0 | 0 | 1 | | ER | F__ |
Этот сигнал активен, когда привод находится в состоянии "OK" и нет тревожных сигналов.

Меню	ПАР	Описание	Ед. изм.	Тип	FB ВИТ	Умолч.	Мин.	Макс.	Доступ	Режим
- | 1064 | Drive ready | BIT | 16BIT | 0 | 0 | 1 | | ER | F__ |
Этот сигнал активен, когда опорные значения привода в состоянии готовности к работе.

Меню	ПАР	Описание	Ед. изм.	Тип	FB ВИТ	Умолч.	Мин.	Макс.	Доступ	Режим
- | 1110 | Digital input E mon | BIT | 16BIT | 0 | 0 | 1 | | ER | F__ |
Эти сигналы представляют состояние соответствующего дискретного входа.

Меню	ПАР	Описание	Ед. изм.	Тип	FB ВИТ	Умолч.	Мин.	Макс.	Доступ	Режим
- | 1210 | Digital input 1X mon | BIT | 16BIT | 0 | 0 | 1 | | ER | F__ |
- | 1212 | Digital input 2X mon | BIT | 16BIT | 0 | 0 | 1 | | ER | F__ |
- | 1214 | Digital input 3X mon | BIT | 16BIT | 0 | 0 | 1 | | ER | F__ |
- | 1216 | Digital input 4X mon | BIT | 16BIT | 0 | 0 | 1 | | ER | F__ |
- | 1218 | Digital input 5X mon | BIT | 16BIT | 0 | 0 | 1 | | ER | F__ |
- | 1220 | Digital input 6X mon | BIT | 16BIT | 0 | 0 | 1 | | ER | F__ |
- | 1222 | Digital input 7X mon | BIT | 16BIT | 0 | 0 | 1 | | ER | F__ |
- | 1224 | Digital input 8X mon | BIT | 16BIT | 0 | 0 | 1 | | ER | F__ |
- | 1226 | Digital input 9X mon | BIT | 16BIT | 0 | 0 | 1 | | ER | F__ |
- | 1228 | Digital input 10X mon | BIT | 16BIT | 0 | 0 | 1 | | ER | F__ |
- | 1230 | Digital input 11X mon | BIT | 16BIT | 0 | 0 | 1 | | ER | F__ |
- | 1232 | Digital input 12X mon | BIT | 16BIT | 0 | 0 | 1 | | ER | F__ |
Эти сигналы представляют состояние соответствующего дискретного входа на плате расширения.

Меню	ПАР	Описание	Ед. изм.	Тип	FB ВИТ	Умолч.	Мин.	Макс.	Доступ	Режим
- | 2388 | Torque ref nofilter | perc | FLOAT | 16BIT | 0.0 | 0.0 | 0.0 | | ER | F__ |
Отображается опорное значение тока, используемое для управления моментом (в режимах векторного управления без датчиков и по значению поля), без фильтрации.
<table>
<thead>
<tr>
<th>Меню</th>
<th>ПАР.</th>
<th>Описание</th>
<th>Ед. изм</th>
<th>Тип</th>
<th>FB BIT</th>
<th>Умолч.</th>
<th>Мин.</th>
<th>Макс.</th>
<th>Доступ</th>
<th>Режим</th>
</tr>
</thead>
<tbody>
<tr>
<td>-</td>
<td>3214</td>
<td>Motor overload trip</td>
<td>BIT 16BIT</td>
<td>0 0 1</td>
<td>ER F__</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Этот сигнал активен, когда привод находится в состоянии тревожного сигнала перегрузки двигателя.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-</td>
<td>3262</td>
<td>Bres overload trip</td>
<td>BIT 16BIT</td>
<td>0 0 1</td>
<td>ER F__</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Этот сигнал активен, когда привод находится в состоянии тревожного сигнала перегрузки тормозного резистора.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-</td>
<td>3422</td>
<td>Direction change mon</td>
<td>BIT 16BIT</td>
<td>0 0 1</td>
<td>ER FVS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Этот сигнал остается активным в течение одной секунды каждый раз, когда привод определяет изменение направления и, следовательно, уменьшает отсчет счетчика. Этот сигнал вводится в список L_DIGSEL1 и может подаваться на цифровой выход.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-</td>
<td>3424</td>
<td>Dir change cnt zero</td>
<td>BIT 16BIT</td>
<td>0 0 1</td>
<td>ER FVS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Этот сигнал активируется, когда привод блокируется в связи с тем, что счетчик 3414 Direction counter достиг 0. Этот сигнал вводится в список L_DIGSEL1 и может подаваться на цифровой выход.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-</td>
<td>4708</td>
<td>Alm dig out mon 1</td>
<td>BIT 16BIT</td>
<td>0 0 1</td>
<td>ER F__</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Этот сигнал активируется, когда активен тревожный сигнал, заданный в параметре 4700 alarm dig sel 1.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-</td>
<td>4710</td>
<td>Alm dig out mon 2</td>
<td>BIT 16BIT</td>
<td>0 0 1</td>
<td>ER F__</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Этот сигнал активируется, когда активен тревожный сигнал, заданный в параметре 4702 alarm dig sel 2.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-</td>
<td>4712</td>
<td>Alm dig out mon 3</td>
<td>BIT 16BIT</td>
<td>0 0 1</td>
<td>ER F__</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Этот сигнал активируется, когда активен тревожный сигнал, заданный в параметре 4704 alarm dig sel 3.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-</td>
<td>4714</td>
<td>Alm dig out mon 4</td>
<td>BIT 16BIT</td>
<td>0 0 1</td>
<td>ER F__</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Этот сигнал активируется, когда активен тревожный сигнал, заданный в параметре 4706 alarm dig sel 4.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-</td>
<td>4770</td>
<td>First alarm</td>
<td>UINT32 16BIT</td>
<td>0 0 0</td>
<td>ERW F__</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>В этом параметре отображается тревожный сигнал, активировавшийся первым.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>0 No alarm</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1 Overvoltage</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>2 Undervoltage</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3 Ground fault</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>4 Overcurrent</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>5 Desaturation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>6 MultiUndervolt</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>7 MultiOvercurr</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>8 MultiDesat</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>9 Heatsink OT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>10 HeatsinkS OTUT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>11 Intakeair OT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>12 Motor OT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>13 Drive overload</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>14 Motor overload</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>15 Bres overload</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>16 Phaseloss</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>17 Opt Bus fault</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>18 Opt 1 IO fault</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>19 Opt 2 IO fault</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
20 Opt Enc fault
21 External fault
22 Speed fbk loss
23 Overspeed
24 Speed ref loss
25 Emg stop alarm
26 Power down
27 Phaseloss out
28 OV safety
29 Safety failure
30 Mot phase loss
31 Ropes change
32 Not Used
33 Plc1 fault
34 Plc2 fault
35 Plc3 fault
36 Plc4 fault
37 Plc5 fault
38 Plc6 fault
39 Plc7 fault
40 Plc2 fault

Меню	ПАР	Описание	Ед. изм.	Тип	FB Вт	Умолч.	Мин.	Макс.	Доступ	Режим
4780 | Alarm PLC | UINT16 | 0 | 0 | 0 | ER | F__

В этом параметре отображается состояние тревожных сигналов, выдаваемых приложением, записанным внутренним ПЛК.

<table>
<thead>
<tr>
<th>Бит</th>
<th>Описание</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1 = Активна неисправность ПЛК 1</td>
</tr>
<tr>
<td>1</td>
<td>1 = Активна неисправность ПЛК 2</td>
</tr>
<tr>
<td>2</td>
<td>1 = Активна неисправность ПЛК 3</td>
</tr>
<tr>
<td>3</td>
<td>1 = Активна неисправность ПЛК 4</td>
</tr>
<tr>
<td>4</td>
<td>1 = Активна неисправность ПЛК 5</td>
</tr>
<tr>
<td>5</td>
<td>1 = Активна неисправность ПЛК 6</td>
</tr>
<tr>
<td>6</td>
<td>1 = Активна неисправность ПЛК 7</td>
</tr>
<tr>
<td>7</td>
<td>1 = Активна неисправность ПЛК 8</td>
</tr>
</tbody>
</table>

Меню	ПАР	Описание	Ед. изм.	Тип	FB Вт	Умолч.	Мин.	Макс.	Доступ	Режим
6000 | Null | UINT32 | 32BIT | 0 | 0 | 0 | ER | F__

Этот сигнал принудительно устанавливает переменную в нулевой уровень (всегда заблокировано).

Меню	ПАР	Описание	Ед. изм.	Тип	FB Вт	Умолч.	Мин.	Макс.	Доступ	Режим
6002 | One | UINT32 | 32BIT | 1 | 1 | 1 | ER | F__

Этот сигнал принудительно устанавливает переменную в единичный уровень (всегда активно).

Меню	ПАР	Описание	Ед. изм.	Тип	FB Вт	Умолч.	Мин.	Макс.	Доступ	Режим
6006 | Current limit state | BIT | 16BIT | 0 | 0 | 1 | ER | F__

Этот сигнал активируется, когда привод находится в состоянии ограничения тока.

Меню	ПАР	Описание	Ед. изм.	Тип	FB Вт	Умолч.	Мин.	Макс.	Доступ	Режим
6372 | DS417 status word | UINT16 | 16BIT | 0 | 0 | 65535 | ER | FVS

В этом параметре отображается слово состояния, соответствующее профилю DS417. Для получения дополнительной информации обратитесь к руководству по полевой шине.
<table>
<thead>
<tr>
<th>ПАР</th>
<th>Описание</th>
<th>Меню</th>
<th>ПАР</th>
<th>Описание</th>
<th>Меню</th>
<th>ПАР</th>
<th>Описание</th>
<th>Меню</th>
</tr>
</thead>
<tbody>
<tr>
<td>6000</td>
<td>Null</td>
<td></td>
<td>600</td>
<td>Output current</td>
<td>1.1</td>
<td>626</td>
<td>Ramp ref out mon</td>
<td></td>
</tr>
<tr>
<td>626</td>
<td>Ramp ref out mon</td>
<td></td>
<td>664</td>
<td>Speed setpoint</td>
<td>1.5</td>
<td>760</td>
<td>Ramp out mon</td>
<td></td>
</tr>
<tr>
<td>260</td>
<td>Motor speed</td>
<td>1.6</td>
<td>250</td>
<td>Output current</td>
<td>1.1</td>
<td>252</td>
<td>Output voltage</td>
<td>1.2</td>
</tr>
<tr>
<td>254</td>
<td>Output frequency</td>
<td>1.3</td>
<td>280</td>
<td>Ramp ref out mon</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>256</td>
<td>Ramp out mon</td>
<td></td>
<td>282</td>
<td>Magnet current ref</td>
<td>1.1</td>
<td>284</td>
<td>Ramp current</td>
<td>1.1</td>
</tr>
<tr>
<td>2366</td>
<td>Torque ref</td>
<td>1.9</td>
<td>2386</td>
<td>Torque ref nofilter</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2388</td>
<td>Torque ref nofilter</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>270</td>
<td>DC link voltage</td>
<td>1.7</td>
<td>3104</td>
<td>Inertia comp mon</td>
<td>1.4</td>
<td>1600</td>
<td>Analog input 1X mon</td>
<td>12.1</td>
</tr>
<tr>
<td>436</td>
<td>Fieldbus M->S16 mon</td>
<td>20.3.63</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4354</td>
<td>Fieldbus M->S15 mon</td>
<td>20.3.59</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4344</td>
<td>Fieldbus M->S14 mon</td>
<td>20.3.55</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4334</td>
<td>Fieldbus M->S13 mon</td>
<td>20.3.51</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4324</td>
<td>Fieldbus M->S12 mon</td>
<td>20.3.47</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4314</td>
<td>Fieldbus M->S11 mon</td>
<td>20.3.43</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4304</td>
<td>Fieldbus M->S10 mon</td>
<td>20.3.39</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4294</td>
<td>Fieldbus M->S9 mon</td>
<td>20.3.35</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4284</td>
<td>Fieldbus M->S8 mon</td>
<td>20.3.31</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4274</td>
<td>Fieldbus M->S7 mon</td>
<td>20.3.27</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4264</td>
<td>Fieldbus M->S6 mon</td>
<td>20.3.23</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4254</td>
<td>Fieldbus M->S5 mon</td>
<td>20.3.19</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4244</td>
<td>Fieldbus M->S4 mon</td>
<td>20.3.15</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4234</td>
<td>Fieldbus M->S3 mon</td>
<td>20.3.11</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4224</td>
<td>Fieldbus M->S2 mon</td>
<td>20.3.07</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4214</td>
<td>Fieldbus M->S1 mon</td>
<td>20.3.03</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4134</td>
<td>Fieldbus M->S12 mon</td>
<td>20.3.47</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4124</td>
<td>Fieldbus M->S11 mon</td>
<td>20.3.43</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4114</td>
<td>Fieldbus M->S10 mon</td>
<td>20.3.39</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4104</td>
<td>Fieldbus M->S9 mon</td>
<td>20.3.35</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4094</td>
<td>Fieldbus M->S8 mon</td>
<td>20.3.31</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4084</td>
<td>Fieldbus M->S7 mon</td>
<td>20.3.27</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4074</td>
<td>Fieldbus M->S6 mon</td>
<td>20.3.23</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4064</td>
<td>Fieldbus M->S5 mon</td>
<td>20.3.19</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4054</td>
<td>Fieldbus M->S4 mon</td>
<td>20.3.15</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4044</td>
<td>Fieldbus M->S3 mon</td>
<td>20.3.11</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4034</td>
<td>Fieldbus M->S2 mon</td>
<td>20.3.07</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4024</td>
<td>Fieldbus M->S1 mon</td>
<td>20.3.03</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>368</td>
<td>Drive overload accum</td>
<td>1.14</td>
<td>1600</td>
<td>Analog input 1X mon</td>
<td>12.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3212</td>
<td>Motor overload accum</td>
<td>1.13</td>
<td>3260</td>
<td>Bres overload accum</td>
<td>1.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3262</td>
<td>Spd reg P gain Inuse</td>
<td>1.16</td>
<td>3232</td>
<td>Spd reg P gain Inuse</td>
<td>1.16</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2234</td>
<td>Spd reg I gain Inuse</td>
<td>1.16</td>
<td>270</td>
<td>DC link voltage</td>
<td>1.7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4154</td>
<td>Fieldbus M->S14 mon</td>
<td>20.3.55</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4144</td>
<td>Fieldbus M->S13 mon</td>
<td>20.3.51</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4134</td>
<td>Fieldbus M->S12 mon</td>
<td>20.3.47</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4124</td>
<td>Fieldbus M->S11 mon</td>
<td>20.3.43</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4114</td>
<td>Fieldbus M->S10 mon</td>
<td>20.3.39</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4104</td>
<td>Fieldbus M->S9 mon</td>
<td>20.3.35</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4094</td>
<td>Fieldbus M->S8 mon</td>
<td>20.3.31</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4084</td>
<td>Fieldbus M->S7 mon</td>
<td>20.3.27</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4074</td>
<td>Fieldbus M->S6 mon</td>
<td>20.3.23</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4064</td>
<td>Fieldbus M->S5 mon</td>
<td>20.3.19</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4054</td>
<td>Fieldbus M->S4 mon</td>
<td>20.3.15</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4044</td>
<td>Fieldbus M->S3 mon</td>
<td>20.3.11</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4034</td>
<td>Fieldbus M->S2 mon</td>
<td>20.3.07</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4272</td>
<td>Lift status word</td>
<td>19.6.11</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3702</td>
<td>Lift enable</td>
<td>19.6.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3704</td>
<td>Up cont mon</td>
<td>19.6.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3706</td>
<td>Down cont mon</td>
<td>19.6.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3708</td>
<td>Brake cont mon</td>
<td>19.6.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3710</td>
<td>Lift dc brake</td>
<td>19.6.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3712</td>
<td>Brake 2 mon</td>
<td>19.6.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3714</td>
<td>Door open mon</td>
<td>19.6.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3716</td>
<td>Lift start</td>
<td>19.6.9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3718</td>
<td>Pad 10</td>
<td>19.6.10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3720</td>
<td>Lift status word</td>
<td>19.6.11</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3722</td>
<td>Pad 12</td>
<td>19.6.12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3724</td>
<td>Pad 13</td>
<td>19.6.13</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3726</td>
<td>Ramp down limit</td>
<td>19.6.14</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3728</td>
<td>PAD 15</td>
<td>19.6.15</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3730</td>
<td>Lift wdec input</td>
<td>19.6.16</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>664</td>
<td>Speed setpoint</td>
<td>1.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>260</td>
<td>Motor speed</td>
<td>1.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2150</td>
<td>Encoder speed</td>
<td>15.17</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>282</td>
<td>Magnet current ref</td>
<td>1.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>284</td>
<td>Ramp current</td>
<td>1.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>286</td>
<td>Magnet current</td>
<td>1.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5008</td>
<td>Test gen out</td>
<td>23.1.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

C - СПИСКИ ВЫБОРА

<table>
<thead>
<tr>
<th>Л_АНОУТ</th>
</tr>
</thead>
<tbody>
<tr>
<td>626</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Л_CMP</th>
</tr>
</thead>
<tbody>
<tr>
<td>XXXX</td>
</tr>
<tr>
<td>626</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Л_DIGSEL1</th>
</tr>
</thead>
<tbody>
<tr>
<td>6000</td>
</tr>
<tr>
<td>6002</td>
</tr>
<tr>
<td>1110</td>
</tr>
<tr>
<td>1210</td>
</tr>
<tr>
<td>1212</td>
</tr>
</tbody>
</table>

(1) параметр XXXX изменяется в соответствии с используемым параметром src:
<table>
<thead>
<tr>
<th>ПАР</th>
<th>Описание</th>
<th>Меню</th>
</tr>
</thead>
<tbody>
<tr>
<td>3422</td>
<td>Direction change mon</td>
<td>(*)</td>
</tr>
<tr>
<td>3424</td>
<td>Dir change cnt zero</td>
<td>(*)</td>
</tr>
</tbody>
</table>

L_DIGSEL2

6000	Null	(*)
6002	One	(*)
1110	Digital input E mon	(*)
1210	Digital input 1X mon	(*)
1212	Digital input 2X mon	(*)
1214	Digital input 3X mon	(*)
1216	Digital input 4X mon	(*)
1218	Digital input 5X mon	(*)
1220	Digital input 6X mon	(*)
1222	Digital input 7X mon	(*)
1224	Digital input 8X mon	(*)
1226	Digital input 9X mon	(*)
1228	Digital input10X mon	(*)
1230	Digital input11X mon	(*)

L_DIGSEL3

4454	Bit10 decomp mon	20.6.13
4456	Bit11 decomp mon	20.6.14
4458	Bit12 decomp mon	20.6.15
4460	Bit13 decomp mon	20.6.16
4462	Bit14 decomp mon	20.6.17
4464	Bit15 decomp mon	20.6.18
3700	Lift enable	19.6.1
3702	Run cont mon	19.6.2
3704	Up cont mon	19.6.3
3706	Down cont mon	19.6.4
3708	Brake cont mon	19.6.5
3710	Lift dc brake	19.6.6
3712	Brake 2 mon	19.6.7
3714	Door open mon	19.6.8
3716	Lift start	19.6.9
3718	Pad 10	19.6.10
3720	Lift status word	19.6.11
3722	Pad 12	19.6.12
3724	Pad 13	19.6.13
3726	Ramp down limit	19.6.14
3728	PAD 15	19.6.15
3730	Lift wdc input	19.6.16
3676	Compare output	19.5.8

L_FBS2M

| 6000 | Null | (*) |

(2) параметр XXXX изменяется в соответствии с используемым параметром src:

L_DIGSEL2

<table>
<thead>
<tr>
<th>L_DIGSEL2</th>
<th>Описание</th>
<th>Меню</th>
</tr>
</thead>
<tbody>
<tr>
<td>1064</td>
<td>Drive ready</td>
<td>(*)</td>
</tr>
<tr>
<td>934</td>
<td>Ref is 0</td>
<td>(*)</td>
</tr>
<tr>
<td>936</td>
<td>Ref is 0 delay</td>
<td>(*)</td>
</tr>
<tr>
<td>944</td>
<td>Speed is 0</td>
<td>(*)</td>
</tr>
<tr>
<td>946</td>
<td>Speed is 0 delay</td>
<td>(*)</td>
</tr>
<tr>
<td>1066</td>
<td>Enable state mon</td>
<td>1.16</td>
</tr>
<tr>
<td>1068</td>
<td>Start state mon</td>
<td>1.17</td>
</tr>
<tr>
<td>1070</td>
<td>FastStop state mon</td>
<td>1.18</td>
</tr>
<tr>
<td>1024</td>
<td>Enable cmd mon</td>
<td>9.9</td>
</tr>
<tr>
<td>1026</td>
<td>Start cmd mon</td>
<td>9.10</td>
</tr>
<tr>
<td>1028</td>
<td>FastStop cmd mon</td>
<td>9.11</td>
</tr>
<tr>
<td>4708</td>
<td>Alm dig out mon 1</td>
<td>(*)</td>
</tr>
<tr>
<td>4710</td>
<td>Alm dig out mon 2</td>
<td>(*)</td>
</tr>
<tr>
<td>4712</td>
<td>Alm dig out mon 3</td>
<td>(*)</td>
</tr>
<tr>
<td>4714</td>
<td>Alm dig out mon 4</td>
<td>(*)</td>
</tr>
<tr>
<td>362</td>
<td>Drive overload trip</td>
<td>(*)</td>
</tr>
<tr>
<td>3214</td>
<td>Motor overload trip</td>
<td>(*)</td>
</tr>
<tr>
<td>3626</td>
<td>Bres overload trip</td>
<td>(*)</td>
</tr>
</tbody>
</table>

L_DIGSEL3

4432	Word comp mon	20.5.17
6372	DS417 status word	(*)
4024	Fieldbus M->S1 mon	20.3.3
4034	Fieldbus M->S2 mon	20.3.7
4044	Fieldbus M->S3 mon	20.3.11
4054	Fieldbus M->S4 mon	20.3.15
4064	Fieldbus M->S5 mon	20.3.19
4074	Fieldbus M->S6 mon	20.3.23
4084	Fieldbus M->S7 mon	20.3.27
4094	Fieldbus M->S8 mon	20.3.31
4104	Fieldbus M->S9 mon	20.3.35
4114	Fieldbus M->S10 mon	20.3.39
4124	Fieldbus M->S11 mon	20.3.43
4134	Fieldbus M->S12 mon	20.3.47
4144	Fieldbus M->S13 mon	20.3.51
4154	Fieldbus M->S14 mon	20.3.55
4164	Fieldbus M->S15 mon	20.3.59
4174	Fieldbus M->S16 mon	20.3.63
3700	Lift enable	19.6.1
3702	Run cont mon	19.6.2
3704	Up cont mon	19.6.3
3706	Down cont mon	19.6.4
3708	Brake cont mon	19.6.5
3710	Lift dc brake	19.6.6
3712	Brake 2 mon	19.6.7
3714	Door open mon	19.6.8
3716	Lift start	19.6.9
3718	Pad 10	19.6.10
3720	Lift status word	19.6.11
3722	Pad 12	19.6.12
3724	Pad 13	19.6.13
3726	Ramp down limit	19.6.14
3728	PAD 15	19.6.15
3730	Lift wdc input	19.6.16
3676	Compare output	19.5.8

(2) параметр XXXX изменяется в соответствии с используемым параметром src:

L_DIGSEL2

| 1014 | Local/remote src | 20.6.19 |

L_FBS2M

| 6000 | Null | (*) |

<table>
<thead>
<tr>
<th>ПАР</th>
<th>Описание</th>
<th>Меню</th>
<th>ПАР</th>
<th>Описание</th>
<th>Меню</th>
<th>ПАР</th>
<th>Описание</th>
<th>Меню</th>
</tr>
</thead>
</table>

1. (3) параметр XXXX изменяется в соответствии с используемым параметром src:
- 6340 DS417 cw src
 - (3) = 4024 Fieldbus M->S1 mon 20.3.3
- 6380 DS417 key src
 - (3) = 4024 Fieldbus M->S1 mon 20.3.3

2. ПАР Описание Меню ПАР Описание Меню ПАР Описание Меню
- 6000 Null (*)
- 1600 Analog input 1X mon 12.1
- 1650 Analog input 2X mon 12.12
- 4024 Fieldbus M->S1 mon 20.3.3
- 4034 Fieldbus M->S2 mon 20.3.7
- 4044 Fieldbus M->S3 mon 20.3.11
- 4054 Fieldbus M->S4 mon 20.3.15
- 4064 Fieldbus M->S5 mon 20.3.19
- 4074 Fieldbus M->S6 mon 20.3.23
- 4084 Fieldbus M->S7 mon 20.3.27
- 4094 Fieldbus M->S8 mon 20.3.31
- 4104 Fieldbus M->S9 mon 20.3.35
- 4114 Fieldbus M->S10 mon 20.3.39
- 4124 Fieldbus M->S11 mon 20.3.43
- 4134 Fieldbus M->S12 mon 20.3.47
- 4144 Fieldbus M->S13 mon 20.3.51
- 4154 Fieldbus M->S14 mon 20.3.55
- 4164 Fieldbus M->S15 mon 20.3.59
- 4174 Fieldbus M->S16 mon 20.3.63

3. L_LIM
- 6000 Null (*)
- 1600 Analog input 1X mon 12.1
- 1650 Analog input 2X mon 12.12
- 4024 Fieldbus M->S1 mon 20.3.3
- 4034 Fieldbus M->S2 mon 20.3.7
- 4044 Fieldbus M->S3 mon 20.3.11
- 4054 Fieldbus M->S4 mon 20.3.15
- 4064 Fieldbus M->S5 mon 20.3.19
- 4074 Fieldbus M->S6 mon 20.3.23
- 4084 Fieldbus M->S7 mon 20.3.27
- 4094 Fieldbus M->S8 mon 20.3.31
- 4104 Fieldbus M->S9 mon 20.3.35
- 4114 Fieldbus M->S10 mon 20.3.39
- 4124 Fieldbus M->S11 mon 20.3.43
- 4134 Fieldbus M->S12 mon 20.3.47
- 4144 Fieldbus M->S13 mon 20.3.51
- 4154 Fieldbus M->S14 mon 20.3.55
- 4164 Fieldbus M->S15 mon 20.3.59
- 4174 Fieldbus M->S16 mon 20.3.63

4. L_SCOPE
- 6000 Null (*)

5. L_VREF
- 6000 Null (*)

6. L_REF
- 6000 Null (*)

7. L_MLTREF
- XXXX (*)

8. L_WDECOMP
- XXXX (*)

9. L_WDECOMP
- 6000 Null (*)

ADL300 • Списки выбора
<table>
<thead>
<tr>
<th>ПАР</th>
<th>Описание</th>
<th>Меню</th>
<th>ПАР</th>
<th>Описание</th>
<th>Меню</th>
<th>ПАР</th>
<th>Описание</th>
<th>Меню</th>
</tr>
</thead>
<tbody>
<tr>
<td>6002</td>
<td>One (*)</td>
<td></td>
<td>4432</td>
<td>Word comp mon</td>
<td>20.5.17</td>
<td></td>
<td>4024</td>
<td>Fieldbus M->S1 mon</td>
</tr>
<tr>
<td>4024</td>
<td>Fieldbus M->S1 mon</td>
<td>20.3.3</td>
<td>4034</td>
<td>Fieldbus M->S2 mon</td>
<td>20.3.7</td>
<td></td>
<td>4044</td>
<td>Fieldbus M->S3 mon</td>
</tr>
<tr>
<td>4054</td>
<td>Fieldbus M->S4 mon</td>
<td>20.3.15</td>
<td>4064</td>
<td>Fieldbus M->S5 mon</td>
<td>20.3.19</td>
<td></td>
<td>4074</td>
<td>Fieldbus M->S6 mon</td>
</tr>
<tr>
<td>4084</td>
<td>Fieldbus M->S7 mon</td>
<td>20.3.27</td>
<td>4094</td>
<td>Fieldbus M->S8 mon</td>
<td>20.3.31</td>
<td></td>
<td>4104</td>
<td>Fieldbus M->S9 mon</td>
</tr>
<tr>
<td>4114</td>
<td>Fieldbus M->S10 mon</td>
<td>20.3.39</td>
<td>4124</td>
<td>Fieldbus M->S11 mon</td>
<td>20.3.43</td>
<td></td>
<td>4134</td>
<td>Fieldbus M->S12 mon</td>
</tr>
<tr>
<td>4144</td>
<td>Fieldbus M->S13 mon</td>
<td>20.3.51</td>
<td>4154</td>
<td>Fieldbus M->S14 mon</td>
<td>20.3.55</td>
<td></td>
<td>4164</td>
<td>Fieldbus M->S15 mon</td>
</tr>
<tr>
<td>4174</td>
<td>Fieldbus M->S16 mon</td>
<td>20.3.63</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3700</td>
<td>Lift enable</td>
<td>19.6.1</td>
<td>3701</td>
<td>Run cont mon</td>
<td>19.6.2</td>
<td></td>
<td>3704</td>
<td>Up cont mon</td>
</tr>
<tr>
<td>3705</td>
<td>Down cont mon</td>
<td>19.6.4</td>
<td>3707</td>
<td>Brake cont mon</td>
<td>19.6.5</td>
<td></td>
<td>3710</td>
<td>Lift dc brake</td>
</tr>
<tr>
<td>3712</td>
<td>Brake 2 mon</td>
<td>19.6.7</td>
<td>3714</td>
<td>Door open mon</td>
<td>19.6.8</td>
<td></td>
<td>3716</td>
<td>Lift start</td>
</tr>
<tr>
<td>3718</td>
<td>Pad 10</td>
<td>19.6.10</td>
<td>3720</td>
<td>Lift status word</td>
<td>19.6.11</td>
<td></td>
<td>3722</td>
<td>Pad 12</td>
</tr>
<tr>
<td>3724</td>
<td>Pad 13</td>
<td>19.6.13</td>
<td>3726</td>
<td>Ramp down limit</td>
<td>19.6.14</td>
<td></td>
<td>3728</td>
<td>PAD 15</td>
</tr>
<tr>
<td>3730</td>
<td>Lift wdec input</td>
<td>19.6.16</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(*) параметр XXXX изменяется в соответствии с используемым параметром src:

4452 Word decomp src

(*) = 4450 Dig word decomp 20.6.1

(*)

Параметр, не показываемый на клавиатуре. Информацию о них см. в разделе "ПАРАМЕТРЫ, ВКЛЮЧЕННЫЕ В СПИСКИ ВЫБОРА, НО НЕ ПОКАЗЫВАЕМЫЕ НА КЛАВИАТУРЕ".

Указатель схем системы (синхронный двигатель)

<table>
<thead>
<tr>
<th>DRIVE OVERVIEW</th>
<th>EncoderConf</th>
<th>ENCODER CONFIG</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lift</td>
<td>SpeedRegGains</td>
<td>SPEED REG GAINS</td>
</tr>
<tr>
<td>DIGITAL INPUTS</td>
<td>TorqueConf</td>
<td>TORQUE CONFIG</td>
</tr>
<tr>
<td>DIGITAL OUTPUTS</td>
<td>Functions</td>
<td>FUNCTIONS</td>
</tr>
<tr>
<td>ANALOG INPUTS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ANALOG OUTPUTS</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Обзорная схема привода (DrvOverview)

Reference and Ramp

Torque/Frequency Control

Speed feedback

2100 - Encoder pulses
2148 - Encoder ppr
2170 - Encoder speed
2130 - Encoder direction
Not inverted –

Commands monitor

Status

220° - Output current 0.0 A
222° - Output voltage 0 V
254° - Output frequency 0.0 Hz
260° - Motor speed 0 rpm
Дискретные входы платы расширения (DigImpExp)
Дисcreteные выходы платы расширения (DigOutExp)
Аналоговый вход (AnInpExp)
Конфигурация энкодера

2100 - Encoder pulses
- 1024 ppr

2110 - Encoder signal check
- Check A-B

2100 - Encoder signal Vpp
- 1.00 V

Encoder configuration
- 2130 - Encoder direction
 - Not inverted
- 2132 - Encoder mode
 - Sinus SINCOS
- 2134 - Encoder speed filter
 - 2.0 ms

2104 - Encoder input config
- TTL

2102 - Encoder supply
- 5.2 V

2100 - Encoder repetition
- No division

2112 - Encoder SSI clocks
- 13 13

2114 - Encoder SSI pos bits
- 13

2150° - Encoder speed
- 0 rpm

2102° - Encoder position
- -1 cnt

Supply

A

B

Encoder monitor

HIPERFACE®

by SICK AG
Управление моментом (TorqueCtrl)

Коэффициенты адаптивного регулирования (GainAdapt)
Приложение - Интерфейс CANopen 1.0

CANopen - это коммуникационный профиль для промышленных систем с шиной CAN прикладного уровня. Справочным документом является "Прикладной уровень и коммуникационный профиль CANopen" CiA 301, редакция 4.2.0 от 21 февраля 2011 г., издание группы CAN in Automation e. V.
Привод реализует также часть Профиля DS417 \, согласно документу "Приводы и управление движением со специальным профилем устройств CANOpen", ред. 3.0.0 от 14 декабря 2007 г.
Протокол CAN (ISO 11898) - CAN2.0A с 11-битным идентификатором.

Встроенный интерфейс CANOpen разрабатывался как "Минимальное полевое устройство". Обмен данными циклический, Ведущий блок считывает входные данные от Ведомого и записывает выходные данные в Ведомый.

Примечание: CANopen имеется только в моделях ADL2.0-...-C.

1.1 Функции CANopen

В данном разделе описываются управляемые функции коммуникационного профиля CANopen.

Основные функции:
1) Обязательная загрузкой протокола.
2) Выполнение функции SYNC.
3) Назначение сервиса асинхронного объекта обработки данных (PDO).
4) Управление протоколами Node Guarding и HearthBeat.
5) Управление аварийным сообщением ("EMERGENCY").
6) Функция распределения динамических ID (DBT slave) не является управляемой.
7) Выполнение "Предопределенного соединения Ведущий/Ведомый", упрощающей задачи Ведущего на этапе инициализации.
8) Могут модифицироваться "интервалы запрета между передачами" (c шагом 100 мкс).
9) Синхронизация высокого разрешения не поддерживается.
10) Управления временными метками нет.
11) При доступе к структурным параметрам дополнительный под-указатель OFFhex (доступ ко всему объекту) не работает.
12) Для достижения большей эффективности используется только "ускоренная" передача данных (не более 4 байт), обслуживаемая сервисом SDO.
13) Параметры группы коммуникационного профиля не сохраняются по команде сохранения, но она выполняется для групп "специфические для производителя" и "профиль".

1.1.1 Предопределенные соединения Ведущий/Ведомый

"Истинное предопределенное соединение Ведущий/Ведомый" позволяет обеспечить коммуникацию между двумя абонентами для Ведущего и 127 Ведомых, широковещательный адрес - 0.

1.1.2 Сервисы NMT (управление сетью)

"Обязательными" сервисами NMT являются следующие:
- Enter_Pre-Operational_State (Введение предоперационного режима) CS = 128 (80h)
- Reset_Node (Сброс узлов) CS = 129 (81h)
Программная команда выполнения настроочного сброса:
- Reset_Communication (Сброс коммуникации) CS = 130 (82h)
Возможно также управление следующими сетевыми сервисами:
- Start_Remote_Mode (Запуск удаленного режима) CS = 1
- Stop_Remote_Mode (Остановка удаленного режима) CS = 2
Идентификатор коммуникационного объекта (COB-ID) "инициализации NMT всегда в 0; CS - это спецификатор команды сервиса NMT.

1.1.3 Мониторинг

Привод ADL300 поддерживает мониторинговые механизмы Node Guarding и HeartBeat. Конфигурацию Node Guarding можно выполнить через Ведущего посредством элементов стандартного объектного словаря (1006h, 100Ch, 100Dh).
Попор Node Guarding (максимальное время между двумя сообщениями NodeGuarding, принятыми от ADL) рассчитывается как:
"Защитный интервал" х "Коэффициент времени жизни объекта".
HeartBeat конфигурируется посредством объектов 1016h и 1017h. Порог в этом случае подсчитывается так: "Время HeartBeat" х "Коэффициент времени жизни объекта".

Мониторинг через NodeGuarding исключает мониторинг через HeartBeat, и наоборот, активной может быть только одна из двух систем. Ведущий должен корректно устанавливать объекты.

Привод также проверяет операцию ведущего через получение сообщения Sync (только если "Интервал коммуникационного цикла" отличается от 0). Порог (максимальное время между двумя сообщениями Sync, принятыми от ADL) составляет:
"Интервал коммуникационного цикла" * "Коэффициент времени жизни объекта".

Если один из порогов превышен, привод меняет операционный статус на предоперационный, далее генерируя тревожный сигнал потери шины BusLoss, если это задано.

<table>
<thead>
<tr>
<th>Указатель</th>
<th>Название</th>
<th>Значение по умолчанию</th>
</tr>
</thead>
<tbody>
<tr>
<td>1006h</td>
<td>Интервал коммуникационного цикла</td>
<td>64 мс</td>
</tr>
<tr>
<td>100Ch</td>
<td>Защитный интервал</td>
<td>100 мс</td>
</tr>
<tr>
<td>100D</td>
<td>Коэффициент времени жизни объекта</td>
<td>3 (примечание: должен всегда быть отличным от 0)</td>
</tr>
<tr>
<td>1016h</td>
<td>Заказной интервал сервиса heartbeat</td>
<td>NodeId = 0 , интервал = 0</td>
</tr>
<tr>
<td>1017h</td>
<td>Интервал отправки heartbeat</td>
<td>0</td>
</tr>
</tbody>
</table>

Показанные установки по умолчанию поэтому соответствуют использованию протокола NodeGuarding с порогом 100 мс х 3 и с порогом контроля четности по Sync 64 мс х 3. Протокол HeartBeat заблокирован.

1.1.4 Коммуникационные объекты

В данном разделе описываются коммуникационные объекты протокола CANopen; управление ими производится интерфейсной платой.

Управляемыми коммуникационными объектами являются следующие:

1) 1 сервер приема SDO.
2) 1 сервер передачи SDO.
3) объекты приема сервиса PDO.
4) объекты передачи сервиса PDO.
5) 1 объект Emergency.
6) 1 узел Node Guarding - Life Guarding.
7) 1 объект SYNC.

В следующей таблице перечислены коммуникационные объекты с их уровнем приоритета и иденетификатором сообщения "Message ID", при добавлении к номеру идентификатора узла Node-ID получается "результатирующий COB-ID".

<table>
<thead>
<tr>
<th>ОБЪЕКТ</th>
<th>ПРИОРИТЕТ</th>
<th>MESSAGE ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-й SDO rx</td>
<td>6</td>
<td>1792 700h+NodeId</td>
</tr>
<tr>
<td>1-й SDO tx</td>
<td>6</td>
<td>1536 600h+NodeId</td>
</tr>
<tr>
<td>1-й PDO rx</td>
<td>2</td>
<td>1408 580h+NodeId</td>
</tr>
<tr>
<td>1-й PDO tx</td>
<td>2</td>
<td>512 200h+NodeId</td>
</tr>
<tr>
<td>2-й PDO rx</td>
<td>2</td>
<td>384 180h+NodeId</td>
</tr>
<tr>
<td>2-й PDO tx</td>
<td>2</td>
<td>768 300h+NodeId</td>
</tr>
<tr>
<td>3-й PDO rx</td>
<td>2</td>
<td>640 280h+NodeId</td>
</tr>
<tr>
<td>3-й PDO tx</td>
<td>2</td>
<td>512 400h+NodeId</td>
</tr>
<tr>
<td>4-й PDO rx</td>
<td>2</td>
<td>384 380h+NodeId</td>
</tr>
<tr>
<td>4-й PDO tx</td>
<td>2</td>
<td>768 500h+NodeId</td>
</tr>
<tr>
<td>EMERGENCY</td>
<td>1</td>
<td>640 480h+NodeId</td>
</tr>
<tr>
<td>NODE GUARDING и HeartBeat</td>
<td>не используется</td>
<td>220 600h+NodeId</td>
</tr>
<tr>
<td>SYNC</td>
<td>0</td>
<td>128 80h</td>
</tr>
</tbody>
</table>

Табл. 1.4.1: Коммуникационные объекты

Сообщение от ведущего NodeGuarding - удаленного типа (бит удаленной работы RTR устанавливается в COB-ID). Все остальные сообщения, используемые при такой реализации CANopen, не удаленные (без RTR).

1.1.5 Элементы словаря объектов

Словарь объектов доступен с ведущего CANopen и представляет собой набор объектов для конфигурирования, отправки и мониторинга размера.

В следующей таблице показаны используемые коммуникационные объекты и доступность на ведущем CANopen.
Объекты, выделенные в таблице жирным шрифтом, допускают запись назначенных параметров обменом данными в сервисе PDO.
Критерий размещения разный, зависит от размера (в байтах) параметра, выполняющего обмен.

1.1.6 Вводы приема (RX) PDO
Структура коммуникационного параметра PDO (указатели 1400h, 1401h) следующая:

1. Подиндекс 0 (число поддерживаемых вводов) = 2
2. Структура Подиндекса 1 (COB-ID, используемый сервисом PDO) следующая:
 - Бит 31 (разрешено/не разрешено PDO) можно установить через сервис SDO.
 - Бит 30 (Запрос удаленной передачи RTR) = 0, поскольку эта функция не поддерживается.
 - Бит 29 = 0, потому что используется 11-битный идентификатор (CAN 2.0A).
 - Биты 11-28 не используются.
 - Биты 0-10 - COB-ID (см. табл. 1.4.1).
3. Подиндекс 2 синхронного цикла (Тип передачи) или синхронный, согласно выполненной настройке, ведущего (1, если объект SYNC предусмотрен, 254...255 если асинхронная передача). Если ничего не указано, активен синхронный режим.

1.1.7 Вводы передачи (TX) PDO
Структура коммуникационного параметра PDO (указатели 1800h, 1801h) следующая:

1. Подиндекс 0 (число поддерживаемых вводов) = 3
2. Структура Подиндекса 1 (COB-ID, используемый сервисом PDO) следующая:
 - Бит 31 (разрешено/не разрешено PDO) можно установить через сервис SDO.
 - Бит 30 (Запрос удаленной передачи RTR) = 0, поскольку эта функция не поддерживается.
 - Бит 29 = 0, потому что используется 11-битный идентификатор (CAN 2.0A).
 - Биты 11-28 не используются.
 - Биты 0-10 - COB-ID (см. табл. 1.4.1).
3. Подиндекс 2 синхронного цикла (Тип передачи) или синхронный, согласно выполненной настройке, ведущего (1, если объект SYNC предусмотрен, 254...255 если асинхронная передача). Если ничего не указано, активен синхронный режим.
4) Защитный интервал между передачами.

1.1.8 Вводы SDO
Используется только "Ускоренный" режим передачи (не более 4 байт).
1) Подиндекс 0 (Число поддерживаемых вводов) = 3, поскольку устройство является сервером сервиса SDO.
2) Структура Подиндексов 1 и 2 (COB-ID, используемый сервисом SDO) следующая:
 - Бит 31 (активный/неактивный SDO); равен 1, т. к. используются лишь объекты SDO по умолчанию.
 - Бит 30, резерв = 0.
 - Бит 29 = 0, потому что используется 11-битный идентификатор (CAN 2.0A).
 - Биты 11-28 не используются.
 - Биты 0-10 - COB-ID (см. табл. 1.4.1).
Элемент "ID узла клиента SDO соответствующего сервера" не поддерживается, т. к. используются объекты SDO по умолчанию.

1.1.9 Вводы SYNC COB-ID
Состав 32 бит, входящих в коммуникационный параметр COB-ID SYNC, следующий:
- Бит 31 = 1, потому что интерфейсная плата CANopen "заказная" для сообщений SYNC.
- Бит 30 = 0, потому что интерфейсная плата не создает сообщений SYNC.
- Бит 29 = 0, потому что используется 11-битный идентификатор (CAN 2.0A).
- Биты 11-28 не используются.
- Биты 0-10 - COB-ID (см. табл. 1.4.1).

1.1.10 Объект COB-ID Emergency
Состав 32 бит, входящих в коммуникационный параметр COB-ID Emergency Message, следующий:
- Бит 31 = 0, потому что интерфейсная плата CANopen "заказная" для аварийных сообщений.
- Бит 30 = 0, потому что интерфейсная плата создает аварийные сообщения.
- Бит 29 = 0, потому что используется 11-битный идентификатор (CAN 2.0A).
- Биты 11-28 не используются.
- Биты 0-10 - COB-ID (см. табл. 1.4.1).

1.2 Управление CANopen
Пользовательский интерфейс протокола CANopen осуществляется через параметры привода. Параметры задаются через иерархическое меню. Все параметры, относящиеся к полевой шине, в которые произведена запись, становятся активными только после перезапуска привода. Далее приведен список параметров привода, полезных для управления протоколом CANopen.
Для разрешения работы CANopen установите ПАР 4000 Fieldbus type в значение CANopen или DS417. Указанные далее параметры находятся в меню COMMUNICATION->FIELDBUS CONFIG.

<table>
<thead>
<tr>
<th>Параметр</th>
<th>Название параметра</th>
<th>Тип</th>
<th>Значение по умолчанию</th>
<th>Тип</th>
</tr>
</thead>
<tbody>
<tr>
<td>4004</td>
<td>Fieldbus baudrate</td>
<td>Enum</td>
<td>Нет</td>
<td>Запись</td>
</tr>
<tr>
<td>4006</td>
<td>Fieldbus address</td>
<td>2-байтовое беззнаковое</td>
<td>0</td>
<td>Запись</td>
</tr>
<tr>
<td>4010</td>
<td>Fieldbus M->S enable</td>
<td>Enum</td>
<td>Вкл.</td>
<td>Запись</td>
</tr>
<tr>
<td>4012</td>
<td>Fieldbus alarm mode</td>
<td>2-байтовое беззнаковое</td>
<td>0</td>
<td>Запись</td>
</tr>
<tr>
<td>4014</td>
<td>Fieldbus state</td>
<td>Enum</td>
<td>Stop (Остановка)</td>
<td>Только для чтения</td>
</tr>
</tbody>
</table>

- Fieldbus baudrate = Задает скорость передачи данных в сети. Значения, имеющиеся для CANopen: 125k, 250k, 500k, 1M
- Fieldbus address = адрес ведомого в сети, принимаемые значения от 1 до 127
- Fieldbus M->S enable = Если установить в отключение Off, данные в RPDO не обрабатываются приводом.
- Fieldbus alarm mode = при установке в 1 привод выдает ошибки Opt Bus Fault, связанные с потерей коммуникации (Bus Loss) даже при заблокированном приводе.
- Fieldbus state = состояние коммуникации для данного узла сети CANopen: остановка Stop, предоперационное Pre-Operational, операционное Operational.
1.3 Управление каналом обработки данных

Эта функция позволяет назначить параметры привода или прикладные переменные данным и каналу обработки данных (PDC).

В протоколе CANopen PDC производится через сообщения PDO (объекта обработки данных).

В протоколе CANopen для PDC используются несколько слов, которые всегда можно установить.

Конфигурация PDC полевой шины следующая:

Данные 0 Данные... Данные n

Привод может как считывать данные из PDC, так и производить в него запись.

Единица данных может состоять как из 2, так и из 4 байт. Слово "данные" относится к любому количеству входящих байт от 0 до 16, если общее требуемое число байт не больше 32.

Пример:

Возможны следующие варианты:

- 2-байтные данные от 0 до 16
- 1 единица данных из 4 байт + 2-байтные данные от 0 до 14
- 2 единицы данных из 4 байт + 2-байтные данные от 0 до 12
...
- 8 единиц 4-байтных данных.

Данные, обмен которыми производится через PDC, могут быть 2 типов:

- параметры привода
- переменные приложения MDPlc. Использование переменных MDPlc описано в параграфах 1.3.1 и 1.3.2.

Ведущий записывает данные, определяемые как вход PDC, и считывает данные, определяемые как выход PDC.

1.3.1 Конфигурация входа PDC (Параметр FB XXX MS)

Данные, обмен которыми производится в RPDO, конфигурируются посредством параметров из меню COMMUNICATION->FIELDBUS M2S.

ПАР 4030 Fieldbus M->S2 ipa = IPA параметра, подлежащего изменению.

Должен содержать допустимый IPA, соответствующий заполняемому параметру или 0, если sys (ПАР 4032...4172 Fieldbus M->Sn sys) в значении Fill или Mdplc; параметр ПАР 4020 Fieldbus M->S1 ipa должен быть назначен входу Lift Widef Input, а параметр ПАР 4022 Fieldbus M->S1 sys необходимо установить в значение Mdplc16.

Выбором соответствующего значения enum ПАР 4034 Fieldbus M->S2 mon параметров типа src (Источник) значение параметра 4030 автоматически устанавливается в IPA src.

Для параметров типа src с типом FB, отличным от 0, данные, поступающие на полевую шину, записываются не с выбором enum, а сразу с mon, не связанным с src.

Если он содержит допустимый IPA и принудительно устанавливается в 0, соответствующий параметр sys принимает значение Fill (16 или 32 в соответствии с тем, что указано выше), этим обеспечивается сохранность области данных.

ПАР 4032 Fieldbus M->S2 ipa = IPA параметра, подлежащего изменению.

Этот параметр автоматически изменяется на рекомендуемое значение, когда изменяется соответствующий ПАР 4030...4170 Fieldbus M->Sn ipa. Пользователь может изменить значение, полученное автоматически, допустимые значения зависят от параметра.

Отображение данных в каналах PDO выполняется на основе формата данных, установленного в Fieldbus M->Sn sys, по следующим правилам:

- Каналы PDO заполняются, начиная с RPDO1
- Когда PDO содержит 4 слова, он заполнен, и следующий RPDO заполняется не более чем 4-мя PDO.
- 32-битные данные (в формате long или float) нельзя разделить по разным PDO, они должны помещаться в один PDO (иначе выдается тревожный сигнал)
- Можно создавать каналы PDO, содержащие менее 4 слов через установку Fieldbus M->Sn dest= Нет (но назначив Fieldbus M->Sn sys в значение, отличающееся от Не назначено, Fill16 или Fill32) после привязки блока данных.

(Примечание: если назначено Fill16 или Fill32, блок данных включается в PDO в любом случае)
- Сначала для каналов PDO назначаются параметры Fieldbus M->Sn sys = Не назнач. Размер последнего канала PDO, таким образом, зависит от назначаемых данных.
Пример: RPDO1 из 2 слов и RPDO2 из 2 слов:

Fieldbus M->S1 dest = Ramp ref 1 src
Fieldbus M->S1 sys = EU
Fieldbus M->S2 dest = Word decomp src
Fieldbus M->S2 sys = Count 16
Fieldbus M->S3 dest = Нет
Fieldbus M->S3 sys = Count 32
Fieldbus M->S4 dest = Compare 1 src
Fieldbus M->S4 sys = Count 32
Fieldbus M->S5 sys = Не назначен

1.3.2 Конфигурация выхода каналов PDC (Параметр FB XXX SM)

Данные, обмен которыми производится в RPDO, конфигурируются посредством параметров из меню COMMUNICATION->FIELDBUS M2S.

Отображение данных в каналах PDO выполняется на основе формата данных, установленного в Fieldbus M->Sn sys, по следующим правилам:

- Каналы PDO заполняются, начиная с TPDO1
- Когда PDO содержит 4 слова, он заполнен, и следующий TPDO заполняется не более чем 4-мя PDO.
- 32-битные данные (в формате long или float) нельзя разделить по разным PDO, они должны помещаться в один PDO (иначе выдается тревожный сигнал)
- Можно создавать каналы PDO, содержащие менее 4 слов через установку Fieldbus S->Mn src= Нет (но назначив Fieldbus M->Sn sys в значение, отличное от Не назначен, Fill16 или Fill32) после привязки блока данных.
- Сначала для каналов PDO назначаются параметры Fieldbus M->Sn sys = Не назначен. Размер последнего канала PDO, таким образом, зависит от назначаемых данных.

1.3.3 Использование каналов PDC в приложении MDPlc

Можно конфигурировать данные входа и выхода канала PDC, для того чтобы обеспечить прямой доступ к данным через прикладной код MDPlc.

Для чтения данных просто установите Fieldbus M->Sn sys в значение MDPLC16 или MDPLC32, оставив Fieldbus M->Sn dest = Нет.

Сейчас приложение MDPlc может считывать входящие блоки данных непосредственно из параметра Fieldbus M->Sн mon.

Запись данных конфигурируется установкой Fieldbus S->Mn src = Dig Fieldbus S->Mn.

Можно конфигурировать данные входа и выхода канала PDC, для того чтобы обеспечить прямой доступ к данным через прикладной код MDPlc.

Для чтения данных просто установите Fieldbus M->Sn sys в значение MDPLC16 или MDPLC32, оставив Fieldbus M->Sн dest = Нет.

Сейчас приложение MDPlc может считывать входящие блоки данных непосредственно из параметра Fieldbus M->Sн mon.

Запись данных конфигурируется установкой Fieldbus S->Mn src = Dig Fieldbus S->Mn.

Fieldbus S->Mn sys автоматически устанавливается в значение MDPLC. Приложение записывает блок данных в параметр Dig Fieldbus S->Mn для передачи его на шину.

1.4 Управление SDO

Сервис SDO всегда доступен.
Доступ к параметрам привода можно получить через зону специального профиля производителя “MSPA” (2000hex< указатель <5FFFhex).

Указатель, показанный в команде SDO, обеспечивает доступ к параметрам привода по следующим правилам:

указатель SDO = ПАР + 2000h
подиндекс SDO = 1

Поле данных должно содержать значение параметра привода.

Пример:
Запись значения 1 м/с в ПАР 11020 Multi speed 0 (2B0C hex).

Требуется следующая информация:

1) Указатель SDO получается при расчете по следующей формуле
2000hex + 258hex = 2258h
2) Записываемое значение равно 1, что соответствует 1 hex.
3) Код, записываемый в параметр = 22h
4) Код, считываемый из параметра = 40h
5) Подиндекс = 01h

Параметр ipaCan и сопутствующее значение записываются в младшую часть адреса в шестнадцатеричном виде, а затем в старшую часть (значение записи MnMл-MnСт- СтМл - СтСт).
Пример записи значения 1

<table>
<thead>
<tr>
<th>Идентификатор сообщения</th>
<th>Записываемый код</th>
<th>Младшая часть IpaCan</th>
<th>Старшая часть IpaCan</th>
<th>Подиндекс</th>
<th>Значение параметра MnMn</th>
<th>Значение CtMn</th>
<th>Значение CtCt</th>
</tr>
</thead>
<tbody>
<tr>
<td>601h</td>
<td>22h</td>
<td>0Ch</td>
<td>43h</td>
<td>01h</td>
<td>01h</td>
<td>00h</td>
<td>00h</td>
</tr>
<tr>
<td>Байт 0</td>
<td>Байт 1</td>
<td>Байт 2</td>
<td>Байт 3</td>
<td>Байт 4</td>
<td>Байт 5</td>
<td>Байт 6</td>
<td>Байт 7</td>
</tr>
</tbody>
</table>

При успешной записи принимается следующее сообщение:

<table>
<thead>
<tr>
<th>Идентификатор сообщения</th>
<th>Записываемый код</th>
<th>Младшая часть IpaCan</th>
<th>Старшая часть IpaCan</th>
<th>Подиндекс</th>
<th>Значение параметра MnMn</th>
<th>Значение CtMn</th>
<th>Значение CtCt</th>
</tr>
</thead>
<tbody>
<tr>
<td>601h</td>
<td>60h</td>
<td>0Ch</td>
<td>43h</td>
<td>01h</td>
<td>01h</td>
<td>00h</td>
<td>00h</td>
</tr>
<tr>
<td>Байт 0</td>
<td>Байт 1</td>
<td>Байт 2</td>
<td>Байт 3</td>
<td>Байт 4</td>
<td>Байт 5</td>
<td>Байт 6</td>
<td>Байт 7</td>
</tr>
</tbody>
</table>

Пример записи: значением 1

<table>
<thead>
<tr>
<th>Идентификатор сообщения</th>
<th>Считываемый код</th>
<th>Младшая часть IpaCan</th>
<th>Старшая часть IpaCan</th>
<th>Подиндекс</th>
<th>Не имеет значения</th>
<th>Не имеет значения</th>
<th>Не имеет значения</th>
<th>Не имеет значения</th>
</tr>
</thead>
<tbody>
<tr>
<td>601h</td>
<td>40h</td>
<td>0Ch</td>
<td>43h</td>
<td>01h</td>
<td>00h</td>
<td>00h</td>
<td>00h</td>
<td>00h</td>
</tr>
<tr>
<td>Байт 0</td>
<td>Байт 1</td>
<td>Байт 2</td>
<td>Байт 3</td>
<td>Байт 4</td>
<td>Байт 5</td>
<td>Байт 6</td>
<td>Байт 7</td>
<td></td>
</tr>
</tbody>
</table>

При успешной записи принимается следующее сообщение:

<table>
<thead>
<tr>
<th>Идентификатор сообщения</th>
<th>Считываемый код</th>
<th>Младшая часть IpaCan</th>
<th>Старшая часть IpaCan</th>
<th>Подиндекс</th>
<th>Значение данных</th>
</tr>
</thead>
<tbody>
<tr>
<td>601h</td>
<td>43h</td>
<td>0Ch</td>
<td>43h</td>
<td>01h</td>
<td>00h</td>
</tr>
<tr>
<td>Байт 0</td>
<td>Байт 1</td>
<td>Байт 2</td>
<td>Байт 3</td>
<td>Байт 4</td>
<td>Байт 5</td>
</tr>
</tbody>
</table>

Указатель Подиндекс

<table>
<thead>
<tr>
<th>Указатель параметра привода</th>
<th>Подиндекс</th>
<th>Значение параметра привода, назначаемому SDO</th>
</tr>
</thead>
<tbody>
<tr>
<td>0Ch</td>
<td>48h</td>
<td></td>
</tr>
<tr>
<td>01h</td>
<td>00h</td>
<td></td>
</tr>
<tr>
<td>00h</td>
<td>00h</td>
<td></td>
</tr>
</tbody>
</table>

В случае ошибки, происшедшей при считывании параметра или при его установке, интерфейсом CANopen посылаются сообщение Abort domain transfer, значения кодов ошибок приложения имеют следующий смысл:

<table>
<thead>
<tr>
<th>Класс ошибки</th>
<th>Код ошибки</th>
<th>Дополнительный код (шестнадцатеричный)</th>
<th>Назначение</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>0</td>
<td>0</td>
<td>Параметр не существует</td>
</tr>
<tr>
<td>8</td>
<td>0</td>
<td>22</td>
<td>Отказано в доступе из-за состояния устройства</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>2</td>
<td>Ошибка только при чтении/записи</td>
</tr>
<tr>
<td>8</td>
<td>0</td>
<td>0</td>
<td>Внутренняя ошибка</td>
</tr>
<tr>
<td>6</td>
<td>9</td>
<td>32</td>
<td>Минимальное значение</td>
</tr>
<tr>
<td>6</td>
<td>9</td>
<td>31</td>
<td>Максимальное значение</td>
</tr>
<tr>
<td>5</td>
<td>4</td>
<td>0</td>
<td>Превышение времени ожидания SDO</td>
</tr>
<tr>
<td>5</td>
<td>4</td>
<td>1</td>
<td>Недопустимая команда</td>
</tr>
<tr>
<td>3</td>
<td>9</td>
<td>30</td>
<td>Недопустимое значение</td>
</tr>
</tbody>
</table>
1.5 Тревожные сигналы

Тревожные сигналы, связанные с полевой шиной

Неисправности шины выводятся на сигнализацию через тревожный сигнал "Opt Bus Fault". В отношении CANopen причинами тревожных сигналов могут быть:
- Состояние "Отключено" линии CAN,
- привод не переведен в "Операционный" режим;
- Превышен порог "Время жизни объекта".

Этот тревожный сигнал становится активным только при разрешении работы привода.

При установке ON (Вкл.) параметр PAP 4014 Fieldbus alarm mode разрешает выдачу тревожного сигнала "Fieldbus failure" также и при заблокированном приводе.

<table>
<thead>
<tr>
<th>Код</th>
<th>Конфигурация</th>
<th>Описание</th>
<th>Действия</th>
</tr>
</thead>
<tbody>
<tr>
<td>FF01</td>
<td>*</td>
<td>Потеря шины</td>
<td>Проверка помех, клеммы, проблем с кабелем</td>
</tr>
<tr>
<td>FF02</td>
<td>*</td>
<td>Выбрана неправильная скорость передачи данных</td>
<td>Удостоверьтесь, что "Fieldbus baudrate" выбрана одной из списка 125k, 250k, 500k, 1M</td>
</tr>
<tr>
<td>FF03</td>
<td>*</td>
<td>Недопустимый адрес узла</td>
<td>Проверьте "Fieldbus address"</td>
</tr>
<tr>
<td>FF04</td>
<td>*</td>
<td>Ошибка, инициализированная интерфейсом CAN.</td>
<td>Внутренняя ошибка, свяжитесь с производителем.</td>
</tr>
<tr>
<td>FF14..FF23</td>
<td>*</td>
<td>Неправильный объект, выбранный для отображения в канале M2S p</td>
<td>Проверьте "Fieldbus M->Sn Dest"</td>
</tr>
<tr>
<td>FF24..FF33</td>
<td>*</td>
<td>Неправильный объект, выбранный для отображения в канале S2M p</td>
<td>Проверьте "Fieldbus S->Mn src"</td>
</tr>
<tr>
<td>FF34..FF43</td>
<td>*</td>
<td>M2S Channel p, неправильный размер (16 бит на 32-битный или 32-битный на 16-битный параметр)</td>
<td>Проверьте "Fieldbus M->Sn Dest"</td>
</tr>
<tr>
<td>FF44..FF53</td>
<td>*</td>
<td>S2M Channel p, неправильный размер (16 бит на 32-битный или 32-битный на 16-битный параметр)</td>
<td>Проверьте "Fieldbus S->Mn src"</td>
</tr>
<tr>
<td>FF64..FF73</td>
<td>*</td>
<td>Неправильный объект, выбранный для отображения в канале S2M p</td>
<td>Проверьте "Fieldbus S->Mn src"</td>
</tr>
<tr>
<td>FF74..FF83</td>
<td>*</td>
<td>Канал M2S p: слишком много слов в PDC</td>
<td>Адрес "Fieldbus M-Sn dest" и "Fieldubs M->Sn sys" содержит слишком много слов в 16 словах для PDC</td>
</tr>
<tr>
<td>FF84..FF93</td>
<td>*</td>
<td>Канал S2M p: слишком много слов в PDC</td>
<td>Адрес "Fieldbus S->Mn src" "Fieldubs S->Mn sys" больше 16 слов в PDC</td>
</tr>
<tr>
<td>FFB4..FFC3</td>
<td>*</td>
<td>Внутренняя ошибка 6D в канале p</td>
<td>Внутренняя ошибка, свяжитесь с производителем.</td>
</tr>
<tr>
<td>8110</td>
<td>*</td>
<td>Переполнение сообщений CAN</td>
<td>Слишком много пакетов для выбранной скорости передачи данных</td>
</tr>
<tr>
<td>8130</td>
<td>*</td>
<td>Ошибка LifeGuard/HeartBeat</td>
<td>Превышение программного времени ожидания от ведущего.</td>
</tr>
<tr>
<td>FF5</td>
<td>*</td>
<td>Неправильная длина сообщения NMT</td>
<td>Проверьте пакеты NMT</td>
</tr>
<tr>
<td>FF6</td>
<td>*</td>
<td>Недопустимая команда NMT</td>
<td>Проверьте пакеты NMT</td>
</tr>
<tr>
<td>FF7</td>
<td>*</td>
<td>Шина CAN отключена</td>
<td>Проверьте наличие проблем</td>
</tr>
</tbody>
</table>

Обработка тревожных сигналов привода

Тревожные сигналы привода управляются от сообщения об аварии, содержащего код ошибки, связанный с выдаваемым тревожным сигналом согласно таблице ниже.

<table>
<thead>
<tr>
<th>Selection</th>
<th>Code</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>No alarm</td>
<td>0x0000</td>
<td>Pcl1 fault</td>
</tr>
<tr>
<td>Overvoltage</td>
<td>0x3210</td>
<td>Pcl2 fault</td>
</tr>
<tr>
<td>Undervoltage</td>
<td>0x3220</td>
<td>Pcl3 fault</td>
</tr>
<tr>
<td>Ground fault</td>
<td>0x2110</td>
<td>Pcl4 fault</td>
</tr>
<tr>
<td>Overcurrent</td>
<td>0x2310</td>
<td>Pcl5 fault</td>
</tr>
<tr>
<td>Desaturatation</td>
<td>0x2130</td>
<td>Pcl6 fault</td>
</tr>
<tr>
<td>MultiUndervolt</td>
<td>0xFF06</td>
<td>Pcl7 fault</td>
</tr>
<tr>
<td>MultiOvercurr</td>
<td>0xFF07</td>
<td>Pcl8 fault</td>
</tr>
<tr>
<td>TechnMultiDesat</td>
<td>0xFF08</td>
<td>Emg stop alarm</td>
</tr>
<tr>
<td>Heatink OT</td>
<td>0x4210</td>
<td>Watchdog</td>
</tr>
<tr>
<td>Heatinks OTUT</td>
<td>0x4310</td>
<td>Trap error</td>
</tr>
<tr>
<td>Intakeair OT</td>
<td>0x4130</td>
<td>System error</td>
</tr>
<tr>
<td>Motor OT</td>
<td>0xFF0C</td>
<td>User error</td>
</tr>
<tr>
<td>Drive overload</td>
<td>0x8311</td>
<td>Power down</td>
</tr>
<tr>
<td>Bres overload</td>
<td>0x7121</td>
<td>Speed ref loss</td>
</tr>
<tr>
<td>Phaseless</td>
<td>0xFF10</td>
<td>Not Used1</td>
</tr>
<tr>
<td>Opt Bus fault</td>
<td>0xFF11</td>
<td>Opt 2 IO fault</td>
</tr>
<tr>
<td>Opt 1 IO fault</td>
<td>0xFF12</td>
<td>Not Used2</td>
</tr>
<tr>
<td>Opt Enc fault</td>
<td>0x3130</td>
<td>Not Used3</td>
</tr>
<tr>
<td>External fault</td>
<td>0x9000</td>
<td>Not Used4</td>
</tr>
<tr>
<td>Speed fbk loss</td>
<td>0x7310</td>
<td>Not Used5</td>
</tr>
<tr>
<td>Overspeed</td>
<td>0x8400</td>
<td>Not Used6</td>
</tr>
<tr>
<td>Overspeed</td>
<td>0x8400</td>
<td>Param error</td>
</tr>
</tbody>
</table>
1.6 Пример конфигурации

В данном разделе представлен пример того, как конфигурировать параметры приводов ADL300 так, чтобы ведущий CANopen мог производить считывание и запись через каналы обработки данных (PDO). Информацию о конфигурировании каналов PDO см. в разделе 1.4.

В параграфе 1.6.1 представлена информация о ведущем CANopen, управляющем машиной. В параграфе 1.6.2 содержится базовая информация о программировании привода ADL300, начиная с заводских установок.

В данном примере программирование привода выполняется с помощью программы конфигурирования GF-Express. Разумеется, все операции можно выполнить с клавиатуры.

1.6.1 Ведущий CANopen

В данном разделе приведен пример обмена данными, как он виден со стороны ведущего. В случае приложений, управляемых ведущим CANopen, эти данные обычно содержатся в спецификации установки.

1.6.1.1 Описание коммуникации PDO Ведущий -> Ведомый

Имеются два параметра, записываемые через каналы обработки данных. Первый - это управляющее слово, в котором отдельные биты содержат определенные команды (например, разрешение, пуск и т.п.). Второй канал обработки данных содержит опорные значения рампы 1 (RampRef1) в об/мин.

CANopen PDO: Ведущий -> Привод (не более 16 слов)

<table>
<thead>
<tr>
<th>Позиция</th>
<th>Описание</th>
<th>Формат:</th>
<th>Единица измерения</th>
</tr>
</thead>
<tbody>
<tr>
<td>Word1 M -> S</td>
<td>Control Word (Управляющее слово)</td>
<td>16-битное слово</td>
<td>...</td>
</tr>
<tr>
<td>Word2 M -> S</td>
<td>MultiSpd 7</td>
<td>Float</td>
<td>Об/мин.</td>
</tr>
<tr>
<td>Word3 M -> S</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>Word16 M -> S</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

СЛОВО УПРАВЛЕНИЯ, пример

<table>
<thead>
<tr>
<th>Бит</th>
<th>Описание</th>
<th>Примечания</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>EnableCmd</td>
<td>Разрешение команды от ведущего CANopen</td>
</tr>
<tr>
<td>1</td>
<td>StartFwdCmd</td>
<td>Команда пуска вперед</td>
</tr>
<tr>
<td>2</td>
<td>StartRevCmd</td>
<td>Команда пуска назад</td>
</tr>
<tr>
<td>3</td>
<td>Emergency mode</td>
<td>Команда работы в аварийном режиме</td>
</tr>
<tr>
<td>4</td>
<td>MultiSpd S0</td>
<td>Multi speed 0 sel</td>
</tr>
<tr>
<td>5</td>
<td>MultiSpd S1</td>
<td>Multi speed 1 sel</td>
</tr>
<tr>
<td>6</td>
<td>MultiSpd S2</td>
<td>Multi speed 2 sel</td>
</tr>
<tr>
<td>7</td>
<td>Свободно</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Свободно</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Свободно</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Свободно</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Свободно</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>Свободно</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>Свободно</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>Свободно</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>Свободно</td>
<td></td>
</tr>
</tbody>
</table>

1.6.1.2 Описание коммуникации PDO Ведомый -> Ведущий

Ведущий шины CAN считывает три параметра с привода: первые два содержат, соответственно, два слова состояния (Lift Status Word1 и Lift Status Word2), отдельные биты которых содержат информацию о состоянии привода (например, LiftEnable). В данном приложении используется только Lift Status Word1. Lift Status Word2 можно опустить. Третий параметр - это текущая скорость вращения в об/мин.

Ведомый PDO CANopen > Ведущий (не более 16 слов)

<table>
<thead>
<tr>
<th>Позиция</th>
<th>Описание</th>
<th>Формат:</th>
<th>Единица измерения</th>
</tr>
</thead>
<tbody>
<tr>
<td>Word1 S -> M</td>
<td>Status Word (Слово состояния)</td>
<td>16-битное слово</td>
<td>Ширина в битах</td>
</tr>
<tr>
<td>Word2 S -> M</td>
<td>Actual Speed (Актуальная скорость)</td>
<td>Целое, 16 бит</td>
<td>об/мин.</td>
</tr>
<tr>
<td>Word3 S -> M</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>Word16 S -> M</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>
Выходы управления лифтом обычно можно подключить к параметрам PAD согласно таблице ниже:

<table>
<thead>
<tr>
<th>Бит</th>
<th>Описание</th>
<th>Примечания</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>LiftEnable</td>
<td>Команда разрешения работы лифта</td>
</tr>
<tr>
<td>1</td>
<td>RunCont</td>
<td>Команда на контактор хода</td>
</tr>
<tr>
<td>2</td>
<td>UpCont</td>
<td>Команда на контактор вверх</td>
</tr>
<tr>
<td>3</td>
<td>DownCont</td>
<td>Команда на контактор вниз</td>
</tr>
<tr>
<td>4</td>
<td>BrakeCont</td>
<td>Команда на контактор тормоза</td>
</tr>
<tr>
<td>5</td>
<td>LiftDcBrake</td>
<td>Команда включения функции торможения постоянным током (внутреннее ПО)</td>
</tr>
<tr>
<td>6</td>
<td>Brake2</td>
<td>Сигнал управления тормозом (см. меню последовательностей)</td>
</tr>
<tr>
<td>7</td>
<td>DoorOpen</td>
<td>Команда открывания двери</td>
</tr>
<tr>
<td>8</td>
<td>LiftStart</td>
<td>Команда пуска лифта</td>
</tr>
<tr>
<td>9</td>
<td>Lift Status word</td>
<td>Содержит копию слова состояния (выбираемое из SellLiftStatusWord)</td>
</tr>
<tr>
<td>10</td>
<td>InputVariable</td>
<td>Подключено к селектору входов</td>
</tr>
<tr>
<td>11</td>
<td>LiftWdecInp</td>
<td>Подключено к селектору LifWDecomp</td>
</tr>
</tbody>
</table>

LiftStatusWord (подключено к Pad11)

<table>
<thead>
<tr>
<th>Бит</th>
<th>Описание</th>
<th>Примечания</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>LiftEnable</td>
<td>Команда разрешения работы лифта</td>
</tr>
<tr>
<td>1</td>
<td>RunCont</td>
<td>Команда на контактор хода</td>
</tr>
<tr>
<td>2</td>
<td>UpCont</td>
<td>Команда на контактор вверх</td>
</tr>
<tr>
<td>3</td>
<td>DownCont</td>
<td>Команда на контактор вниз</td>
</tr>
<tr>
<td>4</td>
<td>BrakeCont</td>
<td>Команда на контактор тормоза</td>
</tr>
<tr>
<td>5</td>
<td>LiftDcBrake</td>
<td>Команда включения функции торможения постоянным током (внутреннее ПО)</td>
</tr>
<tr>
<td>6</td>
<td>Brake2</td>
<td>Сигнал управления тормозом (см. меню последовательностей)</td>
</tr>
<tr>
<td>7</td>
<td>DoorOpen</td>
<td>Команда открывания двери</td>
</tr>
<tr>
<td>8</td>
<td>Drive Ok</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>SpeedIsZero</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>SpeedRefIsZero</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>(EPC Enable)</td>
<td></td>
</tr>
</tbody>
</table>

Выходы, имеющиеся непосредственно на приводе:
- Drive OK
- SpeedIsZero

1.6.2 Конфигурация ADL300

Пример, приведенный в этом разделе, основан на допущении, что параметры привода ADL300 установлены в заводские значения (командой Default parameter). На начальном этапе для выполнения запуска в работу рекомендуется использовать клавиатуру (см. "Руководство по быстрому запуску" ADL300). Затем работой двигателя можно управлять командами с дискретных входов.

Кроме того, в программе GF_Express configurator должен быть Мастер запуска системы.

Последовательность программирования следующая:
- Конфигурирование полевой шины
- Конфигурирование полевой шины M2S
- Конфигурирование входов-выходов лифта
- Конфигурирование полевой шины S2M
1.6.2.1 КОНФИГУРИРОВАНИЕ ПОЛЕВОЙ ШИНЫ

В данном примере показаны установки параметра для назначения CANopen с 500 кБод и адреса 1.

- Меню 20.2 - COMMUNICATION/FIELDBUS CONFIG
- Пример конфигурирования 500Kbaud CANopen address 1:

В данном примере предполагается, что привод в режиме 1, и имеется коммуникация CANopen со скоростью передачи 500 кБод. Имейте в виду, что все установки полевой шины и конфигурации вступят в силу только после следующего перезапуска привода.

Запрограммируйте параметры полевой шины, как показано на следующем рисунке.

Статус шины - предоперационный, и светодиод CAN на местной клавиатуре мигает. При этих условиях каналы коммуникационного процесса неактивны.

По окончании программирования привода (см. ниже) коммуникацию можно активировать через ведущего по команде сервиса NMT "start node".

После приема этой команды параметр полевой шины переходит в операционное состояние и светодиод CAN на клавиатуре переходит из мигающего состояния в ровное свечение. Только в этот момент каналы процесса становятся активными.

<table>
<thead>
<tr>
<th>Клемма</th>
<th>Название</th>
<th>Функция</th>
<th>Сечение кабеля</th>
</tr>
</thead>
<tbody>
<tr>
<td>L</td>
<td>CAN_L</td>
<td>линия шины CAN_L (низкая доминантная)</td>
<td>0,2 ... 2,5 мм²</td>
</tr>
<tr>
<td>SH</td>
<td>CAN_SHLD</td>
<td>Экран линии CAN</td>
<td>AWG 26 ... 12</td>
</tr>
<tr>
<td>H</td>
<td>CAN_H</td>
<td>линия шины CAN_H (высокая доминантная)</td>
<td></td>
</tr>
</tbody>
</table>

Светодиоды |
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>CAN (зеленый)</td>
<td></td>
</tr>
<tr>
<td>Погашен</td>
<td>Stop (Остановка)</td>
</tr>
<tr>
<td>Мигание</td>
<td>Предоперационное состояние</td>
</tr>
<tr>
<td>Светится</td>
<td>Операционное состояние</td>
</tr>
</tbody>
</table>
1.6.2.2 Конфигурирование Fieldbus M2S

В отношении коммуникации через каналы обработки данных (PDC) в конфигурации в данном примере первый канал зарезервирован для записи команд лифта (запись слова управления).

Конфигурирование слова управления производится с помощью параметра internal Lift Decomp. На следующем рисунке показано программирование этого слова управления в первом слове M → S. Во втором слове M → S программируется параметр Multi-speed 7 [1034]:

Режим "Expert":

![Diagram showing configuration settings.](image-url)
1.6.2.3 Конфигурирование входов-выходов лифта

В этом пункте просто подключаются отдельные биты слова Lift Decomp. Программирование с дискретного входа входов-выходов в LIFT DECOMP показано на рис. ниже.

Сейчас все последовательности управляются через биты LiftWdecomp тем же способом, который описан в руководстве, через дискретные входы.

Параметр 12102 Command input mon, указывает статус слова в шестнадцатеричном виде.

После выполнения команды сохранения и повторного включения привода можно проверить правильность конфигурации каналов M → S, как показано на рис.
1.6.2.4 Конфигурирование Fieldbus S2M

Конфигурирование этих каналов производится в меню Fieldbus S2M. Для программирования первого и второго каналов данных используются Lift Status Word 1 и 2. Слово состояния 2 можно опустить.

Третий канал программируется на параметр 260 Motor Speed.

На следующем рисунке показан пример программирования S→M.

Подобным же образом, после сохранения данных в приводе и перезапуска, можно проверить правильность программирования канала Slave → Master.
1.6.2.5 Проверка конфигурации
Выбор проверки коммуникации в узлах/на концах.
• Коммуникация PDO активна только в режиме "on-line". Проверьте состояние в программе GF-eXpress или по светодиоду на клавиатуре.
• Для коммуникации Master -> Slave в меню FIELDBUS M2S можно проверить значение, принятое из канала коммуникации (например, параметр Fieldbus M->S1 mon [4024] для первого канала).
• Если коммуникация производится в EU (технических единицах), имейте в виду, что значение, считываемое через FIELDBUS M2S - во внутренних единицах.

1.6.2.6 Ошибки конфигурации
Если конфигурирование канала произведено с ошибками, выдается тревожный сигнал "Option bus fault" и будет выводиться код ошибки, указывающий на канал, который является источником тревожного сигнала. Список кодов ошибок имеется в разделе 1.5 данного приложения.
В программе GF-eXpress просто подключитесь к соответствующей HTML-странице, как показано на следующем рисунке.
Приложение - 2.0 Конфигурирование привода для управления периферийным энкодером

В данном приложении содержатся указания по конфигурированию параметров привода в установках с периферийным энкодером, т. е. с энкодером, размещенным не на роторе двигателя.

Тахометрические энкодеры могут быть заменены цифровыми инкрементальными энкодерами, прижатыми к валу, при соответствующем конфигурировании параметров, показанном ниже.

Примечание
В настройке двигателя используется та же процедура, что и для стандартного бесщеточного двигателя.

<table>
<thead>
<tr>
<th>Меню</th>
<th>ПАР.</th>
<th>Описание</th>
<th>Ед. изм.</th>
<th>Тип</th>
<th>FB BIT</th>
<th>Умолч.</th>
<th>Мин.</th>
<th>Макс.</th>
<th>Доступ</th>
<th>Режим</th>
</tr>
</thead>
<tbody>
<tr>
<td>15.1</td>
<td>2100</td>
<td>Encoder pulses</td>
<td>ppr</td>
<td>UINT16</td>
<td>1024</td>
<td>128</td>
<td>16384</td>
<td>RWZ</td>
<td>FVS</td>
<td></td>
</tr>
</tbody>
</table>

Конфигурируется значение с паспортной таблички используемого энкодера.

<table>
<thead>
<tr>
<th>Меню</th>
<th>ПАР.</th>
<th>Описание</th>
<th>Ед. изм.</th>
<th>Тип</th>
<th>FB BIT</th>
<th>Умолч.</th>
<th>Мин.</th>
<th>Макс.</th>
<th>Доступ</th>
<th>Режим</th>
</tr>
</thead>
<tbody>
<tr>
<td>15.9</td>
<td>2130</td>
<td>Encoder direction</td>
<td>ENUM</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>RWZ</td>
<td>F</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Параметр необходимо установить либо в 0, либо в 1, так, чтобы при вращении ротора по часовой стрелке значение опорной скорости, считанное в параметре 12210, было положительным.

<table>
<thead>
<tr>
<th>Меню</th>
<th>ПАР.</th>
<th>Описание</th>
<th>Ед. изм.</th>
<th>Тип</th>
<th>FB BIT</th>
<th>Умолч.</th>
<th>Мин.</th>
<th>Макс.</th>
<th>Доступ</th>
<th>Режим</th>
</tr>
</thead>
<tbody>
<tr>
<td>15.10</td>
<td>2132</td>
<td>Encoder mode</td>
<td>ENUM</td>
<td>Nessuna</td>
<td>CALCI</td>
<td>CALCI</td>
<td>ERWZ</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Этот параметр следует установить в значение 2 (т. е. "Digital F").

<table>
<thead>
<tr>
<th>Меню</th>
<th>ПАР.</th>
<th>Описание</th>
<th>Ед. изм.</th>
<th>Тип</th>
<th>FB BIT</th>
<th>Умолч.</th>
<th>Мин.</th>
<th>Макс.</th>
<th>Доступ</th>
<th>Режим</th>
</tr>
</thead>
<tbody>
<tr>
<td>15.11</td>
<td>2136</td>
<td>PeripheralEncoder</td>
<td>BOOL</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>ERWZ</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Этот параметр следует установить в значение 1.

<table>
<thead>
<tr>
<th>Меню</th>
<th>ПАР.</th>
<th>Описание</th>
<th>Ед. изм.</th>
<th>Тип</th>
<th>FB BIT</th>
<th>Умолч.</th>
<th>Мин.</th>
<th>Макс.</th>
<th>Доступ</th>
<th>Режим</th>
</tr>
</thead>
<tbody>
<tr>
<td>15.13</td>
<td>2184</td>
<td>Ext Diam motor</td>
<td>mm</td>
<td>UINT16</td>
<td>1</td>
<td>1</td>
<td>65535</td>
<td>ERWZ</td>
<td>FVS</td>
<td></td>
</tr>
</tbody>
</table>

Задается значение внешнего диаметра ротора двигателя (D).

<table>
<thead>
<tr>
<th>Меню</th>
<th>ПАР.</th>
<th>Описание</th>
<th>Ед. изм.</th>
<th>Тип</th>
<th>FB BIT</th>
<th>Умолч.</th>
<th>Мин.</th>
<th>Макс.</th>
<th>Доступ</th>
<th>Режим</th>
</tr>
</thead>
<tbody>
<tr>
<td>15.14</td>
<td>2186</td>
<td>Enc Pulley diam</td>
<td>mm</td>
<td>UINT16</td>
<td>1</td>
<td>1</td>
<td>65535</td>
<td>ERWZ</td>
<td>FVS</td>
<td></td>
</tr>
</tbody>
</table>

Задается значение диаметра шкива инкрементального энкодера (d).

<table>
<thead>
<tr>
<th>Меню</th>
<th>ПАР.</th>
<th>Описание</th>
<th>Ед. изм.</th>
<th>Тип</th>
<th>FB BIT</th>
<th>Умолч.</th>
<th>Мин.</th>
<th>Макс.</th>
<th>Доступ</th>
<th>Режим</th>
</tr>
</thead>
<tbody>
<tr>
<td>21.16</td>
<td>4552</td>
<td>SpdRefLoss activity</td>
<td>ENUM</td>
<td>1</td>
<td>0</td>
<td>4</td>
<td>RW</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Этот параметр следует установить в значение 2 (т. е. Запрет).