Application:
Elevator Position Control

ADL300 EPC v2
User Guide
Information about this manual
This manual explains the functions and the description of the parameters.
The information about mechanical installation, electrical connection and fast start-up can be found on the ADL300 Quick start guide.
The whole set of manuals, included the expansions and field bus manuals, can be found on Gefran web site (https://www.gefran.com/en/products/416-adl300-lift-field-oriented-vector-inverter-for-synchronous-asynchronousmotors#downloads).

Software version
This manual is updated according the ADL300 software version V 4.x.4 and EPC ver. 7.x.10.0.
Variation of the number replacing “X” have no influence on the functionality of the device.
The identification number of the software version is indicated on the identification plate of the drive or can be checked with the Firmware ver.rel parameter - PAR 490, menu 2.5.

General Information

In industry, the terms “Inverter”, “Regulator” and “Drive” are sometimes interchanged. In this document, the term “Drive” will be used.

Before using the product, read the safety instruction section carefully (on Quick start manual).
Keep the manual in a safe place and available to engineering and installation personnel during the product functioning period.

Gefran Drives and Motion SRL has the right to modify products, data and dimensions without notice. The data can only be used for the product description and they can not be understood as legally stated properties.

Thank you for choosing this Gefran product.

We will be glad to receive any possible information which could help us improving this manual.
The e-mail address is the following: techdoc@gefran.com.

All rights reserved.
TABLE OF CONTENTS

INTRODUCTION ... 5

1. INSTALL THE APPLICATION .. 6
 1.1 General Information .. 6
 1.2 Requirements ... 6
 1.3 Preliminary operations .. 6

2. APPLICATION OVERVIEW ... 8

3. CONFIGURATION OF THE INTERNAL POSITIONING DEVICE (EPC) .. 9
 3.1 Layout of cams .. 9
 3.2 Description of Functions (EPC) ... 14
 3.2.1 Standard functions: ... 14
 3.2.2 Floor counter .. 14
 3.2.3 Mechanical constants .. 14
 3.2.4 Elevator Shaft Limit .. 14
 3.2.5 Self Study function ... 14
 3.2.6 Zero cycle function .. 14
 3.2.7 Jog mode .. 14
 3.2.8 "Target floor call" mode ... 15
 3.2.9 Realignment: .. 15
 3.2.10 Emergency Stop ... 15
 3.2.11 Battery Run Mode ... 15
 3.2.12 AtFloor - Landing position Reached .. 15
 3.2.13 "Passing braking point" signal ... 15
 3.3 LIFT CONTROL COMMANDS .. 16
 3.3.1 Maintenance command .. 16
 3.3.2 JogFwd command ... 16
 3.3.3 JogRev command .. 16
 3.3.4 Zero cycle command .. 17
 3.3.5 SelfStudy command .. 18
 3.3.6 FloorCall command .. 19
 3.3.7 Reverse command ... 19
 3.3.8 Forward command ... 20
 3.3.9 Stop command .. 20
 3.3.10 Battery Run Mode function ... 21
 3.3.11 Battery SEL function .. 21
 3.3.12 Realignment function ... 21

4. COMMISSIONING VIA KEYPAD .. 22
 4.1 ASYNCHRONOUS MOTOR START-UP WIZARD ... 22
 4.2 SYNCHRONOUS MOTOR START-UP WIZARD .. 22

5. DESCRIPTION OF PARAMETERS .. 26

6. CONFIGURATION OF INPUT/OUTPUT COMMANDS .. 53
INTRODUCTION

This document provides all the information necessary for the design, wiring and configuration of a system based on the EPC (Elevator Position Control) application in the lift industry using a product from the SIEIDrive ADL300 series.

It describes the sequences and functions of EPC (Elevator Position Control). The version 2 introduce the enhancement to manage installations up to 32 floors doubling the previous version where the max number of floors was 16.

The EPC function is a position regulator for direct, "one shot" arrival at the floor without having to slow down during the approach.

The control must function on ADL300 drives in all the control modes envisaged (FOC and BRS)

The EPC functions are installed in the ADL300 series of drives as application 2. To enable the function the 558 Application select parameter must be set to 2 (see ADL300-….FP manual).

For all information about the ADL300 series of drives reference should be made to the “Quick start guide and Specifications and connection” (ADL300 QS –EN manual 1S9QSEN).
1. INSTALL THE APPLICATION

1.1 General Information
This section describes a standard application commissioning procedure. The preliminary operations for commissioning ADL300 drives are described in chapter 8 of the “ADL300 Quick Start Guide”.

1.2 Requirements
The EPC application for ADL300 requires firmware version 2.00, or higher (Releases 1.x do not support the EPC application). To install the application you must have a PC, version 1.6.5 or higher of the Gefran GF_eXpress software with Catalog, the RS-485 serial interface cable (cod 8S864C). The application set-up file contains an automatic procedure that copies the required files in the specific folders of the GF_eXpress catalog.

1.3 Preliminary operations
The EPC application is preloaded in the drive as Application 2 (refer to the menu parameter 4.5 PAR 558 Application sel).

Once GF_eXpress is installed perform the following procedure:

- Select the ADL300A (Asynchronous) or ADL300S (Synchronous) Lift drive.

- Selezionare la versione dell'applicazione:
 - ADL300S: 4.x.4 EPC 7.x.10.0 (EPC for Synchronous Motors)
 - ADL300A: 4.x.4 EPC 7.x.10.0 (EPC for Asynchronous Motors)
At this stage the application is ready to be used. Parameters are available in menu 5 "LIFT".

<table>
<thead>
<tr>
<th>Manual selection for ADL300S</th>
</tr>
</thead>
<tbody>
<tr>
<td>Select version:</td>
</tr>
<tr>
<td>Protocol</td>
</tr>
<tr>
<td>Port</td>
</tr>
<tr>
<td>E/S</td>
</tr>
<tr>
<td>Address</td>
</tr>
<tr>
<td>Line conf</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Manual selection for ADL300A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Select version:</td>
</tr>
<tr>
<td>Protocol</td>
</tr>
<tr>
<td>Port</td>
</tr>
<tr>
<td>E/S</td>
</tr>
<tr>
<td>Address</td>
</tr>
<tr>
<td>Line conf</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Manual selection for ADL300A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Select version:</td>
</tr>
<tr>
<td>Protocol</td>
</tr>
<tr>
<td>Port</td>
</tr>
<tr>
<td>E/S</td>
</tr>
<tr>
<td>Address</td>
</tr>
<tr>
<td>Line conf</td>
</tr>
</tbody>
</table>
2. APPLICATION OVERVIEW

This section contains a general description of the EPC (Elevator Positioning Control) application.

The EPC (Elevator Positioning Control) function is a separate application for independent management of direct arrival at the floor with internal position regulator and saving of floor distances (system autotuning). There are two possible configurations for this application:

- **Digital I/O control**: in the installations where the number of available I/Os is sufficient, the control can be done via I/Os. N Digital Inputs are necessary to manage a system with 2^N floors. If the number of I/Os available in the BASIC version (ADL300B) is not sufficient, it is possible to use the ADVANCED (ADL300A) version with an adequate number of I/Os (e.g. by using the EXP-IO-D16R4-ADL expansion card).

- **Remote control via CANopen fieldbus**: it is possible to control the application via CANopen fieldbus, saving in this way I/Os. To use this mode the ADL300 must be equipped with the CANopen interface. (Order the ADL300 version with CAN interface).

- In case of systems where the number of floors is 16+, the use of CANopen control is suggested.

The main requirements for the EPC function are:

- Maximum operating speed (4m/s)
- Maximum number of floors 32
- Stop at floor without approaching at reduced speed (positioning for direct arrival at floor)
- Automatic management of speed and ramp times according to the floor of call and arrival
- Management of brake and contactor command sequences
- Availability of configurator for complete configuration and monitoring of operating variables.
- Possibility of calling floors directly (floor booked) or of requesting stops at floors during travel.
- Possibility of entering corrections and compensations on floor levels

Advanced controls:

- Inertia Compensation
- Battery run mode with choice of preferred direction
- Over Permissible Speed protection

The following functions are managed externally, by an external PLC or electromechanical unit:

- Floor call logic
- Safety logic

The control system recognises the position of the floors via a series of cams installed along the path of the lift car. It uses a Self Study initialisation sequence to detect the position of these cams, on the basis of which it determines the level of each floor and the number of floors.

The distance between floors may vary from floor to floor, subject to certain restrictions.
3. CONFIGURATION OF THE INTERNAL POSITIONING DEVICE (EPC)

3.1 Layout of cams

The floor management cams must be arranged as illustrated in the figure:

UpperLimit
There must only be one landingZone cam inside this area.

Maximum landing zone

Maximum lift travel limit.

Deceleration zone

SlowUpperLimit

Minimum landing zone

Minimum lift travel limit.

SlowLowerLimit

There must only be one landingZone cam inside this area.
Types of cams

Three types of cams are used in the system:

Deceleration cams

- There are two deceleration cams:
 - Deceleration lower limit (SlowLowerLimit) read by the InputSlowLowerLimit input;
 - Deceleration upper limit (SlowUpperLimit) read by the InputSlowUpperLimit input.

- These cams have the following functions:
 - SlowLowerLimit: if engaged it may cause the lift to slow down when this is travelling towards the lowest floor at an incorrect speed.
 - SlowUpperLimit: if engaged it may cause the lift to slow down when this is travelling towards the highest floor at an incorrect speed.

The length of the deceleration cams must be calculated so that the lift car has time to stop from the moment it engages a cam while travelling at maximum speed before reaching the maximum lift travel limit.

There may be several landing zones in the area covered by the deceleration cams.

In some systems the qualification cams, described below, can be used as deceleration cams. In this case there must only be one landing zone in the area covered by the deceleration cams.

Qualification cams

- There are two qualification cams:
 - The LowerLimit cam read by the InputLowerLimit input
 - The UpperLimit cam read by the InputUpperLimit input

These cams are used for the following functions:

- Execution of the Zero Cycle, in conjunction with cams A and B.
- The Self Study sequence for storing the position of the floors present in the system.

The qualification cams qualify the end landing zones and thus determine the first and top floors. For this reason there must only be one landing zone in the area covered by the qualification cam.

Floor counter cams

Each floor in the system is associated with a pair of floor counter cams.

- These cams are called CAM A and CAM B and are read by the InputCammaA and InputCammaB inputs.
- The landing zone is the area determined by the logical OR of cam A and cam B.

- There is one pair of cams for each floor in the system.

- These cams are used by the following functions:
 - Floor counter.
 - Realignment of the lift car at the floor.
 - Zero cycle at the lowest floor, in conjunction with the LowerLimit qualification cam.
 - Zero cycle at the highest floor, in conjunction with the UpperLimit qualification cam.
 - The Self Study sequence for storing the position of the floors present in the system.
Layout of floor counter cams

The cams must be arranged as follows with respect to the lift floor:

- Length of cam A and of cam B.
 \[d_1 = d_2 \]
- Distance between the lower edge of cam A and the line of the floor.
- Distance between the upper edge of cam B and the line of the floor.
- Dimension of an acquisition zone.
 \[z_1, z_2, z_3 \geq \frac{LC}{2} \]
 This value must be greater than or equal to \(\text{LunghezzaMinimaCamma} / 2 \).
- Dimension of the landing zone
 \[\text{Landing Zone} = (\frac{LC}{2}) \times 3 \]

<table>
<thead>
<tr>
<th>LC</th>
<th>Length of cam A and of cam B.</th>
</tr>
</thead>
<tbody>
<tr>
<td>d1 = d2</td>
<td>Distance between the lower edge of cam A and the line of the floor.</td>
</tr>
<tr>
<td>z1, z2, z3 >= (\frac{LC}{2})</td>
<td>Dimension of an acquisition zone.</td>
</tr>
<tr>
<td></td>
<td>This value must be greater than or equal to (\text{LunghezzaMinimaCamma} / 2).</td>
</tr>
<tr>
<td>Landing Zone = ((\frac{LC}{2})) × 3</td>
<td>Dimension of the landing zone</td>
</tr>
</tbody>
</table>
The figure below shows a possible alternative cam and sensor layout. This second method is functionally identical to that illustrated on the previous page but simpler to install and service. For further details please see appendix B.

LC => **LunghezzaMinimaCamma**
Length of cam A and of cam B.

\[d_1 = d_2 \]
Distance between the upper edge of cam A and the line of the floor.
Distance between the lower edge of cam B and the line of the floor.

\[z_1, z_2, z_3 \geq \frac{LC}{2} \]
Dimension of an acquisition zone.
This value must be greater than or equal to **LunghezzaMinimaCamma / 2**.

Landing Zone = \((LC / 2) \times 3 \)
Dimension of the landing zone
Use of cams to count floors

The floor counter cams are arranged so as to simulate a hypothetical incremental encoder "spread" over the lift shaft. In this hypothetical simulation the cams correspond to the notches on the disk and the two sensors, on the lift car, represent the photocells.

The system can detect the absolute position of the lift car, as it is immune to counting errors caused by the lift cables slipping on the pulley or stretching.

Like all incremental encoders, it must first be initialised. This is performed automatically during the initialisation of the motor incremental encoder by executing the zero cycle sequence.

Floor counter check

The progress of the floor counter can be checked by moving the lift car in the shaft.

If the floors are counted in the opposite order to that intended, invert the inputs of cam A and cam B on the terminal board of the drive, in the same way as for a normal incremental encoder.
3.2 Description of Functions (EPC)

The internal positioning device (EPC) offers standard functions, positioning mode functions and special functions.

3.2.1 Standard functions:

Some of the functions are already available in the standard version of the drive (EFC application). These mainly include:
- Signals and sequences for brake and door contactor commands
- Pre-torque function
- Ramping down of current at the end of the sequence
- Weights and estimated inertia.

3.2.2 Floor counter

The application must be able to read the floor counter cams (cam A and cam B), and recognise the current position in the shaft and the direction of travel. The floor counter cams are arranged so as to simulate a hypothetical incremental encoder “spread” over the lift shaft. The position is thus controlled twice, once based on the reading of the motor position sensor and once based on the reading of the cams to check the real position of the lift car in the shaft.

3.2.3 Mechanical constants

Specific parameters used to perform exact calculations of mechanical constants (separation of the ratio into two parameters).

3.2.4 Elevator Shaft Limit

Control functions to prevent shaft limits from being exceeded. The controls regard both position and speed. An alarm must be generated if the control systems intervene.

3.2.5 Self Study function

The Self Study command is used to set a special control system mode in order to detect the height of the cams indicating the position of the floors in the lift shaft. These heights are detected automatically by performing a series of movements. The following positions are stored for each floor: A Low, B High. This command should only be executed when installing the control system or moving the floor identification cams. No direct floor call or movement commands are possible (except jog and zero cycle) unless a Self Study command has been correctly executed.

3.2.6 Zero cycle function

The zero cycle command is used to move the lift car to a known zero position. A zero cycle must be executed each time the drive is switched on to reset the floor counter and rephase to a known position. The encoder alarm generates a loss of zero

3.2.7 Jog mode

This command is used to perform manual jog operations in both directions. This is necessary during maintenance operations and commissioning.
3.2.8 "Target floor call" mode

In this mode the PLC sends the command of the floor to be reached directly via digital inputs or CANopen control word (floorSel = .4) and a pulse signal of recognition (floor call). Thus the application already has a target destination before sending a start command. A request to change destination may be received during travel, with the application giving a negative response: “Passed Braking Point” or a positive response: “Change target” signal.

3.2.9 Realignment:

The lift car is not mechanically integral with the motor pulley and the lift cables could, for a variety of mechanical reasons, slip on the motor pulley. This would alter the position of the lift car with respect to that calculated by the control system using the encoder on the motor, resulting in misalignments. These can lead to incorrect positioning of the lift car with respect to the floor.

To overcome these problems the control system incorporates the following realignment functions:

- Static realignment.
- Dynamic realignment.

3.2.10 Emergency Stop

No operations must be possible during an emergency stop. The external PLC must disable the drive and apply the brake.

3.2.11 Battery Run Mode

Battery run mode is enabled in the event of a power failure, if the emergency battery power supply unit is present. It allows the lift car to reach the nearest floor (in the direction in which it uses least energy) so that passengers can get out, without the manual operations required with conventional systems.

3.2.12 AtFloor - Landing position Reached

The control system generates this signal (AtFloor) each time the landing position is reached.

3.2.13 "Passing braking point" signal

This signal is activated, in floor call mode, if the external PLC attempts to change the floor to be reached while the lift car is moving. In this case the control system evaluates the possibility of stopping at the requested floor on the basis of the current operating conditions. If this is possible, the system automatically changes the floor to be reached. Otherwise the previous request is maintained and the system sends a "passing braking point" signal to the PLC. This is a pulse signal proportional to the length of the call.

3.2.13.1 Reverse target safety

This function is used if the PLC generates a call error. This may occur for example if, while the lift car is travelling, a request is received to stop at a floor in the opposite direction of travel. In this case the control system generates a "Passed Braking Point" signal and continues to travel towards the previously requested position.
3.3 LIFT CONTROL COMMANDS

The following commands are available:

- Jog Forward \((\text{JogFwd})\)
- Jog Reverse \((\text{JogRev})\)
- Zero cycle \((\text{Cycle0})\)
- Self study \((\text{SelfStudy})\)
- Floor call \((\text{FloorCall})\)
- Forward \((\text{Forward})\)
- Reverse \((\text{Reverse})\)
- Stop \((\text{Stop})\)
- Maintenance \((\text{Maintenance})\)
- Realignment \((\text{Relevelling})\)
- Emergency command \((\text{Battery Run})\)
- Emergency function \((\text{Battery Sel})\)

3.3.1 Maintenance command

The maintenance command acts on forward and reverse. For further details please see the description of the two commands.

3.3.2 JogFwd command

The JogFwd command moves the lift car in the positive direction.
The following operating modes are implemented for this command:

- On the rising edge of the JogFwd command the lift starts moving in the positive direction, which is normally upwards. The following events may occur while the lift car is moving:
 - Removal of the JogFwd command: the lift stops in any point after completing the set deceleration ramp.

WARNING!

As per specifications, the JogFwd command has no movement limits, **the user must therefore take care to stop the lift in time.**

3.3.3 JogRev command

The JogRev command moves the lift car in the negative direction.
The following operating modes are implemented for this command:

- On the rising edge of the JogRev command the lift starts moving in the negative direction, which is normally downwards. The following events may occur while the lift car is moving:
 - Removal of the JogRev command: the lift stops in any point after completing the set deceleration ramp.

WARNING!

As per specifications, the JogRev command has no movement limits, **the user must therefore take care to stop the lift in time.**
3.3.4 Zero cycle command

The zero cycle command is used to initialise the lift encoder counter and the floor counter. When the initialisation procedure is complete, if the floor levels are operational, it executes a floor 0 positioning operation.

The zero cycle is a sequence used to:
- Initialise the motor incremental encoder.
- Initialise the floor counter function performed by the realignment cams.

The following **conditions** are necessary in order for the zero cycle sequence to function correctly:

1. Set the ZeroSpd parameter, which represents the zero search speed, to a suitably low value.
2. In the area delimited by the Lower Limit cam there must **only be one** floor cam, also called a zero cam. The zero cam consists of the or of the two floor cams.
3. The zero cycle sequence **must never** be started when the position of the lift car is lower than the deceleration cam.

The zero cycle sequence is performed as follows:

1. If the zero cam is not engaged:
 - The lift car starts moving in the negative direction.
 - The moment the lift car engages the zero cam, the incremental encoder position and floor counter are initialised.
 - The lift car stops and the system sets ZeroFound = 1 and concludes the zero cycle sequence.

2. If the zero cam is engaged:
 - The lift car starts moving in the positive direction.
 - The movement stops when the lift car releases the zero cam.
 - The lift car starts moving in the negative direction.
 - The moment the lift car engages the zero cam, the incremental encoder position and floor counter are initialised.
 - The lift car stops, the system sets ZeroFound = 1 and concludes the zero cycle sequence.

For a variety of reasons, the zero sequence must be performed at low speed. If the sequence is launched with the lift car a long way from the zero cam, the cycle could take a very long time to be executed.
3.3.4.1 Minimum lift travel limit

The minimum lift travel limit is equal to the minimum limit of the zero cam. The lift must normally never exceed this limit, although there are some exceptions when special maintenance operations are required.

Due to these exceptions the control system does not perform any checks or take any action if this limit is exceeded. All control procedures and any alarms are thus managed by the external PLC.

The external PLC must also prevent activation of the zero cycle sequence if the lift car is below the zero cam. If this rule is not observed the lift car will over-travel into the pit and crash into the floor of the shaft.

3.3.5 SelfStudy command

The Self Study command is used to detect the position of the cams indicating the position of the floors in the lift shaft. The control system detects these positions automatically, by performing a series of movements.

This command should only be executed when installing the control device or moving the floor identification cams.

WARNING: before executing the Self Study command, check that the cams are arranged in their correct positions, especially the deceleration cams. Also check that the size of the deceleration cam is sufficient to stop the control system. Remember that these sequences start and stop according to the positions of the cams. Cams that are not in their correct position could cause a collision.

The **Self Study sequence** is as follows:

1. The Self Study sequence is activated on the rising edge of the Self Study command.
2. The ZeroFound variable is set to FALSE; the control system must therefore run a zero cycle sequence.
3. The control system moves the lift, at the ZeroSpd speed, in the negative direction until engaging the lower limit cam.
4. After engaging the lower limit cam, it continues, at the ZeroFound speed, until engaging cam B of floor zero. On the upper margin of cam B the control system initialises the encoder 0 position and floor counter.
5. It continues in the negative direction, at the same speed, until engaging cam A of floor 0. After engaging cam A it stops.
6. Set SelfStudyOK = FALSE.
7. This resets all the positions of the cams: A Low, B High; reset the adjust parameters: Adj Up and Adj Dw.
8. The lift moves in the positive direction at the Self Study speed ().
9. While moving the system detects the position of the car at the edges of all the cams it meets, including the deceleration and qualification cams.
10. Upon engaging the upper deceleration cam, Slow Upper Limit, it reduces the speed to the value set in ZeroSpd.
11. It continues in the positive direction until engaging cam B of the top floor. Once engaged, it stops.
12. It stores the positions detected.
13. It calculates the position of the lower edge of cams A and B of floor 0. The lift car must not reach these edges, so the control system assumes that the size of cam A at floor zero is identical to that of cam A at floor one, and thus calculates the lower edge of cam A as follows:
 \[A \text{ Low (floor 0)} = A \text{ High (floor 0)} - (A \text{ High (floor 1)} - A \text{ Low (floor 1)}) \]
 The same procedure is used to calculate the lower edge of cam B.
14. It calculates the position of the upper edge of cams A and B of the top floor. The lift car must not reach these edges, so the control system assumes that the size of cam A at the top floor is identical to that of cam A at the second-to-last floor, and thus calculates the upper edge of cam A as follows:
 \[A \text{ Low (top floor)} = A \text{ High (top floor)} - (A \text{ High (second-to-last floor)} - A \text{ Low (second-to-last floor)}) \]
 The same procedure is used to calculate the upper edge of cam B.
15. The lift car is moved into position at the top floor.
16. Set SelfStudyOK = TRUE.
3.3.6 FloorCall command

This command is used to request positioning of the lift car at a specific floor. This command has the following operating mode:

1. On the rising edge of the FloorCall command a request is sent to position the lift car at the requested floor.
2. The lift starts to execute the positioning operation at the requested floor. The following events may occur while the lift car is moving:
 - Removal of the FloorCall command: nothing happens.
 - Resending of the FloorCall command, to a new floor: the following situations are possible:
 - The new floor that has been requested cannot be reached because it has already been passed or because the lift could not stop at the position of the new floor. The lift therefore continues as per the original plan.
 - The new floor that has been requested can be reached and the lift moves towards the new floor.

This command can ONLY be executed if the Self Study sequence has been successfully completed, and the SelfStudyOk parameter is set to TRUE.

3.3.7 Reverse command

The reverse command has four operating modes:

<table>
<thead>
<tr>
<th>Case</th>
<th>Cause</th>
<th>Action</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Maintenance input closed (enable)</td>
<td>JogRev</td>
<td>Executes the jog reverse command See "Reverse command with Maintenance input = enable" section</td>
</tr>
<tr>
<td>2</td>
<td>Maintenance input open (disable) Zero cycle not done (ZeroFound = FALSE) Lift car stopped NOT at top floor</td>
<td></td>
<td>See "Reverse command before zero cycle not from last floor" section</td>
</tr>
<tr>
<td>3</td>
<td>Maintenance input open (disable) Zero cycle not done (ZeroFound = FALSE) Lift car stopped at top floor</td>
<td></td>
<td>See "Reverse command before zero cycle from last floor" section</td>
</tr>
<tr>
<td>4</td>
<td>Maintenance input open (disable) Zero cycle done (ZeroFound = TRUE)</td>
<td></td>
<td>See "Reverse command after zero cycle" section</td>
</tr>
</tbody>
</table>

Reverse command with Maintenance input = enable

If the Maintenance input is closed (enable) when the reverse command is sent the control system acts as if the JogRev command had been set.

Reverse command before zero cycle

If the reverse command is sent before the incremental encoder and floor counter have been initialised, a zero cycle is executed.

This command can ONLY be executed if the Self Study sequence has been successfully completed, and the SelfStudyOk parameter is set to TRUE.

Reverse command after zero cycle

The reverse command following execution of the zero cycle, indicated by the ZeroFound= TRUE output, functions as follows:

- On the rising edge of the command the lift starts moving towards floor 0. The following events may occur during this movement:
 - Nothing happens: the lift reaches floor 0 executing the normal deceleration ramp as set.
 - Removal of the reverse command: the lift stops at any point after executing the normal set deceleration ramp.
 - The stop command becomes TRUE causing the lift to stop at the first possible floor.
If on the rising edge of the reverse command the stop command is TRUE the lift moves to the next floor.

This command can ONLY be executed if the Self Study sequence has been successfully completed, and the SelfStudyOk parameter is set to TRUE.

3.3.8 Forward command

The forward command has four operating modes:

<table>
<thead>
<tr>
<th>Case</th>
<th>Cause</th>
<th>Action</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Maintenance input closed (enable)</td>
<td>JogFwd</td>
<td>Executes the jog forward command See "Forward command with Maintenance input = enable" section</td>
</tr>
<tr>
<td>2</td>
<td>Maintenance input open (disable) Zero cycle not done (ZeroFound = FALSE) Lift car stopped NOT at floor</td>
<td></td>
<td>See "Forward command before zero cycle not from top floor" section</td>
</tr>
<tr>
<td>3</td>
<td>Maintenance input open (disable) Zero cycle not done (ZeroFound = FALSE) Lift car stopped at top floor 0</td>
<td></td>
<td>See "Forward command before zero cycle from floor 0" section</td>
</tr>
<tr>
<td>4</td>
<td>Maintenance input open (disable) Zero cycle done (ZeroFound = TRUE)</td>
<td></td>
<td>See "Forward command after zero cycle" section</td>
</tr>
</tbody>
</table>

Forward command with Maintenance input = enable
If the maintenance input is closed (enable) when the forward command is sent the control system acts as if the JogFwd command had been set.

Forward command before zero cycle
If the forward command is sent before the incremental encoder and floor counter have been initialised, a zero cycle is executed.

This command can ONLY be executed if the Self Study sequence has been successfully completed, and the SelfStudyOk parameter is set to TRUE.

Forward command after zero cycle
The forward command following execution of the zero cycle, indicated by the ZeroFound= TRUE output, functions as follows:
- On the rising edge of the command the lift starts moving towards the top floor.
 The following events may occur while the lift car is moving:
 - Nothing happens: the lift reaches the top floor executing the normal deceleration ramp as set.
 - Removal of the forward command: the lift stops at any point after executing the normal set deceleration ramp.
 - The stop command becomes TRUE causing the lift to stop at the first possible floor.
If on the rising edge of the forward command the stop command is TRUE the lift moves to the next floor.
This command can ONLY be executed if the Self Study sequence has been successfully completed, and the SelfStudyOk parameter is set to TRUE.

3.3.9 Stop command

The stop command is active after the zero cycle (ZeroFound = TRUE), and only interacts with the forward and reverse commands.
For more information please read the sections on the forward and reverse commands.
3.3.10 Battery Run Mode function

The battery run mode function is used to manage lift movements with the emergency power supply (power failure).

3.3.11 Battery SEL function

The battery sel function is used to disable alarms (undervoltage and phase loss). Only the jog and battery run commands are enabled. All the others are blocked.

3.3.12 Realignment function

The lift car is not mechanically integral with the motor pulley and the lift cables could, for a variety of mechanical reasons, slip on the motor pulley. This would alter the position of the lift car with respect to that calculated by the control system using the encoder on the motor, resulting in misalignments. These can result in incorrect positioning of the lift car with respect to the floor. To overcome these problems the control system incorporates the following realignment functions:

- Static realignment.
- Dynamic realignment.

Both functions are enabled by means of an appropriate parameter which allows them to be enabled separately in order to simplify installation. The functions must not be enabled before executing the Self Study function.
4. COMMISSIONING VIA KEYPAD

4.1 ASYNCHRONOUS MOTOR START-UP WIZARD

From ADL300 quick start guide page 48/80 for asynchronous motor and page 55/80 for brushless motor

The STARTUP WIZARD is a guided procedure used for quick start-up of the drive that helps to set the main parameters. It consists of a series of questions, relating to the various sequences for entering and calculating the parameters necessary for correct drive and lift application operation. The order of these sequences is as follows:

- Electrical connections
- Setting motor parameters
- Autotune with motor at stand-still or coupled to the load
- Setting encoder parameters
- Setting the maximum speed reference and maximum system speed
- Setting system weights
- Setting application parameters
- Saving parameters

See step 1 (see QS manual)
See step 2 (see QS manual)
See step 3 (see QS manual)
See step 4 (see QS manual)
See step 6 (see QS manual)
See step 7 (see QS manual)
See step 8
See step 9

4.2 SYNCHRONOUS MOTOR START-UP WIZARD

- Electrical connections
- Setting motor parameters
- Autotune with motor at stand-still or coupled to the load
- Setting encoder parameters
- Encoder phasing
- Setting the maximum speed reference and maximum system speed
- Setting system weights
- Setting application parameters
- Saving parameters

See step 1 (see QS manual)
See step 2 (see QS manual)
See step 3 (see QS manual)
See step 4 (see QS manual)
See step 5 (see QS manual)
See step 6 (see QS manual)
See step 7 (see QS manual)
See step 8
See step 9
Step 8 Setting application parameters:
for asynchronous and synchronous motors

<table>
<thead>
<tr>
<th>SEQ</th>
<th>PAR</th>
<th>Description</th>
<th>Value</th>
<th>Default</th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>11040</td>
<td>Travel Unit Sel</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>02</td>
<td>11024</td>
<td>Speed fwd / rev</td>
<td>0.000</td>
<td>0.0000</td>
</tr>
<tr>
<td>03</td>
<td>11026</td>
<td>Speed zero Cycle</td>
<td>0.000</td>
<td>0.0000</td>
</tr>
<tr>
<td>04</td>
<td>11028</td>
<td>Speed jog</td>
<td>0.000</td>
<td>0.0000</td>
</tr>
<tr>
<td>05</td>
<td>11030</td>
<td>Speed self-study</td>
<td>0.000</td>
<td>0.0000</td>
</tr>
<tr>
<td>SEQ</td>
<td>PAR: 11016</td>
<td>Deceleration</td>
<td>[0.600 \text{ m/s}^2]</td>
<td></td>
</tr>
<tr>
<td>------</td>
<td>------------</td>
<td>--------------</td>
<td>-------------------------</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SEQ</th>
<th>PAR: 11018</th>
<th>Dec end Jerk</th>
<th>[0.500 \text{ m/s}^3]</th>
</tr>
</thead>
<tbody>
<tr>
<td>14</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Step - Save parameters

To save the new parameter settings, so that they are maintained also after power-off, proceed as follows:

1. Press the **E** key to start the save parameters procedure.
2. Press "E" to confirm
3. End of procedure
4. When the parameters have been saved correctly the drive displays this screen to show that the startup wizard is complete.
5. DESCRIPTION OF PARAMETERS

This manual only includes the parameters concerning the application (menu 5). For all other parameters reference should be made to the "Description of functions and list of parameters" manual.

5 – LIFT

The LIFT menu displays the parameters concerning the LIFT function in the configuration with internal positioning device (EPC).
All these functions are installed in the ADL300 series of drives as "Application 2".
To enable the function the 558 Sel Applicazione parameter must be set to 2 (see ADL300 FP Functional Parameter manual).

05.01 – MECHANICAL DATA

The parameters described in this menu are used to define the mechanical and physical characteristics of the system.

Mechanical constants
The mechanical constant defines the relationship between motor rpm and the distance travelled by the lift car.
There are two ways of calculating the ConstMech depending on the method of transformation that is used.
- Direct mode: Mechanical constant = System speed / (Full scale speed/60)
- Mechanical data: Mechanical constant = (π * Pulley diameter) / Reduction gear ratio

The mechanical constant is calculated when the drive is switched on and re-calculated whenever changes are made to one of the relative parameters (Mechanical calc mode, Contract speed, Pulley Diameter, Gearbox ratio).
The method used to calculate the mechanical constant can be chosen regardless of which control mode has been selected (Flux vector OL, Flux vector CL) or of the unit of measure to be used.

Weights and inertia
Once the system's mechanical characteristics have been entered the total inertia applied to the motor can be calculated.
When these parameters are changed the calculated inertia value is automatically saved in the Comp inerzia parameter in order to perform correct inertia compensation.
The system displays the inertia value that can be entered in the Inertia parameter in the SPEED REG GAINS menu to calculate the speed loop parameters more accurately.
This operation is performed automatically when PAR 11162 Calc spd reg gain is enabled.
Lift car speed at base frequency. This represents the system speed. It is also used to calculate the mechanical constant.

<table>
<thead>
<tr>
<th>Menu</th>
<th>Par</th>
<th>Description</th>
<th>UM</th>
<th>Type</th>
<th>FB BIT</th>
<th>Def</th>
<th>Min</th>
<th>Max</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.1.1</td>
<td>11006</td>
<td>Car Max Speed</td>
<td>m/s</td>
<td>FLOAT</td>
<td>16/32BIT</td>
<td>1.0</td>
<td>0.0</td>
<td>10.0</td>
<td>RW</td>
<td>FVS</td>
</tr>
</tbody>
</table>

Ratio between the speed of the motor and of the pulley.

<table>
<thead>
<tr>
<th>Menu</th>
<th>Par</th>
<th>Description</th>
<th>UM</th>
<th>Type</th>
<th>FB BIT</th>
<th>Def</th>
<th>Min</th>
<th>Max</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.1.2</td>
<td>11042</td>
<td>Gearbox Ratio</td>
<td></td>
<td>FLOAT</td>
<td>16/32BIT</td>
<td>45.0</td>
<td>***</td>
<td>***</td>
<td>RW</td>
<td>FVS</td>
</tr>
</tbody>
</table>

Pulley diameter setting.

<table>
<thead>
<tr>
<th>Menu</th>
<th>Par</th>
<th>Description</th>
<th>UM</th>
<th>Type</th>
<th>FB BIT</th>
<th>Def</th>
<th>Min</th>
<th>Max</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.1.3</td>
<td>11044</td>
<td>Pulley Diameter</td>
<td>m</td>
<td>FLOAT</td>
<td></td>
<td>0.6</td>
<td>***</td>
<td>***</td>
<td>RW</td>
<td>FVS</td>
</tr>
</tbody>
</table>

Counterweight setting.

<table>
<thead>
<tr>
<th>Menu</th>
<th>Par</th>
<th>Description</th>
<th>UM</th>
<th>Type</th>
<th>FB BIT</th>
<th>Def</th>
<th>Min</th>
<th>Max</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.1.4</td>
<td>11046</td>
<td>Calc speed reg gain</td>
<td>BIT</td>
<td></td>
<td></td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>RW</td>
<td>FVS</td>
</tr>
</tbody>
</table>

Enables writing of the inertia calculated in the speed regulator (PAR 2240)

<table>
<thead>
<tr>
<th>Menu</th>
<th>Par</th>
<th>Description</th>
<th>UM</th>
<th>Type</th>
<th>FB BIT</th>
<th>Def</th>
<th>Min</th>
<th>Max</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.1.5</td>
<td>11150</td>
<td>Car Weight</td>
<td>kg</td>
<td>FLOAT</td>
<td></td>
<td>0.0</td>
<td>0</td>
<td>10000</td>
<td>RW</td>
<td>FVS</td>
</tr>
</tbody>
</table>

Lift car weight setting.

<table>
<thead>
<tr>
<th>Menu</th>
<th>Par</th>
<th>Description</th>
<th>UM</th>
<th>Type</th>
<th>FB BIT</th>
<th>Def</th>
<th>Min</th>
<th>Max</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.1.6</td>
<td>11152</td>
<td>Counter Weight</td>
<td>kg</td>
<td>FLOAT</td>
<td></td>
<td>0.0</td>
<td>0</td>
<td>100000</td>
<td>R/W</td>
<td>FVS</td>
</tr>
</tbody>
</table>

Counterweight setting.

<table>
<thead>
<tr>
<th>Menu</th>
<th>Par</th>
<th>Description</th>
<th>UM</th>
<th>Type</th>
<th>FB BIT</th>
<th>Def</th>
<th>Min</th>
<th>Max</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.1.7</td>
<td>11154</td>
<td>Load Weight</td>
<td>kg</td>
<td>FLOAT</td>
<td></td>
<td>0.0</td>
<td>0</td>
<td>100000</td>
<td>RW</td>
<td>FVS</td>
</tr>
</tbody>
</table>

Maximum load weight setting.

<table>
<thead>
<tr>
<th>Menu</th>
<th>Par</th>
<th>Description</th>
<th>UM</th>
<th>Type</th>
<th>FB BIT</th>
<th>Def</th>
<th>Min</th>
<th>Max</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.1.8</td>
<td>11156</td>
<td>Rope Weight</td>
<td>kg</td>
<td>FLOAT</td>
<td></td>
<td>0.0</td>
<td>0</td>
<td>100000</td>
<td>RW</td>
<td>FVS</td>
</tr>
</tbody>
</table>

Cable weight setting.

<table>
<thead>
<tr>
<th>Menu</th>
<th>Par</th>
<th>Description</th>
<th>UM</th>
<th>Type</th>
<th>FB BIT</th>
<th>Def</th>
<th>Min</th>
<th>Max</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.1.9</td>
<td>11158</td>
<td>GearboxInertia</td>
<td>Kgm2</td>
<td>FLOAT</td>
<td></td>
<td>0.0050</td>
<td>0</td>
<td>1000</td>
<td>RW</td>
<td>FVS</td>
</tr>
</tbody>
</table>

Mechanical reducer inertia setting.

<table>
<thead>
<tr>
<th>Menu</th>
<th>Par</th>
<th>Description</th>
<th>UM</th>
<th>Type</th>
<th>FB BIT</th>
<th>Def</th>
<th>Min</th>
<th>Max</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.1.10</td>
<td>11160</td>
<td>Motor inertia</td>
<td>Kgm2</td>
<td>FLOAT</td>
<td></td>
<td>0.0060</td>
<td>0</td>
<td>1000</td>
<td>RW</td>
<td>FVS</td>
</tr>
</tbody>
</table>

Motor inertia setting.

<table>
<thead>
<tr>
<th>Menu</th>
<th>Par</th>
<th>Description</th>
<th>UM</th>
<th>Type</th>
<th>FB BIT</th>
<th>Def</th>
<th>Min</th>
<th>Max</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.1.11</td>
<td>11420</td>
<td>Mechanical calc mode</td>
<td>ENUM</td>
<td></td>
<td></td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>ERW</td>
<td>FVS</td>
</tr>
</tbody>
</table>

Setting of the method for calculating the unit of measure, based on the speed of the lift car and of the motor (direct mode) or as a function of the mechanical ratios (mechanical data method).

<table>
<thead>
<tr>
<th>Menu</th>
<th>Par</th>
<th>Description</th>
<th>UM</th>
<th>Type</th>
<th>FB BIT</th>
<th>Def</th>
<th>Min</th>
<th>Max</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.1.12</td>
<td>12036</td>
<td>Mechanical const</td>
<td>m/rev</td>
<td>FLOAT</td>
<td></td>
<td>R</td>
<td>FVS</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The value of the calculated mechanical constant is displayed.
The system inertia with half load relayed to the motor is displayed. This value can be entered in the Inertia parameter in the SPEED REG GAINS menu.

05.02 – SPEED

<table>
<thead>
<tr>
<th>Menu</th>
<th>Par</th>
<th>Description</th>
<th>UM</th>
<th>Type</th>
<th>FB BIT</th>
<th>Def</th>
<th>Min</th>
<th>Max</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.2.2</td>
<td>11024</td>
<td>Speed fwd / rev m/s FLOAT</td>
<td>1.00</td>
<td>0.00</td>
<td>10000</td>
<td>RW</td>
<td>FVS</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Setting of the value of multispeed 1. The selected value is the reference for the lift S ramp. The value of this parameter is assumed as forward/reverse speed

<table>
<thead>
<tr>
<th>Menu</th>
<th>Par</th>
<th>Description</th>
<th>UM</th>
<th>Type</th>
<th>FB BIT</th>
<th>Def</th>
<th>Min</th>
<th>Max</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.2.3</td>
<td>11026</td>
<td>Speed zero Cycle m/s FLOAT</td>
<td>0.40</td>
<td>0.00</td>
<td>10000</td>
<td>RW</td>
<td>FVS</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Setting of the value of multispeed 2. The selected value is the reference for the lift S ramp. The value of this parameter is assumed as zero cycle speed.

<table>
<thead>
<tr>
<th>Menu</th>
<th>Par</th>
<th>Description</th>
<th>UM</th>
<th>Type</th>
<th>FB BIT</th>
<th>Def</th>
<th>Min</th>
<th>Max</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.2.4</td>
<td>11028</td>
<td>Speed jog m/s FLOAT</td>
<td>1.00</td>
<td>0.00</td>
<td>10000</td>
<td>RW</td>
<td>FVS</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Setting of the value of multispeed 3. The selected value is the reference for the lift S ramp. The value of this parameter is assumed as jog speed

<table>
<thead>
<tr>
<th>Menu</th>
<th>Par</th>
<th>Description</th>
<th>UM</th>
<th>Type</th>
<th>FB BIT</th>
<th>Def</th>
<th>Min</th>
<th>Max</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.2.5</td>
<td>11030</td>
<td>Speed self-study m/s FLOAT</td>
<td>0.40</td>
<td>0.00</td>
<td>10000</td>
<td>RW</td>
<td>FVS</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Setting of the value of multispeed 4. The selected value is the reference for the lift S ramp. The value of this parameter is assumed as Self Study speed

<table>
<thead>
<tr>
<th>Menu</th>
<th>Par</th>
<th>Description</th>
<th>UM</th>
<th>Type</th>
<th>FB BIT</th>
<th>Def</th>
<th>Min</th>
<th>Max</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.2.6</td>
<td>11032</td>
<td>Speed Battery Mode m/s FLOAT</td>
<td>0.10</td>
<td>0.00</td>
<td>10000</td>
<td>RW</td>
<td>FVS</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Setting of the value of multispeed 5. The selected value is the reference for the lift S ramp. The value of this parameter is assumed as battery mode speed.

<table>
<thead>
<tr>
<th>Menu</th>
<th>Par</th>
<th>Description</th>
<th>UM</th>
<th>Type</th>
<th>FB BIT</th>
<th>Def</th>
<th>Min</th>
<th>Max</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.2.7</td>
<td>11034</td>
<td>Multispeed 6 m/s FLOAT</td>
<td>0.00</td>
<td>0.00</td>
<td>10000</td>
<td>RW</td>
<td>FVS</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Setting of the value of multispeed 6. This can be selected via digital input, fieldbus, etc. The value selected is the reference for the lift S ramp.

<table>
<thead>
<tr>
<th>Menu</th>
<th>Par</th>
<th>Description</th>
<th>UM</th>
<th>Type</th>
<th>FB BIT</th>
<th>Def</th>
<th>Min</th>
<th>Max</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.2.8</td>
<td>11036</td>
<td>Multispeed 7 m/s FLOAT</td>
<td>0.00</td>
<td>0.00</td>
<td>10000</td>
<td>RW</td>
<td>FVS</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Setting of the value of multispeed 7. This can be selected via digital input, fieldbus, etc. The value selected is the reference for the lift S ramp

<table>
<thead>
<tr>
<th>Menu</th>
<th>Par</th>
<th>Description</th>
<th>UM</th>
<th>Type</th>
<th>FB BIT</th>
<th>Def</th>
<th>Min</th>
<th>Max</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.2.9</td>
<td>11038</td>
<td>Speed zero Cyc m/s ENUM</td>
<td>2</td>
<td>0</td>
<td>8</td>
<td>RW</td>
<td>FVS</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Setting of the low speed value. 0 Multispeed 0
1 fwd/rev speed
2 Zero cycle speed
3 Jog speed
4 Self study speed
5 Battery mode speed
6 Multispeed 6
7 Multispeed 7
8 Null

Selection of the unit of measure for the speed references.

0 Hz (motor speed)
1 m/s (speed of the lift car and depends on the mechanical constant)
2 Rpm (speed of the motor shaft)

When the unit of measure is changed the transformation constants are re-calculated, the units of measure in the list of parameters are changed and the multispeed values are converted into the new unit of measure (the result may contain approximations due to conversion calculations).

A variable that represents the lift car speed in m/s (PAR 12210) is always available.

The units of measure for the acceleration and deceleration parameters (m/s²) and jerks (m/s³) are fixed.

05.03 – Ramps

The lift functions according to an S-shaped ramp with the possibility of setting 4 independent jerks and linear acceleration and deceleration coefficients, as in the standard profile illustrated in the figure below.

![S-shaped ramp diagram](image_url)

The values for Jerk iniziale acc, Accelerazione and Jerk finale acc on the acceleration ramp are calculated by multiplying the corresponding parameters by the acceleration ramp factor **Percent acc Factor, PAR 1318)**, while the values for Jerk iniziale dec, Decelerazione and Jerk finale dec on the deceleration ramp are calculated by multiplying the corresponding parameters by the deceleration ramp factor (**Percent dec Factor, PAR 13186**).

When the **Start** command is removed, the reference speed goes to zero regardless of the reference selected in the multispeeds.

<table>
<thead>
<tr>
<th>Menu</th>
<th>Par</th>
<th>Description</th>
<th>UM</th>
<th>Type</th>
<th>FB BIT</th>
<th>Def</th>
<th>Min</th>
<th>Max</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.2.10</td>
<td>11040</td>
<td>Travel Unit Sel</td>
<td>m/s</td>
<td>INT16</td>
<td></td>
<td>0</td>
<td>1</td>
<td>2</td>
<td></td>
<td>RW</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Menu</th>
<th>Par</th>
<th>Description</th>
<th>UM</th>
<th>Type</th>
<th>FB BIT</th>
<th>Def</th>
<th>Min</th>
<th>Max</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.3.1</td>
<td>11000</td>
<td>Acc ini Jerk</td>
<td>m/s³</td>
<td>FLOAT</td>
<td></td>
<td>0.500</td>
<td>0.001</td>
<td>20</td>
<td>RW</td>
<td>FVS</td>
</tr>
</tbody>
</table>

Setting of the jerk value for the initial part of acceleration.

<table>
<thead>
<tr>
<th>Menu</th>
<th>Par</th>
<th>Description</th>
<th>UM</th>
<th>Type</th>
<th>FB BIT</th>
<th>Def</th>
<th>Min</th>
<th>Max</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.3.2</td>
<td>11004</td>
<td>Acceleration</td>
<td>m/s²</td>
<td>FLOAT</td>
<td></td>
<td>0.600</td>
<td>0.001</td>
<td>10</td>
<td>RW</td>
<td>FVS</td>
</tr>
</tbody>
</table>

Maximum acceleration value setting.

<table>
<thead>
<tr>
<th>Menu</th>
<th>Par</th>
<th>Description</th>
<th>UM</th>
<th>Type</th>
<th>FB BIT</th>
<th>Def</th>
<th>Min</th>
<th>Max</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.3.3</td>
<td>11012</td>
<td>Acc end Jerk</td>
<td>m/s³</td>
<td>FLOAT</td>
<td></td>
<td>1.400</td>
<td>0.001</td>
<td>20</td>
<td>RW</td>
<td>FVS</td>
</tr>
</tbody>
</table>

Setting of the jerk value for the final part of acceleration.
Setting of the jerk value for the initial part of deceleration.

Maximum deceleration value setting.

Setting of the jerk value for the final part of deceleration.

Setting of the acceleration coefficient multiplier.
If set to 100 the ramp uses the coefficients entered in the parameters.
If set to a value of less than 100 the lift will accelerate over a longer distance.
If set to a value of more than 100 the lift will accelerate over a shorter distance.

Setting of the deceleration coefficient multiplier.
If set to 100 the ramp uses the coefficients entered in the parameters.
If set to a value of less than 100 the lift will decelerate over a longer distance.
If set to a value of more than 100 the lift will decelerate over a shorter distance.

05.04 – SEQUENCES

This menu contains the parameters used to manage and define the travel of the lift according to the status of the inputs and alarms. The structure of the lift sequences in case of a floor call command is summarised below. Once the command has been received and the number of the floor to be reached has been saved, the internal positioning device starts and automatically executes the trajectory until reaching the floor with direct arrival.
In case of jog speed the deceleration sequence starts the moment the jog command is removed.

Starting sequence:
1. Reading of the Enable hardware input and alarm check (enabling is interrupted if any alarms are present)
2. Recognition of the Enable and Floor Call commands as set in Seq start mode
3. Upon receiving the Floor Call command, the number of the floor to be reached is acquired by reading the binary combination of the Floor0, Floor1, Floor 2... bits as a function of the direction of travel. A command is sent to close the contactors
4. After the time set Contactator close delay the internal Enable signal is activated
5. The system waits for the magnetisation signal from the drive (Drive Ready)
6. After magnetisation the signal is activated to release the brake
7. The system waits for the brake to be released (Contactator Open Delay)
8. After the brake release delay the Lift Start command is sent and the movement is enabled.
Sequence of movements:
1. The motor is started with the values shown in the ramp. The movements are performed according to the multispeeds and the S-shaped ramp set in the internal position control.
2. When the set speed has been exceeded it is possible to check the actual opening of the brake using the output signal Monitor Brake 2
3. The internal position control executes the set trajectory and starts the deceleration ramp at the appropriate time.

Stop sequence:
1. Upon reaching zero speed the direct current braking command is enabled (SSC control mode)
2. The system waits the time necessary to reach zero speed and sends a command to close brakes 1-2
3. The system waits for the brakes to close (Brake Close delay), and if the current is to be ramped down, it waits for the current limit to reach zero. The lift internal enable signal (Enable lift), arrival zone and direct current braking signals are lowered
4. The system waits for the time set in Contactor Open Delay and checks that zero current is delivered, before sending the command to open the contactors.

It is absolutely essential to allow for the fact that a drive alarm condition could occur or the drive could be disabled at any time. In that case the drive must be stopped and a command must be sent to open the contactors.

<table>
<thead>
<tr>
<th>Menu</th>
<th>Par</th>
<th>Description</th>
<th>UM</th>
<th>Type</th>
<th>FB BIT</th>
<th>Def</th>
<th>Min</th>
<th>Max</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.4.1</td>
<td>11060</td>
<td>Seq start mode</td>
<td>ENUM</td>
<td>FB BIT</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>RW</td>
<td>FVS</td>
<td></td>
</tr>
</tbody>
</table>

Setting of the contactor command sequence starting mode.

0 Run fwd/back
1 Enable
When set to 0 the contactor sequences can be enabled without sending the Enable command (Enable is only needed for motor operation). The enable signal can be sent by an auxiliary contact of the output contactors.

If set to 1 the contactor sequences can only be enabled if the enable command is active.

<table>
<thead>
<tr>
<th>Menu</th>
<th>Par</th>
<th>Description</th>
<th>UM</th>
<th>Type</th>
<th>FB BIT</th>
<th>Def</th>
<th>Min</th>
<th>Max</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.4.2 11062</td>
<td>Cont Close Delay</td>
<td>ms</td>
<td>INT32</td>
<td>200</td>
<td></td>
<td>0</td>
<td>10000</td>
<td>RW</td>
<td>FVS</td>
<td></td>
</tr>
</tbody>
</table>

Setting of the delay for closing the contactor.

<table>
<thead>
<tr>
<th>Menu</th>
<th>Par</th>
<th>Description</th>
<th>UM</th>
<th>Type</th>
<th>FB BIT</th>
<th>Def</th>
<th>Min</th>
<th>Max</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.4.3 11064</td>
<td>Brake open delay</td>
<td>ms</td>
<td>INT32</td>
<td>200</td>
<td></td>
<td>0</td>
<td>10000</td>
<td>RW</td>
<td>FVS</td>
<td></td>
</tr>
</tbody>
</table>

Setting of the delay for opening the brake.

<table>
<thead>
<tr>
<th>Menu</th>
<th>Par</th>
<th>Description</th>
<th>UM</th>
<th>Type</th>
<th>FB BIT</th>
<th>Def</th>
<th>Min</th>
<th>Max</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.4.4 11068</td>
<td>Brake close delay</td>
<td>ms</td>
<td>INT32</td>
<td>200</td>
<td></td>
<td>0</td>
<td>10000</td>
<td>RW</td>
<td>FVS</td>
<td></td>
</tr>
</tbody>
</table>

Setting of the delay for closing the brake.

<table>
<thead>
<tr>
<th>Menu</th>
<th>Par</th>
<th>Description</th>
<th>UM</th>
<th>Type</th>
<th>FB BIT</th>
<th>Def</th>
<th>Min</th>
<th>Max</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.4.5 11070</td>
<td>Current Ramp Down Delay</td>
<td>ms</td>
<td>INT32</td>
<td>0</td>
<td>0</td>
<td>10000</td>
<td>RW</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Setting of the time needed to reduce the torque from the threshold value active during travel to 0. It defines the slope of the downward ramp in the “Rampa dimin corrente” function. The purpose of this function is to prevent immediate removal of motor torque upon application of the brake, which would cause undesirable stress on the inside of the lift car.

To avoid this phenomenon, after applying the brake the current limits are brought to the current value in use and then ramped down.

The function is enabled when Current down delay is set to a value other than zero.

This is only possible when Torque curr lim sel (PAR 2354) has a value other than "OFF", otherwise Current ramp down delay is forced to zero.

<table>
<thead>
<tr>
<th>Menu</th>
<th>Par</th>
<th>Description</th>
<th>UM</th>
<th>Type</th>
<th>FB BIT</th>
<th>Def</th>
<th>Min</th>
<th>Max</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.4.6 11072</td>
<td>Cont open delay</td>
<td>ms</td>
<td>INT32</td>
<td>200</td>
<td></td>
<td>0</td>
<td>10000</td>
<td>RW</td>
<td>FVS</td>
<td></td>
</tr>
</tbody>
</table>

Setting of the delay for opening the contactor.

<table>
<thead>
<tr>
<th>Menu</th>
<th>Par</th>
<th>Description</th>
<th>UM</th>
<th>Type</th>
<th>FB BIT</th>
<th>Def</th>
<th>Min</th>
<th>Max</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.4.7 11078</td>
<td>Speed 0 Threshold</td>
<td>rpm</td>
<td>INT16</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>RW</td>
<td>FVS</td>
<td></td>
</tr>
</tbody>
</table>

Setting of the zero speed threshold, below which the zero speed signal is activated

<table>
<thead>
<tr>
<th>Menu</th>
<th>Par</th>
<th>Description</th>
<th>UM</th>
<th>Type</th>
<th>FB BIT</th>
<th>Def</th>
<th>Min</th>
<th>Max</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.4.8 11080</td>
<td>Speed 0 Delay</td>
<td>ms</td>
<td>UINT16</td>
<td>0</td>
<td>0</td>
<td>10000</td>
<td>RW</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Setting of the zero speed delay. After the zero speed signal and after the delay set in this parameter the zero speed signal is enabled. These parameters are used to know the lift car stop.

<table>
<thead>
<tr>
<th>Menu</th>
<th>Par</th>
<th>Description</th>
<th>UM</th>
<th>Type</th>
<th>FB BIT</th>
<th>Def</th>
<th>Min</th>
<th>Max</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.4.9 11086</td>
<td>Door Open Speed</td>
<td>m/s</td>
<td>FLOAT</td>
<td>0.0010</td>
<td></td>
<td></td>
<td></td>
<td>RW</td>
<td>FVS</td>
<td></td>
</tr>
</tbody>
</table>

Setting of the door open speed. This function is used to control door opening in advance before the lift car arrives at the floor. The door open signal can be relayed to a digital output when the speed is below the user-definable threshold. The function must be enabled from the digital input. The state of execution of the speed control command for opening the door can be checked by sending the feedback from the door opening mechanism to the digital input of the drive.

An alarm may be generated if the command and feedback do not coincide.
The currently selected speed is displayed.

- 0 Multispeed 0
- 1 fwd/rev speed
- 2 Zero cycle speed
- 3 Jog speed
- 4 Self study speed
- 5 Battery mode speed
- 6 Multispeed 6
- 7 Multispeed 7
- 8 Null

The lift car speed is displayed in m/s.

The input commands of the EPC lift application can be connected to a signal via a switch that can be used to select from among a series of options listed in the selection list.

The selection list can be used to select from among the following options for each single command:

- Null or One
- Digital Inputs of the I/O expansion card
- Some internal signals (e.g. “Brake cont mon” ..)
- A selectable “LiftDecomp1” bit (e.g. “Lift decom1 B0”)
- A selectable “LiftDecomp2” bit (e.g. “Lift decom2 B0”)
- PAD15

In I/O configuration the commands are connected to digital inputs
In the CANopen configuration they are connected to the LiftDecomp connected in turn for instance via the variable Control word 2 to a fieldbus process channel e.g. PDC FieldBus M->S2..

The variable Control word 2 can generally be connected to another fieldbus process channel or to the drive parameter Wcomp or to PAD16.

The default configuration is shown in the table below:

<table>
<thead>
<tr>
<th>Input</th>
<th>Description</th>
<th>Default source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enable</td>
<td>Enable command</td>
<td>Enable digital input</td>
</tr>
<tr>
<td>Floor Call</td>
<td>Floor call command</td>
<td>Dig input 6X</td>
</tr>
<tr>
<td>Cycle 0</td>
<td>Zero cycle command</td>
<td>Dig input 4X</td>
</tr>
</tbody>
</table>
Self Study
- **Self study command**: Dig input 5X
- **Jog Fwd**: Jog forward command
- **Jog Rev**: Jog reverse command
- **Realignment**: Realignment command
- **Forward**: Forward command
- **Reverse**: Reverse command
- **Stop**: Stop command
- **Maintenance**: Maintenance command
- **Battery Mode**: Battery Mode command
- **Battery Run**: Battery Run command
- **Floor 0**: Floor command bit 0
- **Floor 1**: Floor command bit 1
- **Floor 2**: Floor command bit 2
- **Floor 3**: Floor command bit 3

Realignment Command
- Dig input 9X

Forward Command
- Dig input 7X

Reverse Command
- Dig input 8X

Stop Command
- Null

Maintenance Command
- Null

Battery Mode Command
- Dig input 3X

Battery Run Command
- Dig input 3X

Floor Command
- Null

Menu Parameters and Description

<table>
<thead>
<tr>
<th>Menu</th>
<th>Par</th>
<th>Description</th>
<th>UM</th>
<th>Type</th>
<th>FB BIT</th>
<th>Def</th>
<th>Min</th>
<th>Max</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.5.1</td>
<td>11002</td>
<td>Emergency mode</td>
<td>ENUM</td>
<td>0</td>
<td>RW</td>
<td>FVS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

0 = Up
1 = Down
2 = Autoselect

If the drive is in the emergency condition and cannot find zero, the parameter tells it which direction to move in.

<table>
<thead>
<tr>
<th>Menu</th>
<th>Par</th>
<th>Description</th>
<th>UM</th>
<th>Type</th>
<th>FB BIT</th>
<th>Def</th>
<th>Min</th>
<th>Max</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.5.2</td>
<td>11400</td>
<td>Enable and sel</td>
<td>ENUM</td>
<td>1110</td>
<td>RW</td>
<td>FVS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Setting of the source for the enable command **“COMMAND SOURCE LIST”**:

- 1110 Mon ing digitale E
- 1210 Mon ing digitale 1X
- 1212 Mon ing digitale 2X
- 1214 Mon ing digitale 3X
- 1216 Mon ing digitale 4X
- 1218 Mon ing digitale 5X
- 1220 Mon ing digitale 6X
- 1222 Mon ing digitale 7X
- 1224 Mon ing digitale 8X
- 1226 Mon ing digitale 9X
- 1228 Mon ing digitale 10X
- 1230 Mon ing digitale 11X
- 1232 Mon ing digitale 12X
- 16 Mon com contattore
- 19 Mon contatt discesa
- 17 Mon com freno
- 18 Mon porta aperta
- 3728 PAD15
- 6000 Zero
- 6002 One
- 20 Lift decom B0
- 21 Lift decom B1
- 22 Lift decom B2
- 23 Lift decom B3
- 24 Lift decom B4
- 25 Lift decom B5
- 26 Lift decom B6
- 27 Lift decom B7
- 28 Lift decom B8
- 29 Lift decom B9
- 30 Lift decom B10
- 31 Lift decom B11
- 32 Lift decom B12
- 33 Lift decom B13
- 34 Lift decom B14
- 35 Lift decom B15
<table>
<thead>
<tr>
<th>Menu</th>
<th>Par</th>
<th>Description</th>
<th>UM</th>
<th>Type</th>
<th>FB BIT</th>
<th>Def</th>
<th>Min</th>
<th>Max</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.5.3</td>
<td>11402</td>
<td>Floor Call cmd sel</td>
<td>ENUM</td>
<td>FB BIT</td>
<td>1220</td>
<td></td>
<td></td>
<td></td>
<td>RW</td>
<td>FVS</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Setting of the source for the floor call command:</td>
<td>"COMMAND SOURCE LIST" see PAR 11400.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.5.4</td>
<td>11404</td>
<td>Cycle 0 cmd sel</td>
<td>ENUM</td>
<td>FB BIT</td>
<td>1216</td>
<td></td>
<td></td>
<td></td>
<td>RW</td>
<td>FVS</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Setting of the source for the zero cycle command:</td>
<td>"COMMAND SOURCE LIST" see PAR 11400.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.5.5</td>
<td>11406</td>
<td>Self Study cmd sel</td>
<td>ENUM</td>
<td>FB BIT</td>
<td>1218</td>
<td></td>
<td></td>
<td></td>
<td>RW</td>
<td>FVS</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Setting of the source for the Self Study command:</td>
<td>"COMMAND SOURCE LIST" see PAR 11400.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.5.6</td>
<td>11408</td>
<td>Jog Fwd cmd sel</td>
<td>ENUM</td>
<td>FB BIT</td>
<td>1222</td>
<td></td>
<td></td>
<td></td>
<td>RW</td>
<td>FVS</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Setting of the source for the Jog Forward command:</td>
<td>"COMMAND SOURCE LIST" see PAR 11400.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.5.7</td>
<td>11410</td>
<td>Jog Rev cmd sel</td>
<td>ENUM</td>
<td>FB BIT</td>
<td>1224</td>
<td></td>
<td></td>
<td></td>
<td>RW</td>
<td>FVS</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Setting of the source for the Jog Reverse command:</td>
<td>"COMMAND SOURCE LIST" see PAR 11400.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.5.8</td>
<td>11412</td>
<td>Realignment cmd sel</td>
<td>ENUM</td>
<td>FB BIT</td>
<td>1226</td>
<td></td>
<td></td>
<td></td>
<td>RW</td>
<td>FVS</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Setting of the source for the realignment command:</td>
<td>"COMMAND SOURCE LIST" see PAR 11400.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.5.9</td>
<td>11414</td>
<td>Fwd cmd sel</td>
<td>ENUM</td>
<td>FB BIT</td>
<td>6000</td>
<td></td>
<td></td>
<td></td>
<td>RW</td>
<td>FVS</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Setting of the source for the Forward command:</td>
<td>"COMMAND SOURCE LIST" see PAR 11400.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.5.10</td>
<td>11416</td>
<td>Rev cmd sel</td>
<td>ENUM</td>
<td>FB BIT</td>
<td>1220</td>
<td></td>
<td></td>
<td></td>
<td>RW</td>
<td>FVS</td>
</tr>
</tbody>
</table>
| | | Setting of the source for the Reverse command: | "COMMAND SOURCE LIST" see PAR 11400.
Setting of the source for the Stop command:
“COMMAND SOURCE LIST” see PAR 11400.

Setting of the source for the Maintenance command:
“COMMAND SOURCE LIST” see PAR 11400.

Setting of the source for the Battery Mode command:
“COMMAND SOURCE LIST” see PAR 11400.

Setting of the source for the Battery Run command:
“COMMAND SOURCE LIST” see PAR 11400.

Setting of the source for the Floor 0 command:
“COMMAND SOURCE LIST” see PAR 11400.

Setting of the source for the Floor 1 command:
“COMMAND SOURCE LIST” see PAR 11400.

Setting of the source for the Floor 2 command:
“COMMAND SOURCE LIST” see PAR 11400.

Setting of the source for the Floor 3 command:
“COMMAND SOURCE LIST” see PAR 11400.

Setting of the source for the Floor 4 command:
“COMMAND SOURCE LIST” see PAR 11400.
The input signals of the EPC lift application can be connected to a signal via a switch that can be used to select from among a series of options listed in the selection list. The selection list can be used to select from among the following options for each single input:

- Null or One
- Digital Inputs of the I/O expansion card
- Some internal signals (e.g. “Brake cont mon” ..)
- A selectable “LiftDecomp1” bit (e.g. “Lift decom1 B0”)
- A selectable “LiftDecomp2” bit (e.g. “Lift decom2 B0”)
- PAD15

In I/O configuration they are connected to digital inputs
In the CANopen configuration they are connected to the LiftDecomp connected in turn for instance via the variable Control word 1 to a fieldbus process channel e.g. PDC FieldBus M->S1.

The variable Control word 1 can generally be connected to another fieldbus process channel or to the drive parameter Wcomp or to PAD16.

The default configuration is shown in the table below:

<table>
<thead>
<tr>
<th>Input</th>
<th>Description</th>
<th>Default source</th>
</tr>
</thead>
<tbody>
<tr>
<td>CAM A</td>
<td>Cam A input</td>
<td>Null (*)</td>
</tr>
<tr>
<td>CAM B</td>
<td>Cam B input</td>
<td>Null (*)</td>
</tr>
<tr>
<td>Input Upper Limit</td>
<td>Upper limit input</td>
<td>Dig input 1X</td>
</tr>
<tr>
<td>Input Lower Limit</td>
<td>lower limit input</td>
<td>Dig input 2X</td>
</tr>
<tr>
<td>Input Slow Upper Limit</td>
<td>Slow upper limit input</td>
<td>Dig input 1X</td>
</tr>
<tr>
<td>Input Slow Lower Limit</td>
<td>Slow lower limit input</td>
<td>Dig input 2X</td>
</tr>
<tr>
<td>Input Contactor Feedback</td>
<td>Contactor feedback input</td>
<td>Run Cont Mon</td>
</tr>
<tr>
<td>Input Brake Feedback</td>
<td>Brake feedback input</td>
<td>Brake cont mon</td>
</tr>
<tr>
<td>Input Door Open</td>
<td>Door open input</td>
<td>Door Open Mon</td>
</tr>
<tr>
<td>Input Door Feedback</td>
<td>Door feedback input</td>
<td>Null</td>
</tr>
</tbody>
</table>

(*) CAM A and CAM B must always be selected Null and must always be connected to the freeze inputs of the encoder expansion card.

<table>
<thead>
<tr>
<th>Menu</th>
<th>Par</th>
<th>Description</th>
<th>UM</th>
<th>Type</th>
<th>FB BIT</th>
<th>Def</th>
<th>Min</th>
<th>Max</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.6.1</td>
<td>11054</td>
<td>Cam Upper Limit</td>
<td>ENUM</td>
<td>BIT</td>
<td>1</td>
<td>0</td>
<td>4</td>
<td>RW</td>
<td>FVS</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>This parameter allow to define how many floors is positioned the sensor before the upper floor.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Menu</th>
<th>Par</th>
<th>Description</th>
<th>UM</th>
<th>Type</th>
<th>FB BIT</th>
<th>Def</th>
<th>Min</th>
<th>Max</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.6.2</td>
<td>11056</td>
<td>Cam Below Limit</td>
<td>ENUM</td>
<td>BIT</td>
<td>1</td>
<td>1</td>
<td>4</td>
<td>RW</td>
<td>FVS</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>This parameter allow to define how many floors is positioned the sensor before the bottom floor.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Menu</th>
<th>Par</th>
<th>Description</th>
<th>UM</th>
<th>Type</th>
<th>FB BIT</th>
<th>Def</th>
<th>Min</th>
<th>Max</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.6.3</td>
<td>11252</td>
<td>Brake fbk A3 sel</td>
<td>ENUM</td>
<td>BIT</td>
<td>1</td>
<td>1</td>
<td>4</td>
<td>RW</td>
<td>FVS</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Selection of the alarm Brake out of service. The alarm function is disabled by default. Selection list for the enabling source:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

6000 Null
6002 Uno
12250 BO Lift decom
12252 B1 Lift decom
12254 B2 Lift decom
12256 B3 Lift decom
12258 B4 Lift decom
12260 B5 Lift decom
This parameter enables the Fast Enable Command at the Digital Input 7. The Digital Input 7 ingress must be driven by the controller. This function must be enabled in case of contactorless operation mode.

Setting of the source for the Cam A input “EPC INPUT LIST”:

- 1110 Digit input E
- 1210 Digit input 1X
- 1212 Digit input 2X
- 1214 Digit input 3X
- 1216 Digit input 4X
- 1218 Digit input 5X
- 1220 Digit input 6X
- 1222 Digit input 7X
- 1224 Digit input 8X
- 1226 Digit input 9X
- 1228 Digit input 10X
- 1230 Digit input 11X
- 1232 Digit input 12X
- 3702 Run cont mon
- 3706 Down cont mon
- 3708 Brake cont mon
- 3714 Door open mon
21 Lift decom1 B1
22 Lift decom1 B2
23 Lift decom1 B3
24 Lift decom1 B4
25 Lift decom1 B5
26 Lift decom1 B6
27 Lift decom1 B7
28 Lift decom1 B8
29 Lift decom1 B9
30 Lift decom1 B10
31 Lift decom1 B11
32 Lift decom1 B12
33 Lift decom1 B13
34 Lift decom1 B14
35 Lift decom1 B15
37 Lift decom2 B0
38 Lift decom2 B1
39 Lift decom2 B2
40 Lift decom2 B3
41 Lift decom2 B4
42 Lift decom2 B5
43 Lift decom2 B6
44 Lift decom2 B7
45 Lift decom2 B8
46 Lift decom2 B9
47 Lift decom2 B10
48 Lift decom2 B11
49 Lift decom2 B12
50 Lift decom2 B13
51 Lift decom2 B14
52 Lift decom2 B15

<table>
<thead>
<tr>
<th>Menu</th>
<th>Par</th>
<th>Description</th>
<th>UM</th>
<th>Type</th>
<th>FB BIT</th>
<th>Def</th>
<th>Min</th>
<th>Max</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.6.6</td>
<td>11502</td>
<td>Cam A sel B</td>
<td></td>
<td>ENUM</td>
<td></td>
<td>6000</td>
<td></td>
<td></td>
<td>RW</td>
<td>FVS</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Setting of the source for the Cam B input:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>“EPC INPUT LIST”</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Menu</th>
<th>Par</th>
<th>Description</th>
<th>UM</th>
<th>Type</th>
<th>FB BIT</th>
<th>Def</th>
<th>Min</th>
<th>Max</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.6.7</td>
<td>11504</td>
<td>Upper Limit sel</td>
<td></td>
<td>ENUM</td>
<td></td>
<td>1210</td>
<td></td>
<td></td>
<td>RW</td>
<td>FVS</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Setting of the source for the Upper Limit input:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>“EPC INPUT LIST”</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Menu</th>
<th>Par</th>
<th>Description</th>
<th>UM</th>
<th>Type</th>
<th>FB BIT</th>
<th>Def</th>
<th>Min</th>
<th>Max</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.6.8</td>
<td>11506</td>
<td>Lower Limit sel</td>
<td></td>
<td>ENUM</td>
<td></td>
<td>1212</td>
<td></td>
<td></td>
<td>RW</td>
<td>FVS</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Setting of the source for the Lower Limit input:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>“EPC INPUT LIST”</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Menu</th>
<th>Par</th>
<th>Description</th>
<th>UM</th>
<th>Type</th>
<th>FB BIT</th>
<th>Def</th>
<th>Min</th>
<th>Max</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.6.9</td>
<td>11508</td>
<td>Slow upper limit sel</td>
<td></td>
<td>ENUM</td>
<td></td>
<td>1210</td>
<td></td>
<td></td>
<td>RW</td>
<td>FVS</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Setting of the source for the Slow Upper Limit input:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>“EPC INPUT LIST”</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Menu</th>
<th>Par</th>
<th>Description</th>
<th>UM</th>
<th>Type</th>
<th>FB BIT</th>
<th>Def</th>
<th>Min</th>
<th>Max</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.6.10</td>
<td>11510</td>
<td>Slow Lower Limit sel</td>
<td></td>
<td>ENUM</td>
<td></td>
<td>1212</td>
<td></td>
<td></td>
<td>RW</td>
<td>FVS</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Setting of the source for the Slow Lower Limit input:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>“EPC INPUT LIST”</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Setting of the source for the Slow Lower Limit input: “EPC INPUT LIST” see PAR 11500.
Setting of the source for the counter feedback input:
“EPC INPUT LIST” see PAR 11500.

<table>
<thead>
<tr>
<th>Menu</th>
<th>Par</th>
<th>Description</th>
<th>UM</th>
<th>Type</th>
<th>FB BIT</th>
<th>Def</th>
<th>Min</th>
<th>Max</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.6.11</td>
<td>11512</td>
<td>Contactor Fbk sel</td>
<td>ENUM</td>
<td>BIT</td>
<td>16</td>
<td></td>
<td></td>
<td></td>
<td>RW</td>
<td>FVS</td>
</tr>
</tbody>
</table>

Setting of the source for the brake feedback input:
“EPC INPUT LIST” see PAR 11500.

<table>
<thead>
<tr>
<th>Menu</th>
<th>Par</th>
<th>Description</th>
<th>UM</th>
<th>Type</th>
<th>FB BIT</th>
<th>Def</th>
<th>Min</th>
<th>Max</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.6.12</td>
<td>11514</td>
<td>Brake Fbk sel</td>
<td>ENUM</td>
<td>BIT</td>
<td>17</td>
<td></td>
<td></td>
<td></td>
<td>RW</td>
<td>FVS</td>
</tr>
</tbody>
</table>

Setting of the source for the Door Open input:
“EPC INPUT LIST” see PAR 11500.

<table>
<thead>
<tr>
<th>Menu</th>
<th>Par</th>
<th>Description</th>
<th>UM</th>
<th>Type</th>
<th>FB BIT</th>
<th>Def</th>
<th>Min</th>
<th>Max</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.6.13</td>
<td>11516</td>
<td>Door Open sel</td>
<td>ENUM</td>
<td>BIT</td>
<td>18</td>
<td></td>
<td></td>
<td></td>
<td>RW</td>
<td>FVS</td>
</tr>
</tbody>
</table>

Setting of the source for the Door Feedback input:
“EPC INPUT LIST” see PAR 11500.

<table>
<thead>
<tr>
<th>Menu</th>
<th>Par</th>
<th>Description</th>
<th>UM</th>
<th>Type</th>
<th>FB BIT</th>
<th>Def</th>
<th>Min</th>
<th>Max</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.6.14</td>
<td>11518</td>
<td>Door Fbk sel</td>
<td>ENUM</td>
<td>BIT</td>
<td>6000</td>
<td></td>
<td></td>
<td></td>
<td>RW</td>
<td>FVS</td>
</tr>
</tbody>
</table>

Setting of the source for the Control Word 1 input:

0	FieldBus M->S1
1	FieldBus M->S2
2	FieldBus M->S3
3	WComp
4	PAD16

Setting of the source for the Control Word 2 input:

5	FieldBus M->S1
6	FieldBus M->S2
7	FieldBus M->S3
8	WComp
9	PAD16

Setting of the delay time for sending the slowdown signal.
The value of this parameter is used to compensate for the distance covered during the delay time between the passage of the cabin on the slowdown sensor and receipt of the decelerate command by the drive. At high speeds this distance can have significant values: e.g. with a cabin travelling at 2 m/s and a delay time of 30 ms, the distance covered and to be taken into consideration during the deceleration phase is 6 cm.

<table>
<thead>
<tr>
<th>Menu</th>
<th>Par</th>
<th>Description</th>
<th>UM</th>
<th>Type</th>
<th>FB BIT</th>
<th>Def</th>
<th>Min</th>
<th>Max</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.6.15</td>
<td>11530</td>
<td>Control Word 1</td>
<td>ENUM</td>
<td>BIT</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td>RW</td>
<td>FVS</td>
</tr>
</tbody>
</table>

Setting of the source for the Control Word 2 input:

5	FieldBus M->S1
6	FieldBus M->S2
7	FieldBus M->S3
8	WComp
9	PAD16

<table>
<thead>
<tr>
<th>Menu</th>
<th>Par</th>
<th>Description</th>
<th>UM</th>
<th>Type</th>
<th>FB BIT</th>
<th>Def</th>
<th>Min</th>
<th>Max</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.6.17</td>
<td>11534</td>
<td>Delay acq time</td>
<td>ms</td>
<td>INT</td>
<td>1000</td>
<td></td>
<td></td>
<td></td>
<td>RW</td>
<td>FVS</td>
</tr>
</tbody>
</table>

Enable encoder freeze

<table>
<thead>
<tr>
<th>Menu</th>
<th>Par</th>
<th>Description</th>
<th>UM</th>
<th>Type</th>
<th>FB BIT</th>
<th>Def</th>
<th>Min</th>
<th>Max</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.6.18</td>
<td>11538</td>
<td>Abilita Freeze</td>
<td>BIT</td>
<td>ON</td>
<td>R</td>
<td></td>
<td></td>
<td></td>
<td>RW</td>
<td>FVS</td>
</tr>
</tbody>
</table>

The status of the inputs is displayed as a hexadecimal value, see the description of "Lift control word1" for the meaning of each bit.
The status of the inputs is displayed as a hexadecimal value, see the description of "Lift control word2" for the meaning of each bit.

Command 1 Inputs

<table>
<thead>
<tr>
<th>Bit</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>EnableCmd</td>
</tr>
<tr>
<td>1</td>
<td>Start FwdCmd</td>
</tr>
<tr>
<td>2</td>
<td>Start RevCmd</td>
</tr>
<tr>
<td>3</td>
<td>JogFwdCmd</td>
</tr>
<tr>
<td>4</td>
<td>JogRevCmd</td>
</tr>
<tr>
<td>5</td>
<td>Null</td>
</tr>
<tr>
<td>6</td>
<td>ContFbk</td>
</tr>
<tr>
<td>7</td>
<td>BrakeFbk</td>
</tr>
<tr>
<td>8</td>
<td>DoorOpen</td>
</tr>
<tr>
<td>9</td>
<td>DoorFbk</td>
</tr>
<tr>
<td>10</td>
<td>EmergencyMode</td>
</tr>
<tr>
<td>11</td>
<td>EPCCycle0Cmd</td>
</tr>
<tr>
<td>12</td>
<td>UpperLimit</td>
</tr>
<tr>
<td>13</td>
<td>LowerLimit</td>
</tr>
<tr>
<td>14</td>
<td>EPCSelfStudyCmd</td>
</tr>
<tr>
<td>15</td>
<td>EPCFloorCallCmd</td>
</tr>
</tbody>
</table>

Command 2 Inputs

<table>
<thead>
<tr>
<th>Bit</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>EPCForwardCmd</td>
</tr>
<tr>
<td>1</td>
<td>EPCReverseCmd</td>
</tr>
<tr>
<td>2</td>
<td>LandASt</td>
</tr>
<tr>
<td>3</td>
<td>LandBSt</td>
</tr>
<tr>
<td>4</td>
<td>UpperLimitSt</td>
</tr>
<tr>
<td>5</td>
<td>LowerLimitSt</td>
</tr>
<tr>
<td>6</td>
<td>SlowUpperLimitSt</td>
</tr>
<tr>
<td>7</td>
<td>SlowLowerLimitSt</td>
</tr>
<tr>
<td>8</td>
<td>EPCMaintenanceCmd</td>
</tr>
<tr>
<td>9</td>
<td>EPCSelfLevelling</td>
</tr>
<tr>
<td>10</td>
<td>BatterySel</td>
</tr>
<tr>
<td>11</td>
<td>BatteryRun</td>
</tr>
<tr>
<td>12</td>
<td>Null</td>
</tr>
<tr>
<td>13</td>
<td>Null</td>
</tr>
<tr>
<td>14</td>
<td>Null</td>
</tr>
<tr>
<td>15</td>
<td>Null</td>
</tr>
</tbody>
</table>
05.07 – LIFT OUTPUTS

Lift control output signals are connected directly to the PAD parameters. See table in chapter 6.6 Outputs. The set of lift output signals is comprised in two LiftStatusWords, see chapter 6.7.

<table>
<thead>
<tr>
<th>Menu</th>
<th>Par</th>
<th>Description</th>
<th>UM</th>
<th>Type</th>
<th>FB BIT</th>
<th>Def</th>
<th>Min</th>
<th>Max</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.7.1</td>
<td>11450</td>
<td>Sel Status Word1</td>
<td>ENUM</td>
<td>0</td>
<td>RW</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>FVS</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Setting of the source for "lift status word 1":</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>0 Pad11</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1 Pad12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Menu</th>
<th>Par</th>
<th>Description</th>
<th>UM</th>
<th>Type</th>
<th>FB BIT</th>
<th>Def</th>
<th>Min</th>
<th>Max</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.7.2</td>
<td>11452</td>
<td>Sel Status Word2</td>
<td>ENUM</td>
<td>1</td>
<td>RW</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>FVS</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Setting of the source for "lift status word 2":</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>0 Pad11</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1 Pad12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Menu</th>
<th>Par</th>
<th>Description</th>
<th>UM</th>
<th>Type</th>
<th>FB BIT</th>
<th>Def</th>
<th>Min</th>
<th>Max</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.7.3</td>
<td>12030</td>
<td>Status Word 1</td>
<td>UINT32</td>
<td>500</td>
<td>R</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>FVS</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Status word 1 is displayed as a hexadecimal value, see the description of "lift status word 1” for the meaning of each bit</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Menu</th>
<th>Par</th>
<th>Description</th>
<th>UM</th>
<th>Type</th>
<th>FB BIT</th>
<th>Def</th>
<th>Min</th>
<th>Max</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.7.4</td>
<td>12214</td>
<td>Status Word 2</td>
<td>UINT32</td>
<td>0</td>
<td>R</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>FVS</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Status word 2 is displayed as a hexadecimal value, see the description of "lift status word 2” for the meaning of each bit</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

05.08 – LIFT MONITOR

This menu contains some display parameters that are useful for verifying correct control functioning.

<table>
<thead>
<tr>
<th>Menu</th>
<th>Par</th>
<th>Description</th>
<th>UM</th>
<th>Type</th>
<th>FB BIT</th>
<th>Def</th>
<th>Min</th>
<th>Max</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.8.1</td>
<td>12010</td>
<td>Calculation Mode</td>
<td>INT16</td>
<td>0</td>
<td>R</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>FVS</td>
</tr>
<tr>
<td></td>
<td></td>
<td>The calculation mode is displayed:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>0 Direct mode</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1 Mechanical data</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Menu</th>
<th>Par</th>
<th>Description</th>
<th>UM</th>
<th>Type</th>
<th>FB BIT</th>
<th>Def</th>
<th>Min</th>
<th>Max</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.8.2</td>
<td>12012</td>
<td>Actual spd reference</td>
<td>FLOAT</td>
<td>0.0000</td>
<td>R</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>FVS</td>
</tr>
<tr>
<td></td>
<td></td>
<td>The current speed reference value is displayed in m/s</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Menu</th>
<th>Par</th>
<th>Description</th>
<th>UM</th>
<th>Type</th>
<th>FB BIT</th>
<th>Def</th>
<th>Min</th>
<th>Max</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.8.3</td>
<td>12028</td>
<td>Actual spd reference</td>
<td>FLOAT</td>
<td>0.0000</td>
<td>R</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>FVS</td>
</tr>
<tr>
<td></td>
<td></td>
<td>The current speed reference value is displayed in rpm</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Menu</th>
<th>Par</th>
<th>Description</th>
<th>UM</th>
<th>Type</th>
<th>FB BIT</th>
<th>Def</th>
<th>Min</th>
<th>Max</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.8.4</td>
<td>12084</td>
<td>Rated Torque</td>
<td>FLOAT</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>R</td>
<td>FVS</td>
</tr>
<tr>
<td></td>
<td></td>
<td>The nominal torque value is displayed</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Menu</th>
<th>Par</th>
<th>Description</th>
<th>UM</th>
<th>Type</th>
<th>FB BIT</th>
<th>Def</th>
<th>Min</th>
<th>Max</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.8.5</td>
<td>12090</td>
<td>Trip Number</td>
<td>INT32</td>
<td>0.0000</td>
<td>R</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>FVS</td>
</tr>
<tr>
<td></td>
<td></td>
<td>The number of strokes performed by the control device is displayed</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
05.09 – LIFT ALARMS

The MdPlc application for ADL300 manages and generates the following alarms:

<table>
<thead>
<tr>
<th>Alarm</th>
<th>Type of EPC alarm</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plc1 fault</td>
<td>Contactor feedback</td>
<td>Contactor feedback signal error</td>
</tr>
<tr>
<td>Plc2 fault</td>
<td>Brake feedback</td>
<td>Brake feedback signal error</td>
</tr>
<tr>
<td>Plc3 fault</td>
<td>Door feedback</td>
<td>Door feedback signal error</td>
</tr>
<tr>
<td>Plc4 fault</td>
<td>Data Base Alarm</td>
<td>Restricted</td>
</tr>
<tr>
<td>Plc5 fault</td>
<td>Calc Alarm</td>
<td>Restricted</td>
</tr>
<tr>
<td>Plc6 fault</td>
<td>Speed Limit</td>
<td>Speed limit exceeded</td>
</tr>
<tr>
<td>Plc7 fault</td>
<td>Upper down Limit</td>
<td>Rephaser alarm</td>
</tr>
<tr>
<td>Plc8 fault</td>
<td>Floor Alarm</td>
<td>Floor not reached in position</td>
</tr>
</tbody>
</table>

All alarms envisage a parameter used to configure the action performed after the alarm has been activated. Action: used to set the action to be taken after the alarm has been generated as follows.

Action

Ignore
The alarm is not inserted in the alarm list, it is not inserted in the alarm log, it is not signalled on the digital outputs, the drive commands are not modified.

Warning
The alarm is inserted in the alarm list, it is inserted in the alarm log, it is signalled on the digital outputs, the First alarm data is updated, the Alarm active data is updated, the drive commands are not modified.

Disable
The alarm is inserted in the alarm list, it is inserted in the alarm log, it is signalled on the digital outputs, the First alarm data is updated, the Alarm active data is updated, the Stop command is sent and the motor is disabled and stops due to inertia.

Stop
The alarm is inserted in the alarm list, it is inserted in the alarm log, it is signalled on the digital outputs, the First alarm data is updated, the Alarm active data is updated, the Stop command is sent. The drive moves to zero speed with the maximum current possible. The drive is disabled when the Speed 0 delay signal is enabled.

Fast Stop
The alarm is inserted in the alarm list, it is inserted in the alarm log, it is signalled on the digital outputs, the First alarm data is updated, the Alarm active data is updated, the Stop command is sent. The drive moves to zero speed with the maximum current possible. The drive is disabled when the Speed 0 delay signal is enabled.

Lift Stop
The drive moves to zero speed with the set ramp time. The drive is disabled when zero speed is reached. Once the drive has been disabled the alarm is inserted in the alarm list, it is signalled to the digital outputs.

<table>
<thead>
<tr>
<th>Menu</th>
<th>Par</th>
<th>Description</th>
<th>UM</th>
<th>Type</th>
<th>FB BIT</th>
<th>Def</th>
<th>Min</th>
<th>Max</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.9.1</td>
<td>11268</td>
<td>Reset Brake Alarm</td>
<td>Short</td>
<td>0</td>
<td>***</td>
<td>***</td>
<td>RW</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

This command is a reset of the **Brake Alarm**.

Procedure to reset:
1. Go to menu 5.9 LIFT ALARMS, check if the **Brake Alarm** is ON.
2. Go to parameter 11268 **Reset Brake Alarm** (default 0).
3. The system requires a code, type the code 5313 to unblock the alarm.
4. Go to menu 5.9 LIFT ALARMS, check if the Brake Alarm is OFF.

<table>
<thead>
<tr>
<th>Menu</th>
<th>Par</th>
<th>Description</th>
<th>UM</th>
<th>Type</th>
<th>FB BIT</th>
<th>Def</th>
<th>Min</th>
<th>Max</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.9.2</td>
<td>11560</td>
<td>Floor Alarm Activity</td>
<td>INT16</td>
<td>0</td>
<td>0</td>
<td>5</td>
<td>RW</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Setting of the behaviour of the drive if the "Floor alarm" is present. This alarm indicates that the correct sequence for cams A and B cannot be found upon arrival at the floor in case of an internal positioning device.

0 Ignore
1 Warning
2 Disable
3 Stop
4 Fast Stop
5 Lift Stop

Setting of the behaviour of the drive if the "Limit" alarm is present. This alarm indicates that the rephaser limits have been exceeded (upper/lower limit).

0 Ignore
1 Warning
2 Disable
3 Stop
4 Fast Stop
5 Lift Stop

Setting of the behaviour of the drive if the Door Feedback alarm is present. This alarm indicates that feedback has not been received to confirm door opening.

0 Ignore
1 Warning
2 Disable
3 Stop
4 Fast Stop
5 Lift Stop

Setting of the behaviour of the drive if the Contactor Feedback alarm is present. This alarm indicates that feedback has not been received to confirm contactor closing.

0 Ignore
1 Warning
2 Disable
3 Stop
4 Fast Stop
5 Lift Stop

Setting of the behaviour of the drive if the Brake Feedback alarm is present. This alarm indicates that feedback has not been received to confirm brake opening/closing.

0 Ignore
1 Warning
2 Disable
3 Stop
4 Fast Stop
5 Lift Stop

Setting of the behaviour of the drive upon detecting the possible Brake Feedback alarm.

0 Ignore
1 Warning
If set to 0 the brake feedback alarm is signalled immediately. If set to 1 the possible brake feedback alarm is signalled at the end of the travel: this allows the lift car to reach the floor in case of a faulty brake status signal.

<table>
<thead>
<tr>
<th>Menu</th>
<th>Par</th>
<th>Description</th>
<th>UM</th>
<th>Type</th>
<th>FB BIT</th>
<th>Def</th>
<th>Min</th>
<th>Max</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.9.8</td>
<td>11574</td>
<td>Brake hold off</td>
<td>ms</td>
<td>INT16</td>
<td>FB BIT</td>
<td>1000</td>
<td>RW</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Setting of the delay between the signalling of the **Brake Feedback** alarm condition and activation of the alarm. If an alarm condition occurs, the drive will wait for the set time before activating the alarm. If the alarm is removed within the time set in this parameter, the drive will not activate it.

Sequence: “Brake Fail”

<table>
<thead>
<tr>
<th>Menu</th>
<th>Par</th>
<th>Description</th>
<th>UM</th>
<th>Type</th>
<th>FB BIT</th>
<th>Def</th>
<th>Min</th>
<th>Max</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.9.9</td>
<td>11576</td>
<td>Cont hold off</td>
<td>ms</td>
<td>INT16</td>
<td>FB BIT</td>
<td>1000</td>
<td>RW</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Setting of the delay between the signalling of the **Contactor Feedback** alarm condition and activation of the alarm. If an alarm condition occurs, the drive will wait for the set time before activating the alarm. If the alarm is removed within the time set in this parameter, the drive will not activate it.

Sequence: “Contact Feedback”

<table>
<thead>
<tr>
<th>Menu</th>
<th>Par</th>
<th>Description</th>
<th>UM</th>
<th>Type</th>
<th>FB BIT</th>
<th>Def</th>
<th>Min</th>
<th>Max</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.9.10</td>
<td>11578</td>
<td>Door Hold off</td>
<td>ms</td>
<td>INT16</td>
<td>FB BIT</td>
<td>1000</td>
<td>RW</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Setting of the delay between the signalling of the **Door Feedback** alarm condition and activation of the alarm. If an alarm condition occurs, the drive will wait for the set time before activating the alarm. If the alarm is removed within the time set in this parameter, the drive will not activate it.
Rephaser alarm status.

05.10 – FLOOR COMMANDS

A digital signal is sent to the Output 3708 (see menu 5.7 INPUT/OUTPUT Outputs Table) in case of synchronous motors, and to the bit 11 Lift Status Word in case of asynchronous motors, when the elevator go through each floor. In this way is possible to track by a signal the passage of the car through a floor. The duration of this signal is configurable by this parameter.

<table>
<thead>
<tr>
<th>Menu</th>
<th>Par</th>
<th>Description</th>
<th>UM</th>
<th>Type</th>
<th>FB BIT</th>
<th>Def</th>
<th>Min</th>
<th>Max</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.10.1</td>
<td>11088</td>
<td>IP Signal Time</td>
<td>ms</td>
<td>INT16</td>
<td>BIT</td>
<td>100</td>
<td>50</td>
<td>4000</td>
<td>RW</td>
<td>FVS</td>
</tr>
</tbody>
</table>

Setting of the source for the floor call command:

0 Digital Input
1 Parameter
2 Fieldbus -> MS3

<table>
<thead>
<tr>
<th>Menu</th>
<th>Par</th>
<th>Description</th>
<th>UM</th>
<th>Type</th>
<th>FB BIT</th>
<th>Def</th>
<th>Min</th>
<th>Max</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.10.2</td>
<td>11442</td>
<td>Floor Call Source</td>
<td>ENUM</td>
<td></td>
<td></td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>RW</td>
<td>FVS</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Menu</th>
<th>Par</th>
<th>Description</th>
<th>UM</th>
<th>Type</th>
<th>FB BIT</th>
<th>Def</th>
<th>Min</th>
<th>Max</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.10.3</td>
<td>11444</td>
<td>Floor call</td>
<td>UINT16</td>
<td></td>
<td></td>
<td>0</td>
<td>1</td>
<td>15</td>
<td>RW</td>
<td>FVS</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Menu</th>
<th>Par</th>
<th>Description</th>
<th>UM</th>
<th>Type</th>
<th>FB BIT</th>
<th>Def</th>
<th>Min</th>
<th>Max</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.10.4</td>
<td>12048</td>
<td>Floor Destination</td>
<td>UINT16</td>
<td></td>
<td></td>
<td>0</td>
<td></td>
<td></td>
<td>R</td>
<td>FVS</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Menu</th>
<th>Par</th>
<th>Description</th>
<th>UM</th>
<th>Type</th>
<th>FB BIT</th>
<th>Def</th>
<th>Min</th>
<th>Max</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.10.5</td>
<td>12062</td>
<td>Numero Piano</td>
<td>UINT16</td>
<td></td>
<td></td>
<td>0</td>
<td></td>
<td></td>
<td>R</td>
<td>FVS</td>
</tr>
</tbody>
</table>

05.11 – STATUS
The EPC status is displayed. The following values are possible:

- 0 ready
- 1 jog forward
- 2 jog Reverse
- 3 Zero Cycle 1 of 2
- 31 Zero Cycle 2 of 2
- 4 SelfStudy 1 of 2
- 41 SelfStudy 2 of 2
- 5 Floor Call
- 51 floor call reverse
- 52 floor call Forward
- 6 Forward
- 61 Forward command 2 of 3
- 62 Forward command 3 of 3
- 7 Reverse
- 71 reverse command 2 of 3
- 72 Forward command 3 of 3
- 8 stop normal
- 9 Revelling
- 91-191 revelling floor call reverse
- 92-192 revelling floor call forward
- 10 Battery Run
- 101 Battery Run Reverse
- 102 Battery Run Forward

Positioning device ready status is displayed. On if the following condition is true:

\[
\text{vEPCStatus} = 0 \quad \text{(ready)} \\
\text{ZeroFound} \quad \text{(zero cycle executed)} \\
\text{SelfStudyOk} \quad \text{(Self study executed)} \\
\text{sysDriveOk} = \text{ON} \quad \text{(Drive not in alarm condition)}
\]
The Self Study command is used to detect the position of the cams that indicate the position of the floors in the lift shaft. These positions are detected automatically by performing a series of movements. The following positions are stored for each floor: A Low, B Low, A High, B High. The values read in this phase are stored in the parameters contained in this menu. No direct floor call or movement commands are possible (except jog and zero cycle) unless a Self Study command has been correctly executed.

Position of cams floors 0 to 31

<table>
<thead>
<tr>
<th>n</th>
<th>B Low</th>
<th>A High</th>
</tr>
</thead>
<tbody>
<tr>
<td>Floor number</td>
<td>Position of lower edge of cam B</td>
<td>Position of upper edge of cam A</td>
</tr>
<tr>
<td>#</td>
<td>m</td>
<td>m</td>
</tr>
</tbody>
</table>

This allows to compensate the difference between the expected level for the car stop and the level that the car really stop, when the car go from the bottom to the top.

<table>
<thead>
<tr>
<th>Menu</th>
<th>Par</th>
<th>Description</th>
<th>UM</th>
<th>Type</th>
<th>FB BIT</th>
<th>Def</th>
<th>Min</th>
<th>Max</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.12.1</td>
<td>11048</td>
<td>Correction Fwd</td>
<td>m</td>
<td>FLOAT</td>
<td>0.0000</td>
<td>RW</td>
<td>FVS</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

This allows to compensate the difference between the expected level for the car stop and the level that the car really stop, when the car go from the top to the bottom.

<table>
<thead>
<tr>
<th>Menu</th>
<th>Par</th>
<th>Description</th>
<th>UM</th>
<th>Type</th>
<th>FB BIT</th>
<th>Def</th>
<th>Min</th>
<th>Max</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.12.2</td>
<td>11050</td>
<td>Correction Rev</td>
<td>m</td>
<td>FLOAT</td>
<td>0.0000</td>
<td>RW</td>
<td>FVS</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

This parameter allows the selection of the floor where the edge of the cams will be set (by par. 11074 and 11076).
By these two parameters, for each floor (selected by parameter 11066,) is possible to set the position respectively of the upper edge (A High) of Cam A and lower edge (B Low) of Cam B (see picture at page 47).

05.13—REALIGNMENT

The lift car is not mechanically integral with the motor pulley and the lift cables could, for a variety of mechanical reasons, slip on the motor pulley. This means the position of the car could change with respect to that calculated by the control unit using the encoder on the motor, causing misalignments. These can result in incorrect positioning of the car with respect to the floor. To overcome these problems the control device features the following realignment functions:

- Static realignment.
- Dynamic realignment.

This parameter enables the arrival to the selected destination floor in case the car for some reason stops before. This function enable the drive to lead the car to the selected destination floor.

Enabling of static realignment.

Enabling of dynamic realignment.

05.14—PRE-TORQUE

The Pre-torque function is helpful for ensuring smooth starts with no initial acceleration. This is done by setting the torque to a value corresponding to the load before releasing the brake. The initial torque applied to the motor and the direction of the torque that is applied can be supplied by fitting a load cell on the lift car. The signal from the load cell is acquired via an analog input and appropriately scaled if the pre-torque function is used.

If no load cell is available, a fixed torque value can be used, supplying only the direction of torque. In this case the fixed torque value is only optimised for one load condition.
Menu 5.14.1 11166 Pre-torque Enable
- **Type**: BIT
- **Default**: 0
- **Min**: 0
- **Max**: 1
- **Access**: RW
- **Mod**: F

Description: Enabling of the pre-torque function
- **0**: Off
- **1**: On

Menu 5.14.2 11168 Pre-torque Source
- **Type**: INT16
- **Default**: 11170
- **Min**: 0
- **Max**: 2
- **Access**: RW
- **Mod**: F

Description: Selection of the origin (source) of the signal to be used for the pre-torque function.

- 11170: Init pretorque
- 1600: AnalogInp1
- 1650: AnalogInp2
- 4034: FieldbusM->S2
- 4044: FieldbusM->S3
- 4054: FieldbusM->S4
- 4064: FieldbusM->S5
- 4074: FieldbusM->S6
- 4084: FieldbusM->S7
- 4094: FieldbusM->S8
- 4104: FieldbusM->S9
- 4114: FieldbusM->S10
- 4124: FieldbusM->S11
- 4134: FieldbusM->S12
- 4144: FieldbusM->S13
- 4154: FieldbusM->S14
- 4164: FieldbusM->S15
- 4174: FieldbusM->S16

Menu 5.14.3 11170 Init pre-torque
- **Type**: INT32
- **Default**: 1000
- **Access**: RW
- **Mod**: F

Description: Setting of the reference value for the pre-torque function only if the pre-torque Source parameter is set to 0. The value set in this parameter only enables the pre-torque function to be optimised for one load condition. By using the fieldbus to modify the setting of this parameter, the pre-torque function can also be optimised for different loads.

Menu 5.14.4 11172 Pre-torque ramp up
- **Type**: ms
- **Default**: 1000
- **Min**: 0
- **Max**: 10000
- **Access**: RW
- **Mod**: F

Description: Setting of the torque value ramping-up time (before the brake is released): if this parameter is set to zero the feed-forward torque value is maintained constant throughout the travel.

Menu 5.14.5 11174 PreTorque Ramp down
- **Type**: ms
- **Default**: 10000
- **Min**: 0
- **Max**: 60000
- **Access**: RW
- **Mod**: F

Description: Setting of the torque value ramping-down time: if this parameter is set to zero the feed-forward torque value is maintained constant throughout the travel.

Menu 5.14.6 11176 Pre-Torque Offset
- **Type**: FLOAT
- **Default**: 0
- **Access**: RW
- **Mod**: F

Description: Setting of the offset applied to the pre-torque function input reference.

Menu 5.14.7 11178 Pre-torque Gain
- **Type**: FLOAT
- **Default**: 1
- **Access**: RW
- **Mod**: F

Description: Setting of the gain value used to convert the value applied to the analog input into the torque value to be used in the function. This gain value is calculated automatically according to the weights and inertias that are
entered. Ideally the reference should be set so that the minimum value corresponds to the empty lift car and
the maximum value corresponds to the lift car at full load.

<table>
<thead>
<tr>
<th>Menu</th>
<th>Par</th>
<th>Description</th>
<th>UM</th>
<th>Type</th>
<th>FB BIT</th>
<th>Def</th>
<th>Min</th>
<th>Max</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.14.8</td>
<td>12034</td>
<td>Pre-torque Input</td>
<td></td>
<td>perc</td>
<td>INT32</td>
<td>0</td>
<td></td>
<td></td>
<td>ER</td>
<td>F</td>
</tr>
</tbody>
</table>

The reference value sampled at start-up is displayed.

<table>
<thead>
<tr>
<th>Menu</th>
<th>Par</th>
<th>Description</th>
<th>UM</th>
<th>Type</th>
<th>FB BIT</th>
<th>Def</th>
<th>Min</th>
<th>Max</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.14.9</td>
<td>12058</td>
<td>Torque reference</td>
<td></td>
<td>perc</td>
<td>INT32</td>
<td>0</td>
<td></td>
<td></td>
<td>ER</td>
<td>F</td>
</tr>
</tbody>
</table>

The torque reference value is displayed, given by the sum of the speed loop output and the torque feed-
forward.

<table>
<thead>
<tr>
<th>Menu</th>
<th>Par</th>
<th>Description</th>
<th>UM</th>
<th>Type</th>
<th>FB BIT</th>
<th>Def</th>
<th>Min</th>
<th>Max</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.14.10</td>
<td>12078</td>
<td>Pre-torque out</td>
<td></td>
<td>perc</td>
<td>INT32</td>
<td>0</td>
<td></td>
<td></td>
<td>ER</td>
<td>F</td>
</tr>
</tbody>
</table>

The value of the feed-forward torque output of the pre-torque function is displayed.

05.15 – SELF STUDY

The Self Study command is used to detect the height of the cams indicating the position of the floors in the
lift shaft. The control system detects these positions automatically, by performing a series of movements.

This command should only be executed when installing the control system or moving the floor identification
cams.

<table>
<thead>
<tr>
<th>Menu</th>
<th>Par</th>
<th>Description</th>
<th>UM</th>
<th>Type</th>
<th>FB BIT</th>
<th>Def</th>
<th>Min</th>
<th>Max</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.15.1</td>
<td>12152</td>
<td>Self Study Cam Stat</td>
<td></td>
<td>INT16</td>
<td></td>
<td>0</td>
<td></td>
<td></td>
<td>R</td>
<td>FVS</td>
</tr>
</tbody>
</table>

The Self Study command status is displayed

<table>
<thead>
<tr>
<th>Menu</th>
<th>Par</th>
<th>Description</th>
<th>UM</th>
<th>Type</th>
<th>FB BIT</th>
<th>Def</th>
<th>Min</th>
<th>Max</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.15.2</td>
<td>12168</td>
<td>Self Study Stat</td>
<td></td>
<td>INT16</td>
<td></td>
<td>0</td>
<td></td>
<td></td>
<td>R</td>
<td>FVS</td>
</tr>
</tbody>
</table>

The Self Study command status is displayed

<table>
<thead>
<tr>
<th>Menu</th>
<th>Par</th>
<th>Description</th>
<th>UM</th>
<th>Type</th>
<th>FB BIT</th>
<th>Def</th>
<th>Min</th>
<th>Max</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.15.3</td>
<td>12186</td>
<td>Self Study Ok</td>
<td></td>
<td>Bool</td>
<td></td>
<td>OFF</td>
<td></td>
<td></td>
<td>R</td>
<td>FVS</td>
</tr>
</tbody>
</table>

Indicates whether the Self Study command has been executed correctly. On = command executed correctly.

<table>
<thead>
<tr>
<th>Menu</th>
<th>Par</th>
<th>Description</th>
<th>UM</th>
<th>Type</th>
<th>FB BIT</th>
<th>Def</th>
<th>Min</th>
<th>Max</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.15.4</td>
<td>12188</td>
<td>Self Study On</td>
<td></td>
<td>Bool</td>
<td></td>
<td>OFF</td>
<td></td>
<td></td>
<td>R</td>
<td>FVS</td>
</tr>
</tbody>
</table>

The Self Study command execution status is displayed. On = command being executed.

05.16 – ZERO CYCLE

The zero cycle command is used to initialise the lift encoder counter and the floor counter. When the
initialisation procedure is complete, if the floor levels are operational, it executes a floor 0 positioning
operation.

The zero cycle is a sequence used to:
- Initialise the motor incremental encoder.
- Initialise the floor counter function performed by the realignment cams.

<table>
<thead>
<tr>
<th>Menu</th>
<th>Par</th>
<th>Description</th>
<th>UM</th>
<th>Type</th>
<th>FB BIT</th>
<th>Def</th>
<th>Min</th>
<th>Max</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.16.1</td>
<td>12154</td>
<td>Zero Found</td>
<td></td>
<td>Bool</td>
<td></td>
<td>OFF</td>
<td></td>
<td></td>
<td>R</td>
<td>FVS</td>
</tr>
</tbody>
</table>
Indicates whether the Self Study command has been executed correctly.
On = command executed correctly.

<table>
<thead>
<tr>
<th>Menu</th>
<th>Par</th>
<th>Description</th>
<th>UM</th>
<th>Type</th>
<th>FB BIT</th>
<th>Def</th>
<th>Min</th>
<th>Max</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.16.2</td>
<td>12170</td>
<td>Cycle Status 0</td>
<td>INT16</td>
<td>0</td>
<td>R</td>
<td>FVS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The zero cycle command status is displayed. The following values are possible:

0: check whether cams are engaged
1: movement in positive direction
2: movement in negative direction
3: Awaiting entry into cam A
4: entered cam A

05.17 – LIFT SERVICE

This menu is RESERVED TO GEFRAN SERVICE ONLY. Users are required to avoid any modification.
6. CONFIGURATION OF INPUT/OUTPUT COMMANDS

6.1 Introduction
This section describes the management of signals, input commands (control words) and output commands (status words). These signals can be used to manage the application with a lift control system using a limited number of I/Os and the processing channels of a fieldbus such as CANopen.

6.2 Fixed allocated inputs
The Enable input and inputs for reading the sensors of the floor counter cams A and B are allocated to fixed positions and cannot be reallocated:

<table>
<thead>
<tr>
<th>Signal name</th>
<th>Card</th>
<th>Terminals</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>En-Hw</td>
<td>I/O Exp</td>
<td>EN-HW</td>
<td>Digital Inputs</td>
</tr>
<tr>
<td>Cam A</td>
<td>Encoder Exp</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Cam B</td>
<td>Encoder Exp</td>
<td>1</td>
<td>3</td>
</tr>
</tbody>
</table>

6.3 Reallocatable inputs
The inputs described in the table below can be allocated at will and individually using a selector in the 5.6 LIFT INPUTS menu.
The selection list can be used to select from among the following options for each single input:

- Null or One
- Digital Inputs of the I/O expansion card
- Some internal signals (e.g. “Brake cont mon” ..)
- A selectable “LiftDecomp1” bit (e.g. “Lift decom1 B0”)
- A selectable “LiftDecomp2” bit (e.g. “Lift decom2 B0”)
- PAD15

In I/O configuration they are connected to digital inputs
In CANopen configuration they are connected to the LiftDecomp connected in turn for instance via the variable Control word 1 to a fieldbus process channel e.g. PDC FieldBus M->S1..

The variable Control word 1 can generally be connected to another fieldbus process channel or to the drive parameter Wcomp or to PAD16.

The default configuration is shown in the table below:

<table>
<thead>
<tr>
<th>Input</th>
<th>Description</th>
<th>Default source</th>
</tr>
</thead>
<tbody>
<tr>
<td>CAM A</td>
<td>Cam A input</td>
<td>Null</td>
</tr>
<tr>
<td>CAM B</td>
<td>Cam B input</td>
<td>Null</td>
</tr>
<tr>
<td>Input Upper Limit</td>
<td>Upper Limit input</td>
<td>Dig input 1X</td>
</tr>
<tr>
<td>Input Lower Limit</td>
<td>Lower Limit input</td>
<td>Dig input 2X</td>
</tr>
<tr>
<td>Input Slow Upper Limit</td>
<td>Slow Upper Limit input</td>
<td>Dig input 1X</td>
</tr>
<tr>
<td>Input Slow Lower Limit</td>
<td>Slow Lower Limit input</td>
<td>Dig input 2X</td>
</tr>
<tr>
<td>Input Contactor Feedback</td>
<td>Contactor feedback input</td>
<td>Run Cont Mon</td>
</tr>
<tr>
<td>Input Brake Feedback</td>
<td>Brake feedback input</td>
<td>Brake cont mon</td>
</tr>
<tr>
<td>Input Door Open</td>
<td>Door open input</td>
<td>Door Open Mon</td>
</tr>
<tr>
<td>Input Door Feedback</td>
<td>Door feedback input</td>
<td>Null</td>
</tr>
</tbody>
</table>
6.4 Input commands

The input commands described in the table below can be allocated at will and individually using a selector in the 5.5 LIFT COMMANDS menu.

The selection list can be used to select from among the following options for each single command:

- Null or One
- Digital Inputs of the I/O expansion card
- Some internal signals (e.g. "Brake cont mon" ..)
- A selectable "LiftDecomp1" bit (e.g. “Lift decom1 B0”)
- A selectable "LiftDecomp2" bit (e.g. “Lift decom2 B0”)
- PAD15

In I/O configuration the commands are connected to digital inputs
In CANopen configuration they are connected to the LiftDecomp connected in turn for instance via the variable Control word 2 to a fieldbus process channel e.g. PDC FieldBus M->S2.

The variable Control word 2 can generally be connected to another fieldbus process channel or to the drive parameter Wcomp or to PAD16.

The default configuration is shown in the table below:

<table>
<thead>
<tr>
<th>Input</th>
<th>Description</th>
<th>Default source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enable</td>
<td>Enable command</td>
<td>Enable digital input</td>
</tr>
<tr>
<td>Floor Call</td>
<td>Floor call command</td>
<td>Dig input 6X</td>
</tr>
<tr>
<td>Cycle 0</td>
<td>Zero cycle command</td>
<td>Dig input 4X</td>
</tr>
<tr>
<td>Self study</td>
<td>Self study command</td>
<td>Dig input 5X</td>
</tr>
<tr>
<td>Jog Fwd</td>
<td>Jog forward command</td>
<td>Dig input 7X</td>
</tr>
<tr>
<td>Jog Rev</td>
<td>Jog reverse command</td>
<td>Dig input 8X</td>
</tr>
<tr>
<td>Realignment</td>
<td>Realignment command</td>
<td>Dig input 9X</td>
</tr>
<tr>
<td>Forward</td>
<td>Forward command</td>
<td>Null</td>
</tr>
<tr>
<td>Reverse</td>
<td>Reverse command</td>
<td>Null</td>
</tr>
<tr>
<td>Stop</td>
<td>Stop command</td>
<td>Null</td>
</tr>
<tr>
<td>Maintenance</td>
<td>Maintenance command</td>
<td>Null</td>
</tr>
<tr>
<td>Battery Mode</td>
<td>Battery Mode command</td>
<td>Dig input 3X</td>
</tr>
<tr>
<td>Battery Run</td>
<td>Battery Run command</td>
<td>Dig input 3X</td>
</tr>
<tr>
<td>Floor 0</td>
<td>Floor command bit 0</td>
<td>Dig input 10X</td>
</tr>
<tr>
<td>Floor 1</td>
<td>Floor command bit 1</td>
<td>Dig input 11X</td>
</tr>
<tr>
<td>Floor 2</td>
<td>Floor command bit 2</td>
<td>Dig input 12X</td>
</tr>
<tr>
<td>Floor 3</td>
<td>Floor command bit 3</td>
<td>Null</td>
</tr>
</tbody>
</table>
6.5 Example of Control Word Composition

A signal can generally be connected to a normal or expanded digital input, some internal signals and a bit of the Lift Decomp word bit. With the EPC application, two Decomp word bits are used:

- Control word 1 is the input of decomp lift word bit 1
- Control word 2 is the input of decomp lift word bit 2

Selection of the origin (source) of the word to be used for "Decomp word" block decoding. Each bit that is part of the word to be decoded is associated with an output channel of the "Decomp work" block. The variables that can be used for this function can be selected from among those listed in the "L_WDECOMP" selection list.

This control word in the example is connected to a PDC process channel so that:

- [1530] Control Word 1 = FieldBus M→S1
- [1532] Control Word 2 = FieldBus M→S2

In some specific cases control word 1 or 2 can be connected to the “WComp” drive parameter or to a PAD parameter (PAD16).

In this example the single bits of the two control words have the following meaning:

CONTROL WORD1 (SelLiftWdecInp):

<table>
<thead>
<tr>
<th>Bit</th>
<th>Description</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>CAM A</td>
<td>Cam A input</td>
</tr>
<tr>
<td>1</td>
<td>CAM B</td>
<td>Cam B input</td>
</tr>
<tr>
<td>2</td>
<td>Input Upper Limit</td>
<td>Upper Limit input</td>
</tr>
<tr>
<td>3</td>
<td>Input Lower Limit</td>
<td>Lower Limit input</td>
</tr>
<tr>
<td>4</td>
<td>Input Slow Upper Limit</td>
<td>Slow Upper Limit input</td>
</tr>
<tr>
<td>5</td>
<td>Input Slow Lower Limit</td>
<td>Slow Lower Limit input</td>
</tr>
<tr>
<td>6</td>
<td>Free</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Free</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Free</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Free</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Free</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Free</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>Free</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>Free</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>Free</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>Free</td>
<td></td>
</tr>
</tbody>
</table>

The Master Can composes and manages the single bits as appropriate.
CONTROL WORD2 (SelLiftWdecInp1):

<table>
<thead>
<tr>
<th>Bit</th>
<th>Description</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Enable</td>
<td>Enable command</td>
</tr>
<tr>
<td>1</td>
<td>Floor Call</td>
<td>Floor call command</td>
</tr>
<tr>
<td>2</td>
<td>Cycle 0</td>
<td>Zero cycle command</td>
</tr>
<tr>
<td>3</td>
<td>Self study</td>
<td>Self study command</td>
</tr>
<tr>
<td>4</td>
<td>Jog Fwd</td>
<td>Jog forward command</td>
</tr>
<tr>
<td>5</td>
<td>Jog Rev</td>
<td>Jog reverse command</td>
</tr>
<tr>
<td>6</td>
<td>Realignment</td>
<td>Realignment command</td>
</tr>
<tr>
<td>7</td>
<td>Forward</td>
<td>Forward command</td>
</tr>
<tr>
<td>8</td>
<td>Reverse</td>
<td>Reverse command</td>
</tr>
<tr>
<td>9</td>
<td>Stop</td>
<td>Stop command</td>
</tr>
<tr>
<td>10</td>
<td>Maintenance</td>
<td>Maintenance command</td>
</tr>
<tr>
<td>11</td>
<td>Battery Mode-Run</td>
<td>Battery Mode-Run command</td>
</tr>
<tr>
<td>12</td>
<td>Floor 0</td>
<td>Floor command bit 0</td>
</tr>
<tr>
<td>13</td>
<td>Floor 1</td>
<td>Floor command bit 1</td>
</tr>
<tr>
<td>14</td>
<td>Floor 2</td>
<td>Floor command bit 2</td>
</tr>
<tr>
<td>15</td>
<td>Floor 3</td>
<td>Floor command bit 3</td>
</tr>
</tbody>
</table>

Floor command

<table>
<thead>
<tr>
<th>Floor</th>
<th>Bit 3</th>
<th>Bit 2</th>
<th>Bit 1</th>
<th>Bit 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Floor 0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Floor 1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Floor 2</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Floor 3</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Floor 4</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Floor 5</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Floor 6</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Floor 7</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Floor 8</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Floor 9</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Floor 10</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Floor 11</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Floor 12</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Floor 13</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Floor 14</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Floor 15</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

6.6 Outputs

Lift control output signals are connected directly to the PAD parameters according to the table below:

<table>
<thead>
<tr>
<th>Par.</th>
<th>signal</th>
<th>description</th>
</tr>
</thead>
<tbody>
<tr>
<td>PAD1</td>
<td>LiftEnable</td>
<td>Lift enable command</td>
</tr>
<tr>
<td>PAD2</td>
<td>RunCont</td>
<td>Close contactor command</td>
</tr>
<tr>
<td>PAD3</td>
<td>UpCont</td>
<td>Up contactor command</td>
</tr>
<tr>
<td>PAD4</td>
<td>DownCont</td>
<td>Down contactor command</td>
</tr>
<tr>
<td>PAD5</td>
<td>BrakeCont</td>
<td>Brake command</td>
</tr>
<tr>
<td>PAD6</td>
<td>LiftDcBrake</td>
<td>DC brake function command</td>
</tr>
<tr>
<td>PAD7</td>
<td>Brake2</td>
<td>Brake control signal</td>
</tr>
<tr>
<td>PAD8</td>
<td>WdecompOut</td>
<td>Word decomp output</td>
</tr>
<tr>
<td>PAD9</td>
<td>LiftStart</td>
<td>Lift start command</td>
</tr>
<tr>
<td>PAD10</td>
<td>Floor Number</td>
<td>Floor number</td>
</tr>
<tr>
<td>PAD11</td>
<td>Lift status word1</td>
<td>Contains the copy of StatusWord1 (can be selected using SelLiftStatWord1)</td>
</tr>
<tr>
<td>PAD12</td>
<td>Lift status word2</td>
<td>Contains the copy of StatusWord2 (can be selected using SelLiftStatWord2)</td>
</tr>
<tr>
<td>PAD13</td>
<td>DestFloor</td>
<td>Destination</td>
</tr>
<tr>
<td>PAD14</td>
<td>Ramp Down</td>
<td>Ramp down</td>
</tr>
<tr>
<td>PAD15</td>
<td>InputVariable</td>
<td>Connected to the input selector</td>
</tr>
<tr>
<td>PAD16</td>
<td>LiftWdecomp</td>
<td>Connected to the LiftWDecomp selector</td>
</tr>
</tbody>
</table>

In this mode they can be accessed from the selection lists and thus easily used to configure the relay and digital outputs of the drive. (see the PADS menu for configuration).
The set of lift output signals is comprised in two LiftStatusWords. A selector enables the two status words to be connected to Pad 11 or 12 or to fieldbus S -> M1 or S -> M2.

6.7 Status Word Composition

The set of lift output signals has been composed in two LiftStatusWords, connected respectively to Pad 11 and Pad 12. Possible selections also include the process channels of fieldbus S -> M1 or S -> M2.

Lift Status word 1:

<table>
<thead>
<tr>
<th>Bit</th>
<th>Description</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>LiftEnable</td>
<td>Lift enable command.</td>
</tr>
<tr>
<td>1</td>
<td>RunCont</td>
<td>Run command contactor</td>
</tr>
<tr>
<td>2</td>
<td>UpCont</td>
<td>Up command contactor</td>
</tr>
<tr>
<td>3</td>
<td>DownCont</td>
<td>Down command contactor</td>
</tr>
<tr>
<td>4</td>
<td>BrakeCont</td>
<td>Brake command contactor</td>
</tr>
<tr>
<td>5</td>
<td>LiftDcBrake</td>
<td>DC brake function command (firmware)</td>
</tr>
<tr>
<td>6</td>
<td>Brake2</td>
<td>Brake control signal (See sequences)</td>
</tr>
<tr>
<td>7</td>
<td>DoorOpen</td>
<td>Open door command</td>
</tr>
<tr>
<td>8</td>
<td>Drive OK</td>
<td>Indicates drive not in alarm condition</td>
</tr>
<tr>
<td>9</td>
<td>SpeedIsZero</td>
<td>Indicates speed below the 0 threshold</td>
</tr>
<tr>
<td>10</td>
<td>SpeedRefIsZero</td>
<td>Indicates speed reference below the 0 threshold</td>
</tr>
<tr>
<td>11</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Lift Status word 2:

<table>
<thead>
<tr>
<th>Bit</th>
<th>Description</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Floor Command</td>
<td>Floor call command being executed</td>
</tr>
<tr>
<td>1</td>
<td>SelfStudyOn</td>
<td>Self study command being executed</td>
</tr>
<tr>
<td>2</td>
<td>SelfStudyOk</td>
<td>Self study command OK</td>
</tr>
<tr>
<td>3</td>
<td>StartCycle0</td>
<td>Zero cycle command being executed</td>
</tr>
<tr>
<td>4</td>
<td>ZeroFound</td>
<td>Zero cycle command OK</td>
</tr>
<tr>
<td>5</td>
<td>PosReady</td>
<td>Positioning device ready</td>
</tr>
<tr>
<td>6</td>
<td>Battery Sel</td>
<td>Battery fwd</td>
</tr>
<tr>
<td>7</td>
<td>Battery Run</td>
<td>Battery rev</td>
</tr>
<tr>
<td>8</td>
<td>RESERVED</td>
<td>Reserved for next stop</td>
</tr>
<tr>
<td>9</td>
<td>RESERVED</td>
<td>Reserved for battery mode run</td>
</tr>
<tr>
<td>10</td>
<td>AtFloor</td>
<td>Lift at floor</td>
</tr>
<tr>
<td>11</td>
<td>PassingBP1</td>
<td>Passing Brake Point</td>
</tr>
<tr>
<td>12</td>
<td>PassingBP2</td>
<td>Passing Brake Point</td>
</tr>
<tr>
<td>13</td>
<td>UpContMon</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>DownContMon</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>DoorOpenMon</td>
<td></td>
</tr>
</tbody>
</table>
7. REMOTE CONTROL OR VIA I/O

7.1 Introduction
This section describes how to configure the digital inputs and outputs of the ADL300 drive with EPC application. It includes an example of I/O connection and another of how to send command signals via fieldbus.
The source of each signal can, however, always be selected separately using parameters, thus also making different configurations possible (e.g. Menu 05.05 "Lift Command" or 05.06 "Lift Inputs").

7.2 Example of Control via Digital I/Os

The table below shows the factory settings for this example:

<table>
<thead>
<tr>
<th>Commands</th>
<th>Description</th>
<th>Default source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enable</td>
<td>Enable command</td>
<td>Enable digital input</td>
</tr>
<tr>
<td>Floor Call</td>
<td>Floor call command</td>
<td>Dig input 6X</td>
</tr>
<tr>
<td>Cycle 0</td>
<td>Zero cycle command</td>
<td>Dig input 4X</td>
</tr>
<tr>
<td>Self study</td>
<td>Self study command</td>
<td>Dig input 5X</td>
</tr>
<tr>
<td>Jog Fwd</td>
<td>Jog forward command</td>
<td>Dig input 7X</td>
</tr>
<tr>
<td>Jog Rev</td>
<td>Jog reverse command</td>
<td>Dig input 8X</td>
</tr>
<tr>
<td>Realignment</td>
<td>Realignment command</td>
<td>Dig input 9X</td>
</tr>
<tr>
<td>Forward</td>
<td>Forward command</td>
<td>Null</td>
</tr>
<tr>
<td>Reverse</td>
<td>Reverse command</td>
<td>Null</td>
</tr>
<tr>
<td>Stop</td>
<td>Stop command</td>
<td>Null</td>
</tr>
<tr>
<td>Maintenance</td>
<td>Maintenance command</td>
<td>Null</td>
</tr>
</tbody>
</table>
Battery Mode

<table>
<thead>
<tr>
<th>Battery Mode command</th>
<th>Dig input 3X</th>
</tr>
</thead>
<tbody>
<tr>
<td>Battery Run</td>
<td>Dig input 3X</td>
</tr>
<tr>
<td>Floor 0</td>
<td>Dig input 10X</td>
</tr>
<tr>
<td>Floor 1</td>
<td>Dig input 11X</td>
</tr>
<tr>
<td>Floor 2</td>
<td>Dig input 12X</td>
</tr>
<tr>
<td>Floor 3</td>
<td>Null</td>
</tr>
<tr>
<td>Floor 4</td>
<td>Null</td>
</tr>
</tbody>
</table>

Inputs:

<table>
<thead>
<tr>
<th>Input</th>
<th>Description</th>
<th>Default source</th>
</tr>
</thead>
<tbody>
<tr>
<td>CAM A</td>
<td>Cam A input</td>
<td>Null</td>
</tr>
<tr>
<td>CAM B</td>
<td>Cam B input</td>
<td>Null</td>
</tr>
<tr>
<td>Input Upper Limit</td>
<td>Upper Limit input</td>
<td>Dig input 1X</td>
</tr>
<tr>
<td>Input Lower Limit</td>
<td>Lower Limit input</td>
<td>Dig input 2X</td>
</tr>
<tr>
<td>Input Slow Upper Limit</td>
<td>Slow Upper Limit input</td>
<td>Dig input 1X</td>
</tr>
<tr>
<td>Input Slow Lower Limit</td>
<td>Slow Lower Limit input</td>
<td>Dig input 2X</td>
</tr>
<tr>
<td>Input Contactor Feedback</td>
<td>Contactor feedback input</td>
<td>Run Cont Mon</td>
</tr>
<tr>
<td>Input Brake Feedback</td>
<td>Brake feedback input</td>
<td>Brake cont mon</td>
</tr>
<tr>
<td>Input Door Open</td>
<td>Door open input</td>
<td>Door Open Mon</td>
</tr>
<tr>
<td>Input Door Feedback</td>
<td>Door feedback input</td>
<td>Null</td>
</tr>
</tbody>
</table>

7.2.1 Connection of card EXP–D16R4-ADL:

This example refers to the factory settings as described above.

7.2.2 Connection of card EXP–DE-IR1F2-ADL

Connection in case of a digital encoder, normally used in asynchronous mode. The inputs connected to cam A and B must be allocated to fixed positions!
7.2.3 Connection of card EXP–SESC-IR1F2-ADL

Connection in case of a digital encoder, normally used in synchronous mode. The inputs connected to cam A and B must be allocated to fixed positions!
7.3 Example of remote control via CANopen

7.3.1 Connection of card EXP–D8R4-ADL:

This example refers to a configuration using four digital inputs.

```
<table>
<thead>
<tr>
<th></th>
<th>T3</th>
<th></th>
<th>T1</th>
</tr>
</thead>
<tbody>
<tr>
<td>EN</td>
<td>HW</td>
<td>CM</td>
<td>OV</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
</tr>
<tr>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
</tr>
</tbody>
</table>
```

```
<table>
<thead>
<tr>
<th>Lift commands</th>
<th>Door open</th>
<th>Run contactor</th>
<th>Brake contactor</th>
<th>Drive OK</th>
<th>Battery Mode/Run</th>
<th>Upper Limit</th>
<th>Lower Limit</th>
<th>Enable</th>
</tr>
</thead>
<tbody>
<tr>
<td>80</td>
<td>40</td>
<td>20</td>
<td>10</td>
<td>1</td>
<td>8</td>
<td>7</td>
<td>6</td>
<td>5</td>
</tr>
<tr>
<td>56</td>
<td>51</td>
<td>52</td>
<td>53</td>
<td>54</td>
<td>55</td>
<td>56</td>
<td>57</td>
<td></td>
</tr>
</tbody>
</table>
```
8. APPENDIX

8.1 Appendix A: floor cam

Introduction
Method for obtaining a "spread encoder" using two sensors and a cam.

Sensors

Cam

Position 1