Inverter vettoriale ad orientamento di campo

ADV200

.... Descrizione delle funzioni e lista parametri
Informazioni riguardo a questo manuale

Questo manuale contiene informazioni dettagliate delle funzioni e la descrizione dei parametri. Le informazioni relative all’installazione meccanica, sicurezza, collegamento elettrico e la rapida messa in servizio sono presenti nel manuale Guida Rapida.

Nel CD fornito con il drive sono presenti tutti i manuali in formato elettronico (inclusi quelli delle espansioni e bus di campo).

Versione software
Questo manuale è aggiornato alla versione software V 4.X.0. Variazioni del numero inserito al posto della “X” non hanno influsso sulla funzionalità dell’apparecchio. Il numero di identificazione della versione software può essere letto sulla targhetta del drive oppure può essere verificato con il parametro Ver rel firmware- PAR 490, menu 2.5.

Informazioni generali

Nota !
I termini “Inverter”, “Regolatore” e “Drive” sono talvolta intercambiati nell’industria. In questo documento verrà utilizzato il termine “Drive”.

Prima dell’utilizzo del prodotto, leggere attentamente il capitolo relativo alle istruzioni di sicurezza (nel manuale Guida Rapida).
Durante il suo periodo di funzionamento conservate il manuale in un luogo sicuro e a disposizione del personale tecnico.
Gefran spa si riserva la facoltà di apportare modifiche e varianti a prodotti, dati, dimensioni, in qualsiasi momento senza obbligo di preavviso.
I dati indicati servono unicamente alla descrizione del prodotto e non devono essere intesi come proprietà assicurate nel senso legale.

Vi ringraziamo per avere scelto questo prodotto Gefran.
Saremo lieti di ricevere all’indirizzo e-mail: techdoc@gefran.com qualsiasi informazione che possa aiutarci a migliorare questo manuale.
Tutti i diritti riservati.
Sommario

Informazioni riguardo a questo manuale... 2
Simboli utilizzati nel manuale... 4

A - Programmazione ... 5
 A.1 Visualizzazione Menu... 5
 A.2 Programmazione dei segnali analogici e digitali di ingresso ai "blocci funzione" .. 5
 A.3 Modalità di interconnessioni delle variabili .. 5

B - Descrizione dei parametri e funzioni (lista Esperto)... 7
Legenda.. 7
 1 – MONITOR.. 8
 2 – INFORMAZIONI DRIVE .. 11
 3 – STARTUP GUIDATO ... 14
 4 – CONFIG DRIVE .. 15
 5 – RIFERIMENTI.. 21
 6 – RAMPE.. 26
 7 – MULTI RIFERIMENTI... 30
 8 – MOTOPOTENZIOMETRO .. 33
 9 – FUNZIONE JOG.. 39
 10 – FUNZIONE MONITOR ... 40
 11 – COMANDI.. 44
 12 – INGRESSI DIGITALI... 52
 13 – USCITE DIGITALI... 54
 14 – INGRESSI ANALOGICI.. 56
 15 – USCITE ANALOGICHE .. 64
 16 – DATI MOTORE ... 69
 17 – CONFIG ENCODER... 73
 18 – GUAD REG VELOCITA’... 80
 19 – GUAD REGOLATORI ... 83
 20 – CONFIG COPPIA... 86
 21 – PARAMETRI VF .. 90
 22 – FUNZIONI .. 95
 22.1 - FUNZIONI/RAPPORTO VELOC... 96
 22.2 - FUNZIONI/DROOP .. 96
 22.3 - FUNZIONI/COMPENS INERZIA ... 97
 22.4 - FUNZIONI/FRENATURA DC .. 98
 22.5 - FUNZIONI/SOVRACC MOTORE .. 101
 22.6 - FUNZIONI/SOVRACC RES FRE ... 102
 22.7 - FUNZIONI/DOPOPIO SET PAR ... 103
 22.8 - FUNZIONI/SOVRACC VELOC .. 104
 22.9 - FUNZIONI/POWER LOSS .. 107
 22.10 - FUNZIONI/COMPARAZIONE .. 114
 22.11 - FUNZIONI/PADS .. 115
 22.12 - FUNZIONI/CONTROLLO VDC .. 116
 22.13 - FUNZIONI/CONTROLLO FRENO .. 117
 22.14 - FUNZIONI/FATTORE DIMENS ... 118
 23 – COMUNICAZIONE .. 122
 23.1 - COMUNICAZIONE/RS485 .. 122
 23.2 - COMUNICAZIONE/CONF BUS CAMPO ... 123
 23.3 - COMUNICAZIONE/BUS CAMPO M2S .. 124
 23.4 - COMUNICAZIONE/BUS CAMPO S2M .. 127
 23.5 - COMUNICAZIONE/COMP WORD .. 129
 23.6 - COMUNICAZIONE/DECOMP WORD .. 130
 24 – CONGI ALLARMI .. 132
 25 – STORICO ALLARMI ... 141
 26 - APPLICAZIONI.. 141

PARAGRAFI INSERITI NELLE LISTE DI SELEZIONE NON VISIBILI SUL TASTIERINO ... 142

C - LISTE DI SELEZIONE .. 149
 L_ANOUT .. 149
 L_CMP ... 149
 L_DIGSEL1 ... 149
 L_DIGSEL2 ... 150
 L_DIGSEL3 ... 150
 L_FBS2M ... 150
 L_LIM ... 151
 L_MLRREF ... 151
 L_NLIM ... 152
 L_PLM ... 152
 L_REF ... 152
 L_SCOPE ... 152
Simboli utilizzati nel manuale

Avvertenza
Indica una procedura oppure una condizione di funzionamento che, se non osservate, possono essere causa di morte o danni a persone.

Attenzione
Indica una procedura oppure una condizione di funzionamento che, se non osservate, possono causare il danneggiamento o la distruzione dell’apparecchiatura.

Importante
Indica che la presenza di scariche elettrostatiche potrebbe danneggiare l’apparecchiatura. Quando si maneggiano le schede, indossare sempre un braccialetto con messa a terra.

Nota!
Richiama l’attenzione a particolari procedure e condizioni di funzionamento.
A - Programmazione

A.1 Visualizzazione Menu

La visualizzazione del menu di programmazione è DISPONIBILE in due modalità selezionate dal parametro Modalità accesso (menu 04 - CONFIGURAZ DRIVE):

- **Facile** (default) vengono visualizzati soltanto i parametri principali.
- **Esperto** vengono visualizzati tutti i parametri.

A.2 Programmazione dei segnali analogici e digitali di ingresso ai “blocchi funzione”

I segnali, le variabili ed i parametri di ogni singolo “blocchi funzione” del drive, vengono interconnessi tra loro per realizzare le configurazioni ed i controlli all’interno del sistema di regolazione.

La gestione e la modifica dei segnali, variabili e parametri può essere effettuata tramite tastiera, via seriale tramite configuratore per PC o mediante programmazione da bus di campo.

La modalità di programmazione avviene secondo la logica sotto riportata:

Sorg (sorgente; es.: **Sorg riferim rampa 1**, PAR: 610)

Si definisce con tale denominazione la provenienza dell’ingresso al blocco funzione, ovvero il segnale da elaborare all’interno del blocco funzione stesso.

Le diverse configurazioni sono definite nelle relative liste di selezione.

Config (configurazione; es.: **Conf iniziale Mpot**, PAR: 880)

Si definisce con tale denominazione l’impostazione del parametro e l’azione che effettuerà sul blocco funzione.

Per esempio: tempi di Rampa, regolazione dei riferimenti interni, etc…

Mon (visualizzazione; es.: **Mon riferim rampa 1**, PAR: 620)

Si definisce con tale denominazione la variabile in uscita al blocco funzione, risultante dalle elaborazioni effettuate nel blocco stesso.

Blocco funzione

A.3 Modalità di interconnessioni delle variabili

La sorgente (Sorg) permette di assegnare il segnale di controllo desiderato all’ingresso del blocco funzione

Tale operazione viene realizzata mediante apposite liste di selezione.

La provenienza dei segnali di controllo può essere da:

1 – **Morsetto fisico**

I segnali analogici e digitali provengono dalla morsettiera della scheda di regolazione e/o da quelle delle schede di espansione.

2 – **Variabili interne al drive**

Variabili interne al sistema di regolazione del drive, provenienti da elaborazioni dei “blocchi funzione”, effettuate tramite tastiera, configuratore da PC o bus di campo.
Esempio pratico
Gli esempi riportati di seguito indicano con quale filosofia e modalità possano essere effettuate all’interno dei singoli “blocchi funzione” operazioni più o meno complesse, il cui risultato rappresenterà l’uscita del blocco stesso.

Esempio: modifica della sorgente del Riferimento di Velocità
Il riferimento principale del drive (nella configurazione di default) Monitor rif rampa 1 (PAR: 620) viene generato dall’uscita del blocco funzione “Impost valore rampa Block” ed ha come sorgente di default il segnale Mon ing analogico 1 (PAR: 1500), proveniente dall’uscita del blocco funzione “Blocco Ingresso Analogico 1”, in questo caso riferito all’ingresso analogico 1 della morsettiera dei segnali.

Per modificare la sorgente del riferimento da ingresso analogico ad un riferimento digitale interno al drive bisogna cambiare il segnale in ingresso al “Blocco setpoint Rampa”, portandosi sul parametro Sorg riferim rampa 1 (PAR: 610) ed impostando un nuovo riferimento tra quelli elencati nella lista di selezione L_MLTREF, ad esempio Rif digitale rampa 1 (PAR: 600).

Esempio: inversione del segnale del riferimento analogico
Per effettuare l’inversione del segnale in uscita al blocco dell’ingresso analogico 1 “Blocco Ingresso Analogico 1” è necessario modificare il valore del parametro Sorg segno ing an 1 (PAR: 1526), di default impostato su Zero (nessuna operazione) e selezionare la sorgente del segnale di comando tra quelle elencate nella lista di selezione L_DIGSEL 2, ad esempio Mon ing digitali X, Uno (funzione sempre attiva), etc..

Si nota quindi dagli schemi sopra riportati, la filosofia di elaborazione interna dei singoli “blocchi funzione” ed il risultato di tali modifiche sugli altri “blocchi funzione” interconnessi.

Nota!
Si descrivono brevemente le funzioni degli altri parametri riportati nei blocchi funzione e non contemplati per le modifiche di esempio.

Il parametro Sorg alt sel ing an1 (PAR: 1528) permette di selezionare un riferimento alternativo per l’uscita Mon ing analogico 1 (PAR: 1500).
Il parametro Val alt ing an1 (PAR: 1524) determina il valore del riferimento alternativo per l’uscita Mon ing analogico 1 (PAR: 1500).
Il parametro Sorg inv rif rampa (PAR: 616) permette di selezionare la sorgente per il comando di inversione dell’uscita del blocco funzione di “Impost valore rampa”.
Il segnale risultante in uscita dal blocco di “Impost valore rampa” sarà visualizzato nel parametro Monitor rif rampa 1 (PAR: 620).
B - Descrizione dei parametri e funzioni (lista Esperto)

Legenda

0 Indicizzazione del menu e parametro
1 Identificativo parametro
2 Descrizione del parametro
3 UM: Unità di misura
4 Tipo del parametro
5 Formato del dato scambiato sul Fieldbus (16BIT, 32BIT)
6 Valore di default
7 Valore minimo
8 Valore massimo
9 CALCF Valore calcolato in numero a virgola mobile
10 CALCI Valore calcolato in numero intero
11 SIZE Valore dipendente dalla taglia del drive

Indicizzazione del menu e parametro

Identificativo parametro

Descrizione del parametro

Tipo del parametro

BIT Booleano, da modbus visto come 16 bits
ENUM Lista di selezione, da modbus visto come 16 bits
FLOAT Real, da modbus visto come 32 bits
FBM2SIPA Interi senza segno 16 bit. Accettati solo PAR di parametri esistenti.
FBS2MIPA Interi senza segno 16 bit. Accettati solo PAR di parametri esistenti.
INT16 Interi con segno 16 bits, da modbus visto come 16 bits
INT32 Interi con segno 32 bits, da modbus visto come 32 bits
LINK Lista di selezione, da modbus visto come 16 bits
L_VREF (Lista di selezione) [*]
NEW Intero con segno 16 bits, da modbus visto come 16 bits
NEW2 Intero con segno 32 bits, da modbus visto come 32 bits

Formato del dato scambiato sul Fieldbus (16BIT, 32BIT)

Valore di default

CALCF Valore calcolato in numero a virgola mobile
CALCI Valore calcolato in numero intero
SIZE Valore dipendente dalla taglia del drive

Accessibilità:

E Expert (esperto)
R Read (lettura)
S Size (dipende dalla taglia)
W Write (scrittura)
Z parametri modificabili SOLO con drive disabilitato

Dispone della modalità di regolazione:

V = Controllo V/f
S = Vett Flusso OL
F = Vett Flusso CL

Liste di selezione:
I parametri formati ”... src” sono collegati a una lista di selezione.
E’ possibile selezionare, nella lista indicata, l’origine (sorgente) del segnale che comanderà il parametro.
Le liste sono indicate nel capitolo C di questo manuale.

1 - MONITOR (Menu livello 1)

1.1 250 Corrente di uscita A FLOAT 16/32 0.0 0.0 0.0 R FVS
1.2 252 Tensione di uscita V FLOAT 16/32 0.0 0.0 0.0 R FVS

22.1 - FUNZIONI/RAPPORTO VELOC (Menu livello 2)

22.1.1 3000 Rapp dig velocità perc INT16 16/32 100 CALCI CALCI ERW FVS
22.1.2 3002 Sorg rapp velocità LINK 16/32 3000 0 16384 ERW FVS

L_VREF (Lista di selezione) [*]
1 – MONITOR

Nel menu MONITOR vengono visualizzati i valori misurati delle grandezze e dei parametri di funzionamento del drive.

<table>
<thead>
<tr>
<th>Menu</th>
<th>PAR</th>
<th>Descrizione</th>
<th>UM</th>
<th>Tipo</th>
<th>FB</th>
<th>BIT</th>
<th>Def</th>
<th>Min</th>
<th>Max</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>250</td>
<td>Corrente di uscita</td>
<td>A</td>
<td>FLOAT</td>
<td>16/32</td>
<td></td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>R</td>
<td>FVS</td>
</tr>
</tbody>
</table>

Visualizzazione della corrente d’uscita del drive.

<table>
<thead>
<tr>
<th>Menu</th>
<th>PAR</th>
<th>Descrizione</th>
<th>UM</th>
<th>Tipo</th>
<th>FB</th>
<th>BIT</th>
<th>Def</th>
<th>Min</th>
<th>Max</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.2</td>
<td>252</td>
<td>Tensione di uscita</td>
<td>V</td>
<td>FLOAT</td>
<td>16/32</td>
<td></td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>R</td>
<td>FVS</td>
</tr>
</tbody>
</table>

Visualizzazione della tensione concatenata d’uscita del drive.

<table>
<thead>
<tr>
<th>Menu</th>
<th>PAR</th>
<th>Descrizione</th>
<th>UM</th>
<th>Tipo</th>
<th>FB</th>
<th>BIT</th>
<th>Def</th>
<th>Min</th>
<th>Max</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.3</td>
<td>254</td>
<td>Frequenza di uscita</td>
<td>Hz</td>
<td>FLOAT</td>
<td>16/32</td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>R</td>
<td>FVS</td>
</tr>
</tbody>
</table>

Visualizzazione della frequenza d’uscita del drive.

<table>
<thead>
<tr>
<th>Menu</th>
<th>PAR</th>
<th>Descrizione</th>
<th>UM</th>
<th>Tipo</th>
<th>FB</th>
<th>BIT</th>
<th>Def</th>
<th>Min</th>
<th>Max</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.4</td>
<td>256</td>
<td>Potenza di uscita</td>
<td>kW</td>
<td>FLOAT</td>
<td>16/32</td>
<td></td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>R</td>
<td>FVS</td>
</tr>
</tbody>
</table>

Visualizzazione della potenza d’uscita del drive.

<table>
<thead>
<tr>
<th>Menu</th>
<th>PAR</th>
<th>Descrizione</th>
<th>UM</th>
<th>Tipo</th>
<th>FB</th>
<th>BIT</th>
<th>Def</th>
<th>Min</th>
<th>Max</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.5</td>
<td>628</td>
<td>Imposta valore rampa</td>
<td>rpm</td>
<td>INT16</td>
<td>16/32</td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>R</td>
<td>FVS</td>
</tr>
</tbody>
</table>

Visualizzazione del riferimento di rampa. E’ il valore di velocità che deve raggiungere il drive al termine della rampa.

<table>
<thead>
<tr>
<th>Menu</th>
<th>PAR</th>
<th>Descrizione</th>
<th>UM</th>
<th>Tipo</th>
<th>FB</th>
<th>BIT</th>
<th>Def</th>
<th>Min</th>
<th>Max</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.6</td>
<td>664</td>
<td>Setpoint velocità</td>
<td>rpm</td>
<td>INT16</td>
<td>16/32</td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>R</td>
<td>FVS</td>
</tr>
</tbody>
</table>

Visualizzazione del riferimento di velocità. E’ il valore rilevato all’uscita del circuito del riferimento di velocità.

<table>
<thead>
<tr>
<th>Menu</th>
<th>PAR</th>
<th>Descrizione</th>
<th>UM</th>
<th>Tipo</th>
<th>FB</th>
<th>BIT</th>
<th>Def</th>
<th>Min</th>
<th>Max</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.7</td>
<td>260</td>
<td>Velocità motore</td>
<td>rpm</td>
<td>INT16</td>
<td>16/32</td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>R</td>
<td>FVS</td>
</tr>
</tbody>
</table>

Visualizzazione della velocità d’uscita attuale del motore (in FOC = velocità misurata dall’encoder, in SLS/VF = velocità stimata dal drive).
<table>
<thead>
<tr>
<th>Menu</th>
<th>PAR</th>
<th>Descrizione</th>
<th>UM</th>
<th>Tipo</th>
<th>FB</th>
<th>BIT</th>
<th>Def</th>
<th>Min</th>
<th>Max</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.8</td>
<td>270</td>
<td>Tensione DC link</td>
<td>V</td>
<td>FLOAT</td>
<td>16/32</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>ER</td>
<td>FVS</td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Visualizzazione della tensione continua dei condensatori del circuito intermedio (DC-Bus).</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Menu</th>
<th>PAR</th>
<th>Descrizione</th>
<th>UM</th>
<th>Tipo</th>
<th>FB</th>
<th>BIT</th>
<th>Def</th>
<th>Min</th>
<th>Max</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.9</td>
<td>272</td>
<td>Temp dissipatore</td>
<td>degC</td>
<td>INT16</td>
<td>16</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>ER</td>
<td>FVS</td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Visualizzazione della temperatura rilevata sul dissipatore del drive.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Menu</th>
<th>PAR</th>
<th>Descrizione</th>
<th>UM</th>
<th>Tipo</th>
<th>FB</th>
<th>BIT</th>
<th>Def</th>
<th>Min</th>
<th>Max</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.10</td>
<td>280</td>
<td>Rif corr di coppia</td>
<td>A</td>
<td>FLOAT</td>
<td>16/32</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>ER</td>
<td>F_S</td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Visualizzazione del riferimento di corrente utilizzato nel controllo di coppia (in modalità vettoriale sensorless e vettoriale ad orientamento di campo).</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Menu</th>
<th>PAR</th>
<th>Descrizione</th>
<th>UM</th>
<th>Tipo</th>
<th>FB</th>
<th>BIT</th>
<th>Def</th>
<th>Min</th>
<th>Max</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.11</td>
<td>282</td>
<td>Rif corr magnetizz</td>
<td>A</td>
<td>FLOAT</td>
<td>16/32</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>ER</td>
<td>F_S</td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Visualizzazione del riferimento di corrente magnetizzante (in modalità vettoriale sensorless e vettoriale ad orientamento di campo).</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Menu</th>
<th>PAR</th>
<th>Descrizione</th>
<th>UM</th>
<th>Tipo</th>
<th>FB</th>
<th>BIT</th>
<th>Def</th>
<th>Min</th>
<th>Max</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.12</td>
<td>284</td>
<td>Corrente di coppia</td>
<td>A</td>
<td>FLOAT</td>
<td>16/32</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>ER</td>
<td>FVS</td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Visualizzazione del valore attuale della corrente di coppia.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Menu</th>
<th>PAR</th>
<th>Descrizione</th>
<th>UM</th>
<th>Tipo</th>
<th>FB</th>
<th>BIT</th>
<th>Def</th>
<th>Min</th>
<th>Max</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.13</td>
<td>286</td>
<td>Corr magnetizzante</td>
<td>A</td>
<td>FLOAT</td>
<td>16/32</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>ER</td>
<td>FVS</td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Visualizzazione del valore attuale della corrente magnetizzante.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Menu</th>
<th>PAR</th>
<th>Descrizione</th>
<th>UM</th>
<th>Tipo</th>
<th>FB</th>
<th>BIT</th>
<th>Def</th>
<th>Min</th>
<th>Max</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.14</td>
<td>3212</td>
<td>Accum sovracc motore</td>
<td>perc</td>
<td>UINT16</td>
<td>16/32</td>
<td>0</td>
<td>0</td>
<td>100</td>
<td>ER</td>
<td>FVS</td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Visualizzazione del livello del sovraccarico del motore (100% = soglia allarme).</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Menu</th>
<th>PAR</th>
<th>Descrizione</th>
<th>UM</th>
<th>Tipo</th>
<th>FB</th>
<th>BIT</th>
<th>Def</th>
<th>Min</th>
<th>Max</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.15</td>
<td>368</td>
<td>Accum sovracc drive</td>
<td>perc</td>
<td>UINT16</td>
<td>16/32</td>
<td>0</td>
<td>0</td>
<td>100</td>
<td>ER</td>
<td>FVS</td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Visualizzazione del livello del sovraccarico del drive. Un sovraccarico istantaneo del 180% della corrente nominale del drive è consentito per 0.5s. L’immagine termica I^2t agisce sui limiti della corrente di uscita del drive. Durante il normale funzionamento, il valore istantaneo della corrente di uscita può raggiungere il 180% di quella nominale del drive. Dopo 0.5s al 180%, il limite della corrente di uscita viene ridotto al 150%. Quando il livello di sovraccarico par. 368 Accum sovracc drive raggiunge il 100%, il limite della corrente di uscita viene ridotto al 100% di quella corrente nominale, rimanendo a tale valore fino a quando il ciclo dell’integratore I^2t verrà completato. A questo punto il sovraccarico istantaneo del 180% verrà riattivato.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Menu</th>
<th>PAR</th>
<th>Descrizione</th>
<th>UM</th>
<th>Tipo</th>
<th>FB</th>
<th>BIT</th>
<th>Def</th>
<th>Min</th>
<th>Max</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.16</td>
<td>3260</td>
<td>Accum sovr res fren</td>
<td>perc</td>
<td>UINT16</td>
<td>16/32</td>
<td>0</td>
<td>0</td>
<td>100</td>
<td>ER</td>
<td>FVS</td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Visualizzazione del limite del sovraccarico del resistore di frenatura (100% = soglia allarme).</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Menu</th>
<th>PAR</th>
<th>Descrizione</th>
<th>UM</th>
<th>Tipo</th>
<th>FB</th>
<th>BIT</th>
<th>Def</th>
<th>Min</th>
<th>Max</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.17</td>
<td>1066</td>
<td>Mon stato Enable</td>
<td>BIT</td>
<td>16</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>R</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Visualizzazione dello stato del comando di Abilitazione del drive. E’ necessaria la presenza di tensione al morsetto 7. Per la partenza dell’inverter occorre il comando di Avanti FR.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1 Abilitato Azionamento sbloccato
0 Disabilitato Azionamento bloccato
<table>
<thead>
<tr>
<th>Menu</th>
<th>PAR</th>
<th>Descrizione</th>
<th>UM</th>
<th>Tipo</th>
<th>FB</th>
<th>BIT</th>
<th>Def</th>
<th>Min</th>
<th>Max</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.18</td>
<td>1068</td>
<td>Mon stato Start</td>
<td>BIT</td>
<td>16</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>R</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Visualizzazione dello stato del comando di Marcia del drive.

<table>
<thead>
<tr>
<th>Menu</th>
<th>PAR</th>
<th>Descrizione</th>
<th>UM</th>
<th>Tipo</th>
<th>FB</th>
<th>BIT</th>
<th>Def</th>
<th>Min</th>
<th>Max</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.19</td>
<td>1070</td>
<td>Mon stato Fast Stop</td>
<td>BIT</td>
<td>16</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>R</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Visualizzazione dello stato del comando di Arresto rapido del drive.

<table>
<thead>
<tr>
<th>Menu</th>
<th>PAR</th>
<th>Descrizione</th>
<th>UM</th>
<th>Tipo</th>
<th>FB</th>
<th>BIT</th>
<th>Def</th>
<th>Min</th>
<th>Max</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.20</td>
<td>1100</td>
<td>Mon ing digitali</td>
<td>UINT16</td>
<td>16</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>R</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Visualizzazione dello stato degli ingressi digitali sul drive. Può essere letto anche tramite una linea seriale o un bus di campo. Le informazioni sono contenute in una word, dove ogni bit corrisponde a 1 se vi è tensione sul morsetto d’ingresso corrispondente.

1 Ingresso attivato.
0 Ingresso disattivato.

000000000011

Esempio: Attivo DI 2 Attivo DI 1

<table>
<thead>
<tr>
<th>Menu</th>
<th>PAR</th>
<th>Descrizione</th>
<th>UM</th>
<th>Tipo</th>
<th>FB</th>
<th>BIT</th>
<th>Def</th>
<th>Min</th>
<th>Max</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.21</td>
<td>1300</td>
<td>Mon uscite digitali</td>
<td>UINT16</td>
<td>16</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>R</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Visualizzazione dello stato delle uscite digitali sul drive. Può essere letto anche tramite linea seriale o bus di campo. Le informazioni sono contenute in una word, dove ogni bit corrisponde a 1 se vi è tensione sul morsetto d’ingresso corrispondente.

1 Uscita attiva.
0 Uscita non attiva.

000000000011

Esempio: Attiva DO 2 Attiva DO 1

<table>
<thead>
<tr>
<th>Menu</th>
<th>PAR</th>
<th>Descrizione</th>
<th>UM</th>
<th>Tipo</th>
<th>FB</th>
<th>BIT</th>
<th>Def</th>
<th>Min</th>
<th>Max</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.22</td>
<td>1200</td>
<td>Mon ing digitali X</td>
<td>UINT16</td>
<td>16</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>R</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Visualizzazione dello stato degli ingressi digitali della scheda di espansione. Può essere letto anche tramite una linea seriale o un bus di campo. Le informazioni sono contenute in una word, dove ogni bit corrisponde a 1 se vi è tensione sul morsetto d’ingresso corrispondente.

1 Ingresso attivato.
0 Ingresso disattivato.

000000000011

Esempio: Attivo DI 2 Attivo DI 1

<table>
<thead>
<tr>
<th>Menu</th>
<th>PAR</th>
<th>Descrizione</th>
<th>UM</th>
<th>Tipo</th>
<th>FB</th>
<th>BIT</th>
<th>Def</th>
<th>Min</th>
<th>Max</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.23</td>
<td>1400</td>
<td>Mon uscite dig X</td>
<td>UINT16</td>
<td>16</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>R</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Visualizzazione dello stato delle uscite digitali della scheda di espansione. Può essere letto anche tramite linea seriale o bus di campo. Le informazioni sono contenute in una word, dove ogni bit corrisponde a 1 se vi è tensione sul morsetto d’ingresso corrispondente.

1 Uscita attiva.
0 Uscita non attiva.

000000000011

Esempio: Attiva DO 2 Attiva DO 1
2 – INFORMAZIONI DRIVE

In questo menu vengono visualizzate informazioni per l’identificazione del drive e della sua configurazione.

<table>
<thead>
<tr>
<th>Menu</th>
<th>PAR</th>
<th>Descrizione</th>
<th>UM</th>
<th>Tipo</th>
<th>FB BIT</th>
<th>Def</th>
<th>Min</th>
<th>Max</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>482</td>
<td>Taglia drive</td>
<td>UINT16</td>
<td>Ness Potenza</td>
<td>0</td>
<td>0</td>
<td>R</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Visualizzazione del codice di identificazione della taglia del drive.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.2</td>
<td>484</td>
<td>Famiglia drive</td>
<td>ENUM</td>
<td>Ness Potenza</td>
<td>0</td>
<td>0</td>
<td>RS</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Visualizzazione del campo della tensione di rete disponibile (ad esempio 400V). A questo valore si riferisce la rilevazione dell’allarme di sottotensione. La condizione Ness Potenza si verifica quando la scheda di regolazione è appena uscita dalla produzione e non è mai stata configurata per nessuna potenza. La configurazione della regolazione per una data potenza si realizza collegandola ad una potenza ed eseguendo un Salva parametri.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>0 Ness Potenza</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1 380V…480V</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>2 500V…575V</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3 690V</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>4 230V</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.3</td>
<td>486</td>
<td>Regione drive</td>
<td>ENUM</td>
<td>EU</td>
<td>0</td>
<td>1</td>
<td>R</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Visualizzazione dell’area geografica di utilizzo del drive, Europa o USA, che determina i valori di tensione e di frequenza di alimentazione utilizzati dal drive come impostazioni di fabbrica.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>0 EU (400V / 50Hz)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1 USA (460 / 60 Hz)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.4</td>
<td>488</td>
<td>Corr continut drive</td>
<td>A</td>
<td>CALCF</td>
<td>0.0</td>
<td>0.0</td>
<td>R</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Visualizzazione della corrente che il drive può erogare continuativamente in funzione della taglia, della tensione di alimentazione e della frequenza di switching programmata.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.5</td>
<td>490</td>
<td>Ver rel firmware</td>
<td>UINT16</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>R</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Visualizzazione del numero di versione e del numero di release del firmware operante nel drive. Nel tastierino sono visualizzati nel formato versione.release. Nella lettura del parametro da comunicazione seriale o bus di campo restituisce nel byte alto la versione e nel byte basso la release.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.6</td>
<td>496</td>
<td>Tipo firmware</td>
<td>UINT16</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>R</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Visualizzazione del tipo di firmware installato nel drive.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.7</td>
<td>504</td>
<td>Ver rel applicazione</td>
<td>UINT16</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>ER</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Visualizzazione del numero di versione e del numero di release dell’applicazione operante nel drive. Nel tastierino sono visualizzati nel formato versione.release. Nella lettura del parametro da comunicazione seriale o bus di campo restituisce nel byte alto la versione e nel byte basso la release.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.8</td>
<td>506</td>
<td>Tipo applicazione</td>
<td>UINT16</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>ER</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Visualizzazione del tipo di applicazione attualmente utilizzata dal drive.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Menu PAR Descrizione UM Tipo FB BIT Def Min Max Acc Mod

<p>| | | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>2.9</td>
<td>510</td>
<td>Tempo drv alimentato</td>
<td>h.min</td>
<td>UINT32</td>
<td>0</td>
<td>0.0</td>
<td>0.0</td>
<td>ER</td>
<td>FVS</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Indicazione del tempo totale durante il quale il drive è stato alimentato.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<p>| | | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>2.10</td>
<td>512</td>
<td>Tempo drv abilitato</td>
<td>h.min</td>
<td>UINT32</td>
<td>0</td>
<td>0.0</td>
<td>0.0</td>
<td>ER</td>
<td>FVS</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Indicazione del tempo in cui il drive è rimasto con il contatto di abilitazione hardware inserito.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<p>| | | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>2.11</td>
<td>514</td>
<td>Numero accensioni</td>
<td>UINT16</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>ER</td>
<td>FVS</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Visualizzazione del numero di volte in cui il drive è stato alimentato.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<p>| | | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>2.12</td>
<td>516</td>
<td>Tempo ventola on</td>
<td>h.min</td>
<td>UINT32</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>ER</td>
<td>FVS</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Visualizzazione del tempo totale di funzionamento della ventilazione del drive</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<p>| | | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>2.13</td>
<td>520</td>
<td>S/N prodotto</td>
<td>UINT32</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>R</td>
<td>FVS</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Visualizzazione del numero di serie del drive.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<p>| | | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>2.14</td>
<td>522</td>
<td>S/N regolazione</td>
<td>UINT32</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>R</td>
<td>FVS</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Visualizzazione del numero di serie della scheda di regolazione del drive.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<p>| | | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>2.15</td>
<td>524</td>
<td>S/N potenza</td>
<td>UINT32</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>R</td>
<td>FVS</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Visualizzazione del numero di serie della scheda di potenza del drive.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<p>| | | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>2.16</td>
<td>526</td>
<td>Ver rel file pot</td>
<td>UINT16</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>ER</td>
<td>FVS</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Visualizzazione della release della scheda di potenza del drive.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<p>| | | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>2.17</td>
<td>530</td>
<td>Tipo scheda slot 1</td>
<td>ENUM</td>
<td>Nessuna</td>
<td>0</td>
<td>0</td>
<td>R</td>
<td>FVS</td>
<td></td>
</tr>
<tr>
<td>2.18</td>
<td>532</td>
<td>Tipo scheda slot 2</td>
<td>ENUM</td>
<td>Nessuna</td>
<td>0</td>
<td>0</td>
<td>R</td>
<td>FVS</td>
<td></td>
</tr>
<tr>
<td>2.19</td>
<td>534</td>
<td>Tipo scheda slot 3</td>
<td>ENUM</td>
<td>Nessuna</td>
<td>0</td>
<td>0</td>
<td>R</td>
<td>FVS</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Visualizzazione del tipo di scheda di espansione montata nel relativo slot del drive.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- 0: Nessuna
- 1: I/O 0
- 769: I/O 1
- 1793: I/O 2
- 2305: I/O 3
- 3329: I/O 4
- 8: Enc 1
- 264: Enc 2
- 520: Enc 3
- 776: Enc 4
- 1032: Enc 5
- 2056: Enc 7
- 4: Can/Dnet
- 260: Profibus
2.20 536 S/N scheda slot 1
- **UM**: UINT32
- **Def**: 0
- **Min**: 0
- **Max**: 0
- **Acc**: R
- **Mod**: FVS

Visualizzazione del numero di serie della scheda di espansione montata nel relativo slot del drive.

2.21 538 S/N scheda slot 2
- **UM**: UINT32
- **Def**: 0
- **Min**: 0
- **Max**: 0
- **Acc**: R
- **Mod**: FVS

2.22 540 S/N scheda slot 3
- **UM**: UINT32
- **Def**: 0
- **Min**: 0
- **Max**: 0
- **Acc**: R
- **Mod**: FVS

Visualizzazione del numero di serie della scheda di espansione montata nel relativo slot del drive.

2.23 546 Ver rel fw enc sl2
- **UM**: UINT16
- **Def**: 0
- **Min**: 0
- **Max**: 0
- **Acc**: R
- **Mod**: FVS

Visualizzazione del numero di versione e del numero di release del fw encoder (installato nello slot 2) operante nel drive. Nella lettura del parametro da comunicazione seriale o bus di campo restituisce nel byte alto la versione e nel byte basso la release.

2.24 548 Tipo fw enc sl2
- **UM**: UINT16
- **Def**: 0
- **Min**: 0
- **Max**: 0
- **Acc**: R
- **Mod**: FVS

Visualizzazione del tipo di firmware dell’encoder installato nello slot 2.

2.25 5300 Ver rel fw enc sl1-3
- **UM**: UINT16
- **Def**: 0
- **Min**: 0
- **Max**: 0
- **Acc**: R
- **Mod**: FVS

Visualizzazione del numero di versione e del numero di release del fw del secondo encoder (installato nello slot 1 o 3) operante nel drive. Nella lettura del parametro da comunicazione seriale o bus di campo restituisce nel byte alto la versione e nel byte basso la release.

2.26 5302 Tipo fw enc sl1-3
- **UM**: UINT16
- **Def**: 0
- **Min**: 0
- **Max**: 0
- **Acc**: R
- **Mod**: FVS

Visualizzazione del tipo di firmware del secondo encoder installato nello slot 1 o 3.
3 – STARTUP GUIDATO

Nel menu di startup guidato viene proposta una procedura che permette una rapida messa in servizio del drive con un ridotto numero di impostazioni. Per una personalizzazione avanzata è necessario utilizzare i singoli parametri relativi alle prestazioni richieste. Fare riferimento alla procedura descritta nel capitolo **Startup guidato**.
4 – CONFIG DRIVE

Salva parametri

- **CONFIG DRIVE**

<table>
<thead>
<tr>
<th>Menu</th>
<th>PAR</th>
<th>Descrizione</th>
<th>UM</th>
<th>Tipo</th>
<th>FB BIT</th>
<th>Def</th>
<th>Min</th>
<th>Max</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1</td>
<td>550</td>
<td>Salva parametri</td>
<td>BIT</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>RW</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Qualsiasi modifica apportata al valore dei parametri ha effetto immediato sulle operazioni del drive, ma non viene automaticamente memorizzata nella memoria permanente.

Il comando “Salvataggio parametri” è usato per memorizzare nella memoria permanente il valore dei parametri correntemente in uso.

Tutte le modifiche apportate non salvate verranno perse quando il drive verrà disalimentato.

Per eseguire il salvataggio dei parametri fare riferimento alla sequenza descritta nello STEP 6 della procedura di **Startup guidato**.

Modalità regolazione

- **CONFIG DRIVE**

<table>
<thead>
<tr>
<th>Menu</th>
<th>PAR</th>
<th>Descrizione</th>
<th>UM</th>
<th>Tipo</th>
<th>FB BIT</th>
<th>Def</th>
<th>Min</th>
<th>Max</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.2</td>
<td>552</td>
<td>Modalità regolazione</td>
<td>ENUM</td>
<td>Controllo V/f</td>
<td>0</td>
<td>3</td>
<td>RWZ</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

L’ADV200 può operare in diverse modalità di controllo:

0 Controllo V/f
1 Vett Flusso OL
2 Vett Flusso CL
3 Autoapprendim

La modalità **V/f** (Controllo V/f) ad anello aperto è il più semplice controllo di un motore asincrono, in quanto per il funzionamento sono necessari i soli parametri di tensione, corrente e frequenza nominali del motore.

La modalità di controllo V/F ad anello aperto viene impostata di fabbrica e non richiede alcuna retroazione di velocità. La naturale variazione in velocità generata per induzione dal carico della macchina, conosciuta come scorrimento, può essere compensata con i parametri **Comp scorrimento** e **Flt comp scorrimento**.

In modalità V/F è possibile comandare con un unico drive più motori asincroni, anche di taglia differente, collegati in parallelo, purché la somma delle correnti dei singoli motori sia inferiore alla corrente nominale del drive.

Nel caso di più motori in parallelo è necessario predisporre un’adeguata protezione termica per ogni singolo motore.

La modalità di controllo ad anello chiuso è possibile anche in modalità V/f: richiede una lettura della velocità data da un encoder digitale accoppiato sull’albero del motore; per abilitare la retroazione da encoder è necessario settare il parametro **2444 Mod comp scorrimento =1**. La scheda opzionale EXP-DE-I1R1F1-ADV è necessaria per l’acquisizione dei segnali dell’encoder. La retroazione di velocità fornita dall’encoder viene utilizzata come compensazione dello scorrimento del motore nelle diverse condizioni di carico, ottenendo un accurato controllo ed una maggior precisione della velocità del motore stesso.

Nel controllo vettoriale sensorless (**Vett Flusso OL**) è possibile ottenere elevate precisioni di velocità e di coppia a bassi regimi di rotazione del motore. Il potente algoritmo del drive, misurando con una procedura di autoapprendimento tutte le grandezze elettriche del motore, permette la stima della velocità e della posizione dell’albero motore, consentendo un funzionamento simile a quello di un drive retroazionato, sia per quanto riguarda la risposta in coppia alle variazioni di carico, sia per la regolarità della rotazione del motore anche a bassissimi gir/min.

In modalità vettoriale ad orientamento di campo (**Vett Flusso CL**) è necessario l’utilizzo di un encoder per la retroazione in anello chiuso. In questa modalità si ottengono elevatissime risposte dinamiche grazie alla larghezza della banda passante della regolazione, coppia massima anche a rotore bloccato, controllo di velocità e controllo di coppia. E’ possibile agire su numerosi parametri della regolazione per adattare il drive ad ogni specifica applicazione, come ad esempio guadagni adattativi, compensazione dell’inserzione del sistema etc.

La modalità **Autoapprendimento** permette di eseguire l’autoapprendimento dei parametri motore nel caso non venga utilizzata la procedura di **Startup guidato**. Per poter eseguire il comando per prima cosa è necessario aprire l’abilitazione hardware tra i morsetti 7 ed S3. Impostare poi il parametro **Modalità regolazione su Autoapprendim**. A questo punto, se non si è già in modalità Locale, premere il tasto Local (si attiverà il led LOC) e richiudere l’abilitazione hardware (morsetti 7 e S3). Ora è possibile attivare l’autoapprendimento (fare riferimento ai parametri **2022** o **2224**). Alla fine della procedura di autoapprendimento riaprire il contatto tra i morsetti 7 e S3 e ripristinare i parametri modificati.

Questa procedura deve essere impiegata sia per l’autoapprendimento con motore fermo, sia per quello con motore in rotazione.
Modalità accesso

Con questo parametro è possibile limitare l’accesso alla parametrizzazione avanzata.

<p>| | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>4.3</td>
<td>554</td>
<td>Modalità accesso</td>
<td>ENUM</td>
<td>Facile</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

0 Facile
1 Esperto

Nella modalità *Facile* è possibile interagire con una lista di parametri che consentono una veloce messa in servizio del drive, permettendo una configurazione adeguata per la maggior parte delle applicazioni.

Impostando il parametro su *Esperto* si ha accesso a tutti i parametri contenuti nel firmware, consentendo una personalizzazione estrema del drive e riuscendo in questo modo a sfruttare a fondo tutte le potenzialità fornite dall’ADV200.

Modalità controllo

Selezione della modalità di controllo del drive.

<p>| | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>4.4</td>
<td>556</td>
<td>Modalità controllo</td>
<td>ENUM</td>
<td>Rampa</td>
<td>0</td>
<td>2</td>
</tr>
</tbody>
</table>

0 Coppia
1 Velocità
2 Rampa

Nel **controllo di coppia** (0 - Coppia) il riferimento ed il carico del motore determinano la velocità ed il senso di rotazione del motore. E’ possibile impostare limiti di coppia simmetrici, per ogni senso di rotazione e per il funzionamento come motore/generatore. Questo tipo di controllo è disponibile esclusivamente nella modalità di regolazione **Vett Flusso CL**. In questa modalità la funzione Rampa non è utilizzata per generare il riferimento di velocità del drive e quindi può essere usata in modalità stand-alone

Nel **controllo di velocità** (1 - Velocità) il riferimento arriva direttamente dopo il circuito di rampa, permettendo una risposta rapidissima alle variazioni del segnale, ideale in applicazioni che necessitano di un’elevata risposta dinamica. Questo tipo di controllo è disponibile nelle modalità di regolazione **Vett Flusso OL** e **Vett Flusso CL**. In questa modalità la funzione Rampa non è utilizzata per generare il riferimento di velocità del drive e quindi può essere usata in modalità stand-alone

Nel **controllo in rampa** (2 - Rampa) il riferimento di velocità viene applicato all’ingresso del blocco “Rampa” e viene prodotto dal blocco “Riferim rampa”, il quale permette l’impostazione sia dei tempi di accelerazione/decelerazione, sia del tipo di rampa (lineare o ad S con jerks personalizzabili). Questo tipo di controllo è disponibile in tutte le modalità di regolazione.

Sel applicazione

Selezione dell’applicazione sviluppata in ambiente IEC 61131-3 rendere operativa.

<p>| | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>4.5</td>
<td>558</td>
<td>Sel applicazione</td>
<td>ENUM</td>
<td>Nessuna</td>
<td>0</td>
<td>2</td>
</tr>
</tbody>
</table>

0 Nessuno
1 Applicazione 1
2 Applicazione 2

Il drive viene fornito con alcune applicazioni sviluppate in ambiente IEC 61131-3 già presenti. Per poterle utilizzare occorre configurare l’applicazione desiderata, eseguire save parameter, spegnere e riaccendere il drive.

NOTA!
Il comando Parametri di default (par. 580) non modifica questo parametro

ADV200 • Descrizione delle funzioni e lista parametri
Menu PAR Descrizione UM Tipo FB BIT Def Min Max Acc Mod

| | | **Tensione di rete** | ENUM | 400 V SIZE SIZE ERWZS FVS |

Impostazione del valore in Volt della tensione di rete disponibile. A questo valore si riferisce la rilevazione dell'allarme di sottotensione.

- 0 Nessuna
- 1 230 V
- 2 380 V
- 3 400 V
- 4 415 V
- 5 440 V
- 6 460 V
- 7 480 V
- 8 575 V
- 9 690 V

| | | **Alimentaz DC** | ENUM Nessuna 0 3 ERWZS FVS |

Selezione del valore di tensione applicata sul DC link nel caso di alimentazione del drive mediante un alimentatore AC/DC, sia normale che regenerativo (ad esempio AFE200). Se viene selezionato un valore diverso da "Nessuna", il calcolo dei parametri dipendenti dal parametro **560 Tensione di rete** vengono eseguiti in base alle tensione indicata nella tabella sottostante, mentre il valore del parametro **560 Tensione di rete** viene impostato automaticamente.

Se viene selezionato "Nessuna", i calcoli vengono effettuati sul valore del parametro **560 Tensione di rete**.

<table>
<thead>
<tr>
<th>Alimentaz DC</th>
<th>Tensione di rete utilizzata per i calcoli</th>
<th>Tensione di rete visualizzata</th>
<th>Declassamento</th>
</tr>
</thead>
<tbody>
<tr>
<td>540 V</td>
<td>380 V</td>
<td>400 V</td>
<td>No</td>
</tr>
<tr>
<td>650 V</td>
<td>460 V</td>
<td>460 V</td>
<td>0.9</td>
</tr>
<tr>
<td>750 V</td>
<td>460 V</td>
<td>460 V</td>
<td>0.9*0.9</td>
</tr>
</tbody>
</table>

| | | **Sottotensione** | V FLOAT CALCF CALCF ERWZSFVS |

Impostazione della tensione minima di funzionamento del drive. I valori di default, minimi e massimi vengono calcolati automaticamente dal drive in funzione dell’impostazione del parametro **560 Tensione di rete**, come illustrato nella tabella seguente.

<table>
<thead>
<tr>
<th></th>
<th>Def</th>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>230V</td>
<td>225</td>
<td>200</td>
<td>282</td>
</tr>
<tr>
<td>380V</td>
<td>372</td>
<td>330</td>
<td>466</td>
</tr>
<tr>
<td>400V</td>
<td>392</td>
<td>330</td>
<td>490</td>
</tr>
<tr>
<td>415V</td>
<td>407</td>
<td>360</td>
<td>509</td>
</tr>
<tr>
<td>440V</td>
<td>431</td>
<td>382</td>
<td>539</td>
</tr>
<tr>
<td>460V</td>
<td>451</td>
<td>400</td>
<td>564</td>
</tr>
<tr>
<td>480V</td>
<td>470</td>
<td>417</td>
<td>588</td>
</tr>
<tr>
<td>575V</td>
<td>563</td>
<td>500</td>
<td>705</td>
</tr>
<tr>
<td>690V</td>
<td>676</td>
<td>600</td>
<td>846</td>
</tr>
</tbody>
</table>

Tabella limiti sottotensione
Menu PAR Descrizione UM Tipo FB BIT Def Min Max Acc Mod

<table>
<thead>
<tr>
<th>4.9</th>
<th>562</th>
<th>Freq di modulazione</th>
<th>ENUM</th>
<th>SIZE</th>
<th>SIZE</th>
<th>SIZE</th>
<th>ERWS</th>
<th>FVS</th>
</tr>
</thead>
</table>

Impostazione del valore della frequenza di modulazione in kHz. Il valore massimo impostabile dipende dalla taglia del drive.

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1 kHz</td>
</tr>
<tr>
<td>1</td>
<td>2 kHz</td>
</tr>
<tr>
<td>2</td>
<td>4 kHz</td>
</tr>
<tr>
<td>3</td>
<td>6 kHz</td>
</tr>
<tr>
<td>4</td>
<td>8 kHz</td>
</tr>
<tr>
<td>5</td>
<td>10 kHz</td>
</tr>
<tr>
<td>6</td>
<td>12 kHz</td>
</tr>
<tr>
<td>7</td>
<td>16 kHz</td>
</tr>
</tbody>
</table>

Menu PAR Descrizione UM Tipo FB BIT Def Min Max Acc Mod

<table>
<thead>
<tr>
<th>4.10</th>
<th>564</th>
<th>Temperatura ambiente</th>
<th>ENUM</th>
<th>40 gradiC</th>
<th>0</th>
<th>1</th>
<th>ERWZ</th>
<th>FVS</th>
</tr>
</thead>
</table>

Impostazione del valore della temperatura ambiente. Con questo parametro si imposta il declassamento della corrente d’uscita.

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>40 °C</td>
</tr>
<tr>
<td>1</td>
<td>50 °C</td>
</tr>
</tbody>
</table>

Impostando il valore 1 la corrente d’uscita del drive sarà inferiore del 10% rispetto alla corrente nominale a 40°C.

Menu PAR Descrizione UM Tipo FB BIT Def Min Max Acc Mod

<table>
<thead>
<tr>
<th>4.11</th>
<th>566</th>
<th>Mod sovraccarico drv</th>
<th>ENUM</th>
<th>Serv Pesante</th>
<th>1</th>
<th>2</th>
<th>ERWZ</th>
<th>FVS</th>
</tr>
</thead>
</table>

Impostazione del sovraccarico che il drive è in grado di erogare, in funzione dell’applicazione.

1. Serv Pesante
2. Serv Leggero

Impostare **Serv Pesante** quando viene richiesto un sovraccarico pesante: il drive è in grado di erogare il 180% della corrente nominale per 0,5 secondi ed il 150% per 1 minuto ogni 5 minuti.

Il sovraccarico leggero (**Serv Leggero**) consente al drive di erogare una corrente del 110% rispetto alla nominale per 1 minuto ogni 5 minuti.

Menu PAR Descrizione UM Tipo FB BIT Def Min Max Acc Mod

<table>
<thead>
<tr>
<th>4.12</th>
<th>568</th>
<th>Mod freq modulazione</th>
<th>ENUM</th>
<th>Costante</th>
<th>0</th>
<th>1</th>
<th>ERWZS</th>
<th>FVS</th>
</tr>
</thead>
</table>

Impostazione della modalità di funzionamento della frequenza di modulazione quando il sovraccarico del drive è impostato in **Serv Pesante**. La frequenza di modulazione viene impostata di fabbrica a 4 kHz per le taglie da 2,2 kW a 37 kW (per la taglie inferiori la frequenza di modulazione è impostata di fabbrica a 8 kHz); questo valore può comportare l’aumento del rumore acustico. L’impostazione di una frequenza di modulazione più elevata provoca un aumento delle perdite del drive e di conseguenza un aumento della temperatura del dissipatore, pur riducendo il rumore acustico. Per combinare i vantaggi derivanti da entrambe le impostazioni il drive ADV permette il controllo della temperatura del dissipatore, abbassando la frequenza di modulazione in caso di aumento della stessa.

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Costante</td>
</tr>
<tr>
<td>1</td>
<td>Variabile</td>
</tr>
</tbody>
</table>

Impostando **Costante** la frequenza di modulazione è fissa e viene impostata con il parametro **Freq di modulazione**, in funzione della taglia del drive. Se viene selezionato un valore della frequenza di modulazione superiore a quello impostato di default deve essere applicato un declassamento della corrente d’uscita del drive.

Impostando **Variabile** la frequenza di modulazione viene impostata a 8kHz e controllata dalla temperatura del dissipatore del drive e dalla frequenza d’uscita. Nel caso in cui la temperatura del dissipatore superi una soglia impostata (in funzione della taglia del drive) o scenda al di sotto di di 5Hz ± 1Hz, la frequenza di modulazione
viene automaticamente ridotta a 4kHz, permettendo in questo modo di evitare il declassamento della corrente d'uscita. La diminuzione della frequenza di modulazione avviene in un unico step. Con questa impostazione il valore della frequenza di modulazione selezionato con il parametro Freq di modulazione non avrà alcun effetto.

Con la password attiva ogni tentativo di modificare un parametro viene bloccato e sul display appare la scritta Password enabled.

Per disattivare la password è necessario entrare sul parametro Password (570) del menu CONFIG DRIVE. Verificare che la password sia attiva (Abilitata), premere il tasto E ed inserire la combinazione di numeri che formano la password. Premere ancora una volta E. Appare ora la visualizzazione che la Password non è più attiva (Disabilitata). Perché la Password rimanga inattiva anche dopo lo spegnimento e la riaccensione dell'apparecchio, bisogna memorizzarla con il comando Salva parametri.

Quando si tenta di introdurre una Password errata, appare la segnalazione Password wrong.

Con questo parametro è possibile inserire la chiave di abilitazione di applicazione plc. Alcune applicazioni plc possono richiedere l'inserimento di una chiave per poter essere abilitate in modo definitivo. Per sapere quali applicazioni plc richiedono l'inserimento della chiave consultare il personale Gefran.

Se è in esecuzione una applicazione che prevede la verifica della chiave e la chiave è errata si avranno a disposizione 200 ore (time drive enabled) di abilitazione forzata.

In questa fase viene mostrato un messaggio che avvisa che il periodo di abilitazione forzata sta per scadere. Al power-on del drive successivo alle 200 ore verrà generato un allarme e l'applicazione non sarà attiva. Consultare il personale Gefran per la richiesta del valore numerico della chiave.

Consente di impostare il parametro che verrà visualizzato automaticamente all'accensione del Drive. Inserendo il valore -1 (default), la funzione viene disabilitata e all'accensione viene presentato il menu principale.

Abilita la retroilluminazione del display del drive. Impostando 0 la retroilluminazione del display si spegnerà passati tre minuti dall'alimentazione dell'azionamento. Impostando 1 la retroilluminazione resterà attiva per tutto il tempo in cui il drive rimane alimentato.

Impostazione della lingua da utilizzare nella programmazione del drive.

0 Inglese
1 Italiano
2 Francese
Il comando Parametri di default (par. 580) non modifica questo parametro.

Menu PAR Descrizione UM Tipo FB BIT Def Min Max Acc Mod
4.18 580 Parametri di default BIT 0 0 1 RWZ FVS
Trasferisce nella memoria del drive i valori standard impostati in fabbrica (colonna "Def" della tabella parametri).

Menu PAR Descrizione UM Tipo FB BIT Def Min Max Acc Mod
4.19 590 Salva par->tastiera BIT 0 0 1 RW FVS
Trasferisce e salva nella memoria del tastierino i parametri attualmente memorizzati nel drive (Vedere manuale ADV200 Guida Rapida, capitolo 6.8).

Menu PAR Descrizione UM Tipo FB BIT Def Min Max Acc Mod
4.20 592 Carica par->tastiera BIT 0 0 1 RWZ FVS
Trasferisce i parametri dalla memoria del tastierino al drive (Vedere manuale ADV200 Guida Rapida, capitolo 6.9).

Menu PAR Descrizione UM Tipo FB BIT Def Min Max Acc Mod
4.21 594 Sel memoria tastiera UINT16 1 1 5 ERW FVS
Selezione dell’area di memoria del tastierino nella quale trasferire e salvare i parametri memorizzati nel drive.
5 – Riferimenti

I drive ADV dispongono di un circuito di regolazione della velocità, che può essere adattato in modo flessibile alle varie applicazioni. Nelle condizioni di fornitura standard il regolatore ha un comportamento PI ed i parametri del regolatore rimangono uguali per tutto il campo di regolazione.

In funzione dell’impostazione del parametro 552 Modalità regolazione è possibile utilizzare diverse sorgenti per i riferimenti di velocità e coppia.

<table>
<thead>
<tr>
<th>Menu</th>
<th>PAR</th>
<th>Descrizione</th>
<th>UM</th>
<th>Tipo</th>
<th>FB BIT</th>
<th>Def</th>
<th>Min</th>
<th>Max</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.1</td>
<td>600</td>
<td>Rif digitale rampa 1</td>
<td>FF</td>
<td>INT16</td>
<td>16/32</td>
<td>0</td>
<td>CALCI</td>
<td>CALCI</td>
<td>RW</td>
<td>FVS</td>
</tr>
</tbody>
</table>

Impostazione del riferimento digitale alla rampa. Con il riferimento alla rampa viene impostata la velocità che il drive deve raggiungere dopo il superamento della fase di accelerazione. Variazioni del riferimento alla rampa vengono riportate con i tempi di rampa prescelti. L’entità del riferimento alla rampa determina l’entità della velocità del motore, il segno ne determina il senso di rotazione. Il parametro Rif rampa si riferisce anche ad una eventuale velocità minima impostata. Quando vengono selezionate le funzioni “Motopotenziometro” oppure “Multi velocità” vengono impiegati i relativi riferimenti. Questo riferimento può essere utilizzato solo in modalità Remoto.

Il riferimento complessivo per la rampa è il risultato della somma dei valori con segno di Rif rampa 1 e Rif rampa 2.

Esempio 1: Rif rampa 1 = + 500 rpm Rif rampa 2 = + 300 rpm
Rif rampa = 500 rpm + 300 rpm = 800 rpm

Esempio 2: Rif rampa 1 = + 400 rpm Rif rampa 2 = - 600 rpm
Rif rampa = 400 rpm – 600 rpm = - 200 rpm

<table>
<thead>
<tr>
<th>Menu</th>
<th>PAR</th>
<th>Descrizione</th>
<th>UM</th>
<th>Tipo</th>
<th>FB BIT</th>
<th>Def</th>
<th>Min</th>
<th>Max</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.2</td>
<td>602</td>
<td>Rif digitale rampa 2</td>
<td>FF</td>
<td>INT16</td>
<td>16/32</td>
<td>0</td>
<td>CALCI</td>
<td>CALCI</td>
<td>ERW</td>
<td>FVS</td>
</tr>
</tbody>
</table>

Impostazione del riferimento digitale alla rampa. Con il riferimento alla rampa viene impostata la velocità che il drive deve raggiungere dopo il superamento della fase di accelerazione. Variazioni del riferimento alla rampa vengono riportate con i tempi di rampa prescelti. L’entità del riferimento alla rampa determina l’entità della velocità del motore, il segno ne determina il senso di rotazione. Il parametro Rif rampa si riferisce anche ad una eventuale velocità minima impostata. Quando vengono selezionate le funzioni “Motopotenziometro” oppure “Multi speed” vengono impiegati i relativi riferimenti.

In modalità Remoto il riferimento complessivo per la rampa è il risultato della somma dei valori con segno di Rif rampa 1 e Rif rampa 2.

Esempio 1: Rif rampa 1 = + 500 rpm Rif rampa 2 = + 300 rpm
Rif rampa = 500 rpm + 300 rpm = 800 rpm

Esempio 2: Rif rampa 1 = + 400 rpm Rif rampa 2 = - 600 rpm
Rif rampa = 400 rpm – 600 rpm = - 200 rpm

In modalità Locale il riferimento complessivo per la rampa è il risultato della somma dei valori con segno di Rif rampa 3 e Rif rampa 2.

Esempio 1: Rif rampa 3 = + 500 rpm Rif rampa 2 = + 300 rpm
Rif rampa = 500 rpm + 300 rpm = 800 rpm

Esempio 2: Rif rampa 3 = + 400 rpm Rif rampa 2 = - 600 rpm
Rif rampa = 400 rpm – 600 rpm = - 200 rpm

Menu PAR Descrizione UM Tipo FB BIT Def Min Max Acc Mod

<table>
<thead>
<tr>
<th></th>
<th></th>
<th>Rif digitale rampa 3</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th>CALCI</th>
<th>CALCI</th>
<th>ERW</th>
<th>FVS</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.3</td>
<td>604</td>
<td></td>
<td>FF</td>
<td>INT16</td>
<td>16/32</td>
<td>0</td>
<td></td>
<td></td>
<td>CALCI</td>
<td>CALCI</td>
<td>ERW</td>
</tr>
</tbody>
</table>

Impostazione del riferimento digitale alla rampa. Con il riferimento alla rampa viene impostata la velocità che il drive deve raggiungere dopo il superamento della fase di accelerazione. Variazioni del riferimento alla rampa vengono riportate con i tempi di rampa prescelti. L’entità del riferimento alla rampa determina l’entità della velocità del motore, il segno ne determina il senso di rotazione. Il parametro Rif rampa si riferisce anche ad una eventuale velocità minima impostata. Quando vengono selezionate le funzioni “Motopotenzimetro” oppure “Multi riferimenti” vengono impiegati i relativi riferimenti. Questo riferimento può essere utilizzato solo in modalità Locale.

Il riferimento complessivo per la rampa è il risultato della somma dei valori con segno di Rif rampa 3 e Rif rampa 2.

Esempio 1: Rif rampa 3 = + 500 rpm Rif rampa 2 = + 300 rpm
Rif rampa = 500 rpm + 300 rpm = 800 rpm

Esempio 2: Rif rampa 3 = + 400 rpm Rif rampa 2 = - 600 rpm
Rif rampa = 400 rpm – 600 rpm = - 200 rpm

Menu PAR Descrizione UM Tipo FB BIT Def Min Max Acc Mod

<table>
<thead>
<tr>
<th></th>
<th></th>
<th>Sorgente rif rampa 1</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>5.4</td>
<td>610</td>
<td></td>
<td>LINK</td>
<td>16/32</td>
<td>1500</td>
<td>0</td>
<td>16384</td>
<td>RW</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Selezione dell’origine (sorgente) dei segnali di riferimento all’ingresso del blocco funzione della rampa, che definisce la velocità principale del drive. Le grandezze utilizzabili come riferimento per la rampa possono essere impostate tra quelle disponibili nella lista di selezione “L_MLTREF”.

Per una assegnazione del riferimento tramite morsetti, possono essere utilizzati segnali con ±10V, 0 ... 10V, 0 ... 20 mA e 4 ... 20 mA.

Menu PAR Descrizione UM Tipo FB BIT Def Min Max Acc Mod

<table>
<thead>
<tr>
<th></th>
<th></th>
<th>Sorg inv rif rampa</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>5.7</td>
<td>616</td>
<td></td>
<td>LINK</td>
<td>16</td>
<td>1050</td>
<td>0</td>
<td>16384</td>
<td>ERW</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Selezione dell’origine (sorgente) del segnale che inverte il riferimento di rampa in uscita dal blocco “Riferim rampa”. Il segnale utilizzabile per questa funzione può essere impostato tra quelli disponibili nella lista di selezione “L_DIGSEL2”.

Menu PAR Descrizione UM Tipo FB BIT Def Min Max Acc Mod

<table>
<thead>
<tr>
<th></th>
<th></th>
<th>Monitor rif rampa 1</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>5.8</td>
<td>620</td>
<td></td>
<td>FF</td>
<td>INT16</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>R</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Visualizzazione del valore del relativo riferimento alla rampa all’uscita dal blocco funzione “Rif rampa”.

Menu PAR Descrizione UM Tipo FB BIT Def Min Max Acc Mod

<table>
<thead>
<tr>
<th></th>
<th></th>
<th>Monitor rif rampa 2</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>5.9</td>
<td>622</td>
<td></td>
<td>FF</td>
<td>INT16</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>ER</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Menu PAR Descrizione UM Tipo FB BIT Def Min Max Acc Mod

<table>
<thead>
<tr>
<th></th>
<th></th>
<th>Monitor rif rampa 3</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>5.10</td>
<td>624</td>
<td></td>
<td>FF</td>
<td>INT16</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>ER</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
5.11 634 Lim sup rif rampa
Definisce il massimo valore dell’uscita del blocco del riferimento di rampa, indipendentemente dal segnale presente. Il riferimento di rampa seguirà il segnale di riferimento dal valore impostato nel parametro 636 Lim inf rif rampa fino al valore impostato con questo parametro, dopodiché la velocità al motore rimarrà costante. Il limite è valido per entrambi i sensi di rotazione.

5.12 636 Lim inf rif rampa
Definisce il minimo valore dell’uscita dal blocco del riferimento di rampa, indipendentemente dal segnale presente. L’uscita dal blocco di rampa rimarrà al valore impostato con questo parametro fino a quando il segnale analogico non supererà questa soglia: il valore dell’uscita di rampa comincerà a seguire il riferimento fino al valore impostato nel parametro 634 Lim sup rif rampa. Il limite è valido per entrambi i sensi di rotazione.

In un sistema composto da drive e motore, ad alcune frequenze è possibile riscontrare la generazione di vibrazioni, dovuta a risonanze meccaniche. Per limitare questo fenomeno è possibile inserire una velocità proibita interdetta al funzionamento del drive.

5.13 630 Imposta salto freq
Impostazione della soglia di velocità proibita interdetta al drive.

5.14 632 Banda salto freq
Impostazione dell’ampiezza della banda d’interdizione.

Esempio:
A) Incremento del riferimento da valori inferiori a Par. 630

Par. 630 = 300 rpm (soglia di velocità proibita)
Par. 632 = 10 rpm (quindi banda di interdizione: 290rpm...310rpm)
Riferimento di velocità impostato = 295 rpmHz
Velocità d’uscita = 290 rpm
Riferimento di velocità impostato = 305 rpm
Velocità d’uscita = 290 rpm

B) Decremento del riferimento da valori superiori a Par. 630

Par. 630 = 300 rpm (soglia di velocità proibita)
Par. 632 = 10 rpm (quindi banda di tolleranza: 290 rpm...310 rpm)
Riferimento di velocità impostato = 305 rpm
Frequenza d’uscita = 310 rpm
Riferimento di velocità impostato = 295 rpm
Frequenza d’uscita = 310 rpm

L’utente può quindi impostare qualsiasi valore di riferimento, ma se la velocità impostata risulta compresa nelle gamme proibite, il drive manterrà automaticamente la velocità al di fuori dei limiti definiti dalla banda di tolleranza. Durante le fasi di rampa la velocità proibita viene liberamente attraversata e non si hanno mai punti di discontinuità nella generazione della frequenza d’uscita.

Il riferimento di velocità fornisce la velocità desiderata all’azionamento, che segue direttamente l’andamento del riferimento. Ciò avviene solamente quando la coppia disponibile è sufficiente. In questo caso l’azionamento funziona in limite di corrente, fino a raggiungere la velocità impostata. L’entità del riferimento di velocità determina la velocità del motore, il segno ne determina il senso di rotazione.

Impostazione dei riferimenti digitali di velocità. Il riferimento complessivo di velocità è il risultato della somma dei valori con i rispettivi segni, di Rif dig velocità 1 e Rif dig velocità 2. I riferimenti digitali di velocità sono collegati all’uscita del circuito di rampa.

Il riferimento complessivo per la velocità è il risultato della somma dei valori con segno di Rif velocità 1 e Rif velocità 2.

Esempio 1: Rif velocità 1 = + 500 rpm Rif velocità 2 = + 300 rpm
Rif velocità = 500 rpm + 300 rpm = 800 rpm

Esempio 2: Rif velocità 1 = + 400 rpm Rif velocità 2 = - 600 rpm
Rif velocità = 400 rpm – 600 rpm = - 200 rpm

<table>
<thead>
<tr>
<th>Menu</th>
<th>PAR</th>
<th>Descrizione</th>
<th>UM</th>
<th>Tipo</th>
<th>FB BIT</th>
<th>Def</th>
<th>Min</th>
<th>Max</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.17</td>
<td>650</td>
<td>Sorg rif velocità 1</td>
<td>LINK 16/32</td>
<td>640</td>
<td>0</td>
<td>16384</td>
<td>ERW</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.18</td>
<td>652</td>
<td>Sorg rif velocità 2</td>
<td>LINK 16/32</td>
<td>642</td>
<td>0</td>
<td>16384</td>
<td>ERW</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Selezione dell’origine (sorgente) dei segnali di riferimento di velocità del drive. Le grandezze utilizzabili come riferimento di velocità possono essere impostate tra quelle disponibili nella lista di selezione “L_MLTREF”.
Per una assegnazione del riferimento tramite morsetti, possono essere utilizzati segnali con ±10V, 0 ...10V, 0... 20 mA e 4 ... 20 mA.

<table>
<thead>
<tr>
<th>Menu</th>
<th>PAR</th>
<th>Descrizione</th>
<th>UM</th>
<th>Tipo</th>
<th>FB BIT</th>
<th>Def</th>
<th>Min</th>
<th>Max</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.19</td>
<td>654</td>
<td>Sorg inv rif vel</td>
<td>LINK 16</td>
<td>6000</td>
<td>0</td>
<td>16384</td>
<td>ERW</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Selezione dell’origine (sorgente) del segnale che inverte il riferimento di velocità in uscita dal regolatore. Il morsetto utilizzabile per questa funzione può essere impostato tra quelli disponibili nella lista di selezione “L_DIGSEL2”.

<table>
<thead>
<tr>
<th>Menu</th>
<th>PAR</th>
<th>Descrizione</th>
<th>UM</th>
<th>Tipo</th>
<th>FB BIT</th>
<th>Def</th>
<th>Min</th>
<th>Max</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.20</td>
<td>660</td>
<td>Mon rif velocità 1</td>
<td>FF</td>
<td>INT16</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>ER</td>
<td>FVS</td>
</tr>
<tr>
<td>5.21</td>
<td>662</td>
<td>Mon rif velocità 2</td>
<td>FF</td>
<td>INT16</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>ER</td>
<td>FVS</td>
</tr>
</tbody>
</table>

Visualizzazione del valore del relativo riferimento di velocità.

<table>
<thead>
<tr>
<th>Menu</th>
<th>PAR</th>
<th>Descrizione</th>
<th>UM</th>
<th>Tipo</th>
<th>FB BIT</th>
<th>Def</th>
<th>Min</th>
<th>Max</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.22</td>
<td>670</td>
<td>Limite sup rif vel</td>
<td>FF</td>
<td>INT32</td>
<td>CALCI</td>
<td>0</td>
<td>CALCI</td>
<td>ERWZ</td>
<td>FVS</td>
<td></td>
</tr>
</tbody>
</table>

Impostazione del limite superiore del riferimento di velocità. Se il riferimento di velocità eccede i limiti, la velocità del motore rimarrà comunque al valore del limite impostato. I limiti di velocità non possono superare il 200% del valore impostato nel parametro Fondo scala velocità (menu RIFERIMENTI par. 680).

<table>
<thead>
<tr>
<th>Menu</th>
<th>PAR</th>
<th>Descrizione</th>
<th>UM</th>
<th>Tipo</th>
<th>FB BIT</th>
<th>Def</th>
<th>Min</th>
<th>Max</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.23</td>
<td>672</td>
<td>Limite inf rif vel</td>
<td>FF</td>
<td>INT32</td>
<td>CALCI</td>
<td>CALCI</td>
<td>0</td>
<td>ERWZ</td>
<td>FVS</td>
<td></td>
</tr>
</tbody>
</table>

Impostazione del limite inferiore del riferimento di velocità. Se il riferimento di velocità eccede i limiti, la velocità del motore rimarrà comunque al valore del limite impostato. I limiti di velocità non possono superare il 200% del valore impostato nel parametro Fondo scala velocità (menu RIFERIMENTI par. 680).

<table>
<thead>
<tr>
<th>Menu</th>
<th>PAR</th>
<th>Descrizione</th>
<th>UM</th>
<th>Tipo</th>
<th>FB BIT</th>
<th>Def</th>
<th>Min</th>
<th>Max</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.24</td>
<td>680</td>
<td>Fondo scala velocità</td>
<td>rpm</td>
<td>INT16</td>
<td>CALCI</td>
<td>50</td>
<td>32000</td>
<td>RWZ</td>
<td>FVS</td>
<td></td>
</tr>
</tbody>
</table>

Impostazione del valore di riferimento per tutti i dati percentuali di velocità (Riferimenti, Adattativi di velocità ...) e corrisponde al 100 % della velocità stessa. Questo parametro può essere cambiato solo con inverter bloccato (Abilitazione azionamento = Disabilitato). E’ consigliabile impostare il valore di questo parametro alla velocità nominale del motore nel caso di variazione è consigliabile ripetere la procedura di autoaprendimento.
Fondo scala velocità non definisce la velocità massima possibile. In ogni caso, il valore massimo della percentuale di velocità è ± 200 % del valore di Fondo scala velocità.
La rampa (integratore del riferimento) determina i tempi di accelerazione e di decelerazione dell’azionamento. I tempi possono essere impostati in modo indipendente.

Per il comando di Arresto Rapido, attivabile da morsettiera, vengono utilizzati i tempi di rampa specificati nei parametri **Tempo accelerazione3** e **Tempo decelerazione3**.

La forma della rampa può essere a scelta lineare oppure a forma di S.

I riferimenti possono essere impostati in diversi modi:
- con i riferimenti Rif digitale rampa 1 e/o Rif digitale rampa 2
- con la funzione Multi riferimenti
- con la funzione Motopotenziometro
- con la funzione Jog

Il generatore di rampa può essere usato in configurazione “stand alone”. Quando è disabilitato (**Tipo di rampa = Spento**), i comandi di “Abilitazione azionamento, Marcia/Arresto e Arresto rapido” non hanno influenza sul generatore di rampa. In tale condizione il generatore di rampa può essere utilizzato separatamente.

<table>
<thead>
<tr>
<th>Menu</th>
<th>PAR</th>
<th>Descrizione</th>
<th>UM</th>
<th>Tipo</th>
<th>FB BIT</th>
<th>Def</th>
<th>Min</th>
<th>Max</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.1</td>
<td>700</td>
<td>Tempo accelerazione0</td>
<td>s</td>
<td>FLOAT</td>
<td></td>
<td>10.00</td>
<td>0.01</td>
<td>1000.00</td>
<td>RW</td>
<td>FVS</td>
</tr>
<tr>
<td>6.2</td>
<td>702</td>
<td>Tempo decelerazione0</td>
<td>s</td>
<td>FLOAT</td>
<td></td>
<td>10.00</td>
<td>0.01</td>
<td>1000.00</td>
<td>RW</td>
<td>FVS</td>
</tr>
<tr>
<td>6.3</td>
<td>704</td>
<td>Tempo accelerazione1</td>
<td>s</td>
<td>FLOAT</td>
<td></td>
<td>10.00</td>
<td>0.01</td>
<td>1000.00</td>
<td>ERW</td>
<td>FVS</td>
</tr>
<tr>
<td>6.4</td>
<td>706</td>
<td>Tempo decelerazione1</td>
<td>s</td>
<td>FLOAT</td>
<td></td>
<td>10.00</td>
<td>0.01</td>
<td>1000.00</td>
<td>ERW</td>
<td>FVS</td>
</tr>
<tr>
<td>6.5</td>
<td>708</td>
<td>Tempo accelerazione2</td>
<td>s</td>
<td>FLOAT</td>
<td></td>
<td>10.00</td>
<td>0.01</td>
<td>1000.00</td>
<td>ERW</td>
<td>FVS</td>
</tr>
<tr>
<td>6.6</td>
<td>710</td>
<td>Tempo decelerazione2</td>
<td>s</td>
<td>FLOAT</td>
<td></td>
<td>10.00</td>
<td>0.01</td>
<td>1000.00</td>
<td>ERW</td>
<td>FVS</td>
</tr>
<tr>
<td>6.7</td>
<td>712</td>
<td>Tempo accelerazione3</td>
<td>s</td>
<td>FLOAT</td>
<td></td>
<td>10.00</td>
<td>0.01</td>
<td>1000.00</td>
<td>ERW</td>
<td>FVS</td>
</tr>
<tr>
<td>6.8</td>
<td>714</td>
<td>Tempo decelerazione3</td>
<td>s</td>
<td>FLOAT</td>
<td></td>
<td>10.00</td>
<td>0.01</td>
<td>1000.00</td>
<td>ERW</td>
<td>FVS</td>
</tr>
</tbody>
</table>

I tempi di rampa di accelerazione e decelerazione sono utilizzati per evitare cambiamenti repentini nella frequenza di uscita del drive, che potrebbero causare shock meccanici, eccessivi valori di corrente sul motore ed eccessivi valori di tensione di DC-bus. I tempi di accelerazione (6.1, 6.3, 6.5, 6.7) sono espressi come tempo.
necessario per portare la frequenza da zero al massimo valore impostato nel parametro Fondo scala velocità (par. 680). Al contrario, i tempi di decelerazione (6.2, 6.4, 6.6, 6.8) sono espressi come tempo necessario per portare la frequenza dal massimo valore impostato nel parametro Fondo scala velocità (par. 680) a zero. Ciascuna delle 4 selezioni di rampe disponibili può essere selezionata usando uno o due ingressi digitali programmati come Sorg sel multirampa.

<table>
<thead>
<tr>
<th>Menu</th>
<th>PAR</th>
<th>Descrizione</th>
<th>UM</th>
<th>Tipo</th>
<th>FB BIT</th>
<th>Def</th>
<th>Min</th>
<th>Max</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.9</td>
<td>720</td>
<td>Tipo di rampa</td>
<td>ENUM</td>
<td>Lineare</td>
<td>0</td>
<td>3</td>
<td>ERWZ</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Questo parametro imposta la forma della rampa (lineare/ad S). Questo parametro può essere modificato solo con il drive disabilitato.

0 Lineare
1 Curva ad S
2 Bypass
3 Spento

Impostando le rampe lineari (Lineare) la velocità del motore varia in maniera direttamente proporzionale alla frequenza.

Impostando le rampe ad S (Curva ad S) è possibile evitare brusche variazioni meccaniche nel sistema all’inizio e alla fine della fase di accelerazione e decelerazione.

Il tempo di rampa, inteso come il tempo necessario per accelerare da zero al massimo valore di frequenza impostato, è dato dalla somma del tempo di rampa lineare e di quello dei Jerks abbinati (vedi par. 6.13 – 6.20).

Il Bypass esclude il circuito di rampa ed il riferimento viene portato direttamente all’ingresso del regolatore di velocità.

Con Spento il riferimento di rampa viene portato a zero.

<table>
<thead>
<tr>
<th>Menu</th>
<th>PAR</th>
<th>Descrizione</th>
<th>UM</th>
<th>Tipo</th>
<th>FB BIT</th>
<th>Def</th>
<th>Min</th>
<th>Max</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.10</td>
<td>722</td>
<td>Sorg sel multirampa0</td>
<td>LINK</td>
<td></td>
<td>6000</td>
<td>0</td>
<td>16384</td>
<td>ERWZ</td>
<td>FVS</td>
<td></td>
</tr>
<tr>
<td>6.11</td>
<td>724</td>
<td>Sorg sel multirampa1</td>
<td>LINK</td>
<td></td>
<td>6000</td>
<td>0</td>
<td>16384</td>
<td>ERWZ</td>
<td>FVS</td>
<td></td>
</tr>
</tbody>
</table>

Utilizzando 1 o 2 ingressi digitali è possibile selezionare uno dei 4 set di rampa a disposizione.

La selezione dell’origine (sorgente) del comando per attivare la funzione di selezione rampa può essere scelta nella lista di selezione “L_DIGSEL2”.

La tabella seguente descrive il procedimento di selezione della rampa:

<table>
<thead>
<tr>
<th>Tempo</th>
<th>Sorg sel multirampa0</th>
<th>Sorg sel multirampa1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tempo accelerazione0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Tempo decelerazione0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tempo accelerazione1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Tempo decelerazione1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tempo accelerazione2</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Tempo decelerazione2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tempo accelerazione3</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Tempo decelerazione3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Menu</td>
<td>PAR</td>
<td>Descrizione</td>
</tr>
<tr>
<td>------</td>
<td>-----</td>
<td>-------------</td>
</tr>
<tr>
<td>6.12</td>
<td></td>
<td>Mon sel multirampa</td>
</tr>
</tbody>
</table>

Visualizzazione del set delle rampe di accelerazione/decelerazione selezionato con gli ingressi digitali.

<table>
<thead>
<tr>
<th>Menu</th>
<th>PAR</th>
<th>Descrizione</th>
<th>UM</th>
<th>Tipo</th>
<th>FB BIT</th>
<th>Def</th>
<th>Min</th>
<th>Max</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.13</td>
<td></td>
<td>Tempo jerk accel 0</td>
<td>s</td>
<td>FLOAT</td>
<td></td>
<td>1.0</td>
<td>0.02</td>
<td>10.0</td>
<td>ERW</td>
<td>FVS</td>
</tr>
<tr>
<td>6.14</td>
<td></td>
<td>Tempo jerk decel 0</td>
<td>s</td>
<td>FLOAT</td>
<td></td>
<td>1.0</td>
<td>0.02</td>
<td>10.0</td>
<td>ERW</td>
<td>FVS</td>
</tr>
<tr>
<td>6.15</td>
<td></td>
<td>Tempo jerk accel 1</td>
<td>s</td>
<td>FLOAT</td>
<td></td>
<td>1.0</td>
<td>0.02</td>
<td>10.0</td>
<td>ERW</td>
<td>FVS</td>
</tr>
<tr>
<td>6.16</td>
<td></td>
<td>Tempo jerk decel 1</td>
<td>s</td>
<td>FLOAT</td>
<td></td>
<td>1.0</td>
<td>0.02</td>
<td>10.0</td>
<td>ERW</td>
<td>FVS</td>
</tr>
<tr>
<td>6.17</td>
<td></td>
<td>Tempo jerk accel 2</td>
<td>s</td>
<td>FLOAT</td>
<td></td>
<td>1.0</td>
<td>0.02</td>
<td>10.0</td>
<td>ERW</td>
<td>FVS</td>
</tr>
<tr>
<td>6.18</td>
<td></td>
<td>Tempo jerk decel 2</td>
<td>s</td>
<td>FLOAT</td>
<td></td>
<td>1.0</td>
<td>0.02</td>
<td>10.0</td>
<td>ERW</td>
<td>FVS</td>
</tr>
<tr>
<td>6.19</td>
<td></td>
<td>Tempo jerk accel 3</td>
<td>s</td>
<td>FLOAT</td>
<td></td>
<td>1.0</td>
<td>0.02</td>
<td>10.0</td>
<td>ERW</td>
<td>FVS</td>
</tr>
<tr>
<td>6.20</td>
<td></td>
<td>Tempo jerk decel 3</td>
<td>s</td>
<td>FLOAT</td>
<td></td>
<td>1.0</td>
<td>0.02</td>
<td>10.0</td>
<td>ERW</td>
<td>FVS</td>
</tr>
</tbody>
</table>

![Diagram](attachment:diagram.png)

<table>
<thead>
<tr>
<th>Menu</th>
<th>PAR</th>
<th>Descrizione</th>
<th>UM</th>
<th>Tipo</th>
<th>FB BIT</th>
<th>Def</th>
<th>Min</th>
<th>Max</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.21</td>
<td></td>
<td>Sorg ing rampa = 0</td>
<td>LINK</td>
<td>16</td>
<td>6000</td>
<td>0</td>
<td>16384</td>
<td>ERW</td>
<td>FVS</td>
<td></td>
</tr>
</tbody>
</table>

Selezione dell’origine (sorgente) del segnale che blocca l’ingresso di rampa e ne porta a zero il riferimento. Se l’ingresso di rampa è sbloccato il parametro *Rif rampa* corrisponde al riferimento impostato. Se l’ingresso di rampa viene bloccato, il drive rallenta con il tempo di decelerazione impostato fino a velocità zero. Il morsetto da associare a questa funzione può essere selezionato nella lista di selezione “L_DIGSEL2”.

<table>
<thead>
<tr>
<th>Menu</th>
<th>PAR</th>
<th>Descrizione</th>
<th>UM</th>
<th>Tipo</th>
<th>FB BIT</th>
<th>Def</th>
<th>Min</th>
<th>Max</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.22</td>
<td></td>
<td>Sorg usc rampa = 0</td>
<td>LINK</td>
<td>16</td>
<td>6000</td>
<td>0</td>
<td>16384</td>
<td>ERW</td>
<td>FVS</td>
<td></td>
</tr>
</tbody>
</table>

Selezione dell’origine (sorgente) del segnale che porta a zero la rampa (*Rif rampa 1/Rif rampa 2 = 0*). Quando l’uscita di rampa viene posta a zero con Sorg usc rampa = 0, il drive frena con la coppia massima disponibile; la rampa in questo caso è inattiva. Il morsetto da associare a questa funzione può essere selezionato nella lista di selezione “L_DIGSEL2”.

<table>
<thead>
<tr>
<th>Menu</th>
<th>PAR</th>
<th>Descrizione</th>
<th>UM</th>
<th>Tipo</th>
<th>FB BIT</th>
<th>Def</th>
<th>Min</th>
<th>Max</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.23</td>
<td></td>
<td>Sorg freeze rampa</td>
<td>LINK</td>
<td>16</td>
<td>3480</td>
<td>0</td>
<td>16384</td>
<td>ERW</td>
<td>FVS</td>
<td></td>
</tr>
</tbody>
</table>

Selezione dell’origine (sorgente) del segnale che mantiene temporaneamente il valore all’uscita della rampa, indipendentemente dalle eventuali variazioni di riferimento all’ingresso. Il morsetto da associare a questa funzione può essere selezionato nella lista di selezione “L_DIGSEL2”
Ramp freeze

Ramp Output
(Motor speed)
La funzione “Multi velocità” (Multi riferimenti) consente di richiamare, per mezzo di un segnale digitale o attraverso ingressi digitali in morsettiera, fino a sedici riferimenti di velocità internamente memorizzati.

<table>
<thead>
<tr>
<th>Menu</th>
<th>PAR</th>
<th>Descrizione</th>
<th>UM</th>
<th>Tipo</th>
<th>FB BIT</th>
<th>Def</th>
<th>Min</th>
<th>Max</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.1</td>
<td>800</td>
<td>Multiriferimento 0</td>
<td>FF</td>
<td>INT16</td>
<td>16/32</td>
<td>0</td>
<td>CALCI</td>
<td>CALCI</td>
<td>RW</td>
<td>FVS</td>
</tr>
<tr>
<td>7.2</td>
<td>802</td>
<td>Multiriferimento 1</td>
<td>FF</td>
<td>INT16</td>
<td>16/32</td>
<td>0</td>
<td>CALCI</td>
<td>CALCI</td>
<td>RW</td>
<td>FVS</td>
</tr>
<tr>
<td>7.3</td>
<td>804</td>
<td>Multiriferimento 2</td>
<td>FF</td>
<td>INT16</td>
<td></td>
<td>0</td>
<td>CALCI</td>
<td>CALCI</td>
<td>RW</td>
<td>FVS</td>
</tr>
<tr>
<td>7.4</td>
<td>806</td>
<td>Multiriferimento 3</td>
<td>FF</td>
<td>INT16</td>
<td></td>
<td>0</td>
<td>CALCI</td>
<td>CALCI</td>
<td>RW</td>
<td>FVS</td>
</tr>
<tr>
<td>7.5</td>
<td>808</td>
<td>Multiriferimento 4</td>
<td>FF</td>
<td>INT16</td>
<td></td>
<td>0</td>
<td>CALCI</td>
<td>CALCI</td>
<td>RW</td>
<td>FVS</td>
</tr>
<tr>
<td>7.6</td>
<td>810</td>
<td>Multiriferimento 5</td>
<td>FF</td>
<td>INT16</td>
<td></td>
<td>0</td>
<td>CALCI</td>
<td>CALCI</td>
<td>RW</td>
<td>FVS</td>
</tr>
</tbody>
</table>
È possibile selezionare fino a 16 frequenze di funzionamento, il cui valore viene impostato da questi parametri.

La selezione di tali frequenze è eseguita mediante la codifica binaria degli ingressi digitali programmati con i parametri Sorg sel multirif 0, Sorg sel multirif 1, Sorg sel multirif 2 e Sorg sel multirif 3.

L'impostazione dei riferimenti può essere effettuata tramite tastierino, da linea seriale, da ingressi digitali e da BUS.

I riferimenti possono essere dotati di segno, in modo tale che con la loro definizione può essere impostato anche il senso di rotazione desiderato.

La tabella riportata di seguito, descrive la selezione della funzione Multivelocity:

<table>
<thead>
<tr>
<th>Rif velocità attivo</th>
<th>Sorg sel multi rif 0</th>
<th>Sorg sel multi rif 1</th>
<th>Sorg sel multi rif 2</th>
<th>Sorg sel multi rif 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Multiriferimento 0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Multiriferimento 1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Multiriferimento 2</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Multiriferimento 3</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Multiriferimento 4</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Multiriferimento 5</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Multiriferimento 6</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Multiriferimento 7</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Multiriferimento 8</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Multiriferimento 9</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Multiriferimento 10</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Multiriferimento 11</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>
La seguente figura descrive la selezione di un controllo di 8 Multivelocità.

Visualizzazione della multivelocità selezionata per mezzo dei comandi digitali o dagli ingressi digitali selezionati in morsettiera.

Visualizzazione del riferimento di velocità selezionato in uscita dal blocco Multivelocità.
Con la funzione Motopotenziometro si può variare il riferimento di velocità del drive premendo dei pulsanti a cui sono associati il comando AUMENTA e il comando DIMINUISCI.

I comandi AUMENTA e DIMINUISCI possono essere applicati da tastierino, da ingressi digitali, da linea seriale o da bus di campo.

Per applicare i comandi AUMENTA e DIMINUISCI da tastierino si deve entrare in modalità di modifica del parametro Setpoint val Mpot e premere i tasti AUMENTA e DIMINUISCI.

I comandi AUMENTA e DIMINUISCI incrementeranno o decrementeranno la velocità del motore fino a quando tali comandi saranno presenti. La presenza contemporanea di entrambi i comandi non produce nessuna variazione. La variazione di velocità avviene con i tempi di rampa impostati ed entro i limiti inferiore e superiore impostati.

E' possibile configurare il valore che l’uscita della funzione Motopotenzio meter deve assumere al power-on del drive. Con il comando PRESET è possibile forzare un preset che devono assumere l’ingresso e l’uscita, della funzione Motopotenzio meter.

Con il comando INVERSIONE è possibile forzare un’inversione del segno del riferimento della funzione Motopotenzio meter.

Nelle condizioni di default il riferimento di velocità prodotto dalla funzione Motopotenzio meter è collegato in ingresso alla funzione Rampa: se si desidera un controllo diretto sulla velocità del motore è consigliato azzerare i tempi impostati sui parametri Tempo accelerazione e Tempo decelerazione nel menù RAMPE.

NOTA! La funzione Motopotenzio meter produce un riferimento di velocità, quindi per mettere in rotazione il motore è sempre necessario fornire il comando RUN.
8.1 870 Setpoint valore Mpot
rpm INT16 16/32 0 CALCI CALCI R FVS

Visualizzazione del valore del riferimento di velocità della funzione Motopotenziometro.
Ci si deve posizionare su questo parametro per applicare i comandi Aumenta e Diminuisci da tastierino.

8.2 872 Accelerazione Mpot
s FLOAT 5.0 0.01 1000.00 RW FVS

Impostazione dei tempi di rampa (in secondi) di accelerazione/decelerazione utilizzati con la funzione Motopotenziometro.

8.3 874 Decelerazione Mpot
s FLOAT 5.0 0.01 1000.00 RW FVS

Impostazione dei tempi di rampa (in secondi) di accelerazione/decelerazione utilizzati con la funzione Motopotenziometro.

8.4 876 Lim superiore Mpot
rpm INT16 1500 CALCI CALCI ERW FVS

Impostazione del limite superiore del riferimento di velocità in uscita dal motopotenziometro.

8.5 878 Lim inferiore Mpot
rpm INT16 0 CALCI CALCI ERW FVS

Impostazione del limite inferiore del riferimento di velocità in uscita dal motopotenziometro.

8.6 880 Conf iniziale Mpot
ENUM Zero 0 3 ERW FVS

Con questo parametro si configura il valore dell’uscita del Motopotenziometro all’avviamento del drive.

0 Ultima disalim
1 Zero
2 Lim Inferiore
3 Lim Superiore

Impostando **Ultima disalim** l’uscita del motopotenziometro partirà dall’ultima frequenza impostata prima dello spegnimento del drive.

Impostando **Zero** l’uscita del motopotenziometro partirà dal valore zero.

Impostando **Lim Inferiore** l’uscita del motopotenziometro partirà dal valore del limite inferiore impostato nel parametro **Lim inferiore Mpot**.

Impostando **Lim Superiore** l’uscita del motopotenziometro partirà dal valore del limite superiore impostato nel parametro **Lim superiore Mpot**.

8.7 882 Conf preset Mpot
ENUM Nessuna 0 11 ERW FVS

Con questo parametro è possibile configurare il preset della funzione Motopotenziometro, cioè configurare il valore a cui vengono impostati l’ingresso e l’uscita del Motopotenziometro al momento in cui si attiva il comando Preset.

Il comando Preset ha priorità sul comando Aumenta e il comando Diminuisci.

La **Modalità Mpot** (PAR 892) = [1] **Rampa&Seguente** ha la priorità sul comando Preset, cioè le azioni programmate su **Conf preset Mpot** (PAR 882) non vengono eseguite.

I comandi Aumenta e Diminuisci ritorneranno abilitati quando il comando Preset si disattiverà.

0 Nessuna
1 Ingresso=0
2 Ingr=lim inf
3 Ingr&rif=0
4 Ingr&rif=l inf
5 Uscita=0
Selezionando **Nessuno** non viene eseguita nessuna impostazione.

Selezionando **Ingresso=0** si imposta Ingresso = 0 cioè si esegue un momentaneo set del riferimento e il precedente valore di riferimento viene mantenuto. L'uscita della funzione Motopotenziometro varierà con i tempi di rampa impostati. Il precedente valore di riferimento viene ripristinato quando si rimuove il comando preset.

Selezionando **Ingr=lim inf** si imposta Ingresso = limite inferiore cioè si esegue un momentaneo set del riferimento e il precedente valore di riferimento viene mantenuto. L'uscita della funzione Motopotenziometro varierà con i tempi di rampa impostati. Il precedente valore di riferimento viene ripristinato quando si rimuove il comando preset.

Selezionando **Ingr&rif=0** si imposta Ingresso = 0 e Riferimento = 0 cioè si esegue un definitivo set del riferimento. L'uscita della funzione Motopotenziometro varierà con i tempi di rampa impostati.

Selezionando **Ingr&rif=inf** si imposta Ingresso = limite inferiore e Riferimento = limite inferiore cioè si esegue un definitivo set del riferimento. L'uscita della funzione Motopotenziometro varierà con i tempi di rampa impostati.

Selezionando **Uscita=0** si imposta Uscita = 0 cioè si esegue un momentaneo set dell’uscita della funzione Motopotenziometro. Il precedente valore di riferimento viene mantenuto. Se il comando preset è attivo l’uscita della funzione Motopotenziometro rimarrà = 0, se il comando preset non è attivo l’uscita della funzione Motopotenziometro varierà con i tempi di rampa impostati.

Selezionando **Uscita=lim inf** si imposta Uscita = limite inferiore cioè si esegue un momentaneo set dell’uscita della funzione Motopotenziometro. Il precedente valore di riferimento viene mantenuto. Se il comando preset è attivo l’uscita della funzione Motopotenziometro rimarrà = limite inferiore, se il comando preset non è attivo l’uscita della funzione Motopotenziometro varierà con i tempi di rampa impostati.

Selezionando **Uscita&rif=0** si imposta Uscita = 0 e Riferimento = 0 cioè si esegue un definitivo set dell’uscita della funzione Motopotenziometro.

Selezionando **Uscita&rif=inf** si imposta Uscita = limite inferiore e Riferimento = limite inferiore cioè si esegue un definitivo set dell’uscita della funzione Motopotenziometro.

Selezionando **Ingr=lim sup** si imposta Ingresso = limite superiore cioè si esegue un momentaneo set del riferimento e il precedente valore di riferimento viene mantenuto. L’uscita della funzione Motopotenziometro varierà con i tempi di rampa impostati. Il precedente valore di riferimento viene ripristinato quando si rimuove il comando preset.

Selezionando **Ingr&rif=sup** si imposta Ingresso = limite superiore e Riferimento = limite superiore cioè si esegue un definitivo set del riferimento. L’uscita della funzione Motopotenziometro varierà con i tempi di rampa impostati.

Selezionando **Cong ingresso** si esegue una momentanea disabilitazione dei comandi Aumenta e Diminuisci.

<table>
<thead>
<tr>
<th>Menu</th>
<th>PAR</th>
<th>Descrizione</th>
<th>UM</th>
<th>Tipo</th>
<th>FB</th>
<th>BIT</th>
<th>Def</th>
<th>Min</th>
<th>Max</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.8</td>
<td>884</td>
<td>Sorg aumento Mpot</td>
<td>LINK 16</td>
<td>6000</td>
<td>0</td>
<td>16384</td>
<td>RW</td>
<td>FVS</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Selezione dell’origine (sorgente) del segnale che aumenta il riferimento di velocità del motopotenziometro con la rampa impostata. Il morsetto da associare a questa funzione può essere selezionato nella lista di selezione “L_DIGSEL2”.

<table>
<thead>
<tr>
<th>Menu</th>
<th>PAR</th>
<th>Descrizione</th>
<th>UM</th>
<th>Tipo</th>
<th>FB</th>
<th>BIT</th>
<th>Def</th>
<th>Min</th>
<th>Max</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.9</td>
<td>886</td>
<td>Sorg diminuisce Mpot</td>
<td>LINK 16</td>
<td>6000</td>
<td>0</td>
<td>16384</td>
<td>RW</td>
<td>FVS</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Selezione dell’origine (sorgente) del segnale che diminuisce il riferimento di velocità del motopotenziometro con la rampa impostata. Il morsetto da associare a questa funzione può essere selezionato nella lista di selezione “L_DIGSEL2”
Selezione dell’origine (sorgente) del segnale che inverte il segno del riferimento di velocità del motopotenzimetro. Il morsetto da associare a questa funzione può essere selezionato nella lista di selezione “L_DIGSEL2”

Selezione dell’origine (sorgente) del segnale che esegue il preset della funzione motopotenzimetro. Il segnale da associare a questa funzione può essere selezionato nella lista di selezione “L_DIGSEL2”

Impostazione della configurazione di due possibili opzioni della funzione Motopotenzimetro. Per ognuna delle due opzioni esistono due modalità operative

0 Rampa&Ult Val
1 Rampa&Segue
e Seguente
2 Precis&Ult Val
3 Precis&Segue

Opzione 1: Comportamento della funzione Motopotenzimetro in presenza del comando di Arresto o Arresto rapido con il parametro Modalità controllo = Rampa.

Le due modalità operative sono: Ult Val oppure Segue.
Se il parametro Modalità controllo è diverso da Rampa questa opzione non è completamente applicabile, si ha sempre il comportamento Ult Val.

In modalità Ult Val in presenza del comando di Arresto o Arresto rapido il riferimento di velocità della funzione Motopotenzimetro non viene modificato.

La velocità del motore si porta a 0 in accordo allo schema di controllo selezionato (Modalità controllo = Rampa oppure Modalità controllo = Velocità). Quando il comando Run viene applicato la velocità del motore si porta al riferimento di velocità imposto dalla funzione motopotenzimetro in accordo allo schema di controllo selezionato.

In modalità Segue in presenza del comando di Arresto o Arresto rapido si simula il comando Diminuisci cioè l’uscita della funzione Motopotenzimetro tenderà a 0 con il tempo di rampa impostato.

Se il comando di Run viene applicato quando si è raggiunta la velocità 0, questa viene mantenuta finché non viene applicato il comando Aumenta. Se il comando Run viene applicato prima del raggiungimento della velocità 0 del motore la velocità in quel momento viene presa come nuovo riferimento.
Opzione 2: Comportamento della rampa

Le due modalità operative sono: Rampa oppure Precis

In modalità Rampa ad ogni attivazione dei comandi Aumenta o Diminuisci si incrementa o decrementa linearemente l’uscita della funzione Motopotenzio metro con la rampa impostata. Quando si rimuove il comando Aumenta o Diminuisci viene mantenuto l’ultimo valore raggiunto.

In modalità Precis ad ogni attivazione dei comandi Aumenta o Diminuisci si incrementa o decrementa l’uscita della funzione Motopotenzio metro di 1 rpm.

Se il comando permane per un tempo inferiore ad 1 secondo non si eseguono altre variazioni su uscita.

Se il comando permane per un tempo superiore ad 1 secondo si incrementa o decrementa linearnente l’uscita con la rampa impostata. La variazione con la rampa impostata viene raggiunta in modo graduale (1 secondo). Quando si rimuove il comando Aumenta o Diminuisci viene mantenuto l’ultimo valore raggiunto.

<table>
<thead>
<tr>
<th>Modalità motopotenz</th>
<th>Comportamento della rampa</th>
<th>Comportamento della funzione Motopotenzioetro in presenza del comando di Arresto o Arresto rapido con il parametro \textit{Modalità Mpot} = \textit{Rampa}.</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Rampa</td>
<td>Ult Val</td>
</tr>
<tr>
<td>1</td>
<td>Rampa</td>
<td>Seguente</td>
</tr>
<tr>
<td>2</td>
<td>Precis</td>
<td>Ult Val</td>
</tr>
<tr>
<td>3</td>
<td>Precis</td>
<td>Seguente</td>
</tr>
</tbody>
</table>
Visualizzazione del valore dell’uscita della funzione motopotenziometro.

Di seguito sono riportati due esempi di applicazione della funzione Motopotenziometro.

Regolazione manuale della velocità con comando da pulpitto.

![Diagram of manual speed regulation with control from pulpit]

Tramite i pulsanti Aumenta e Diminuisce si vuole regolare la velocità di un motore.
Per ottenere una regolazione fine del valore di riferimento di velocità è consigliato settare **Modalità Mpot = Precis&Seguente** oppure **Precis&Ult Val**. Ad ogni pressione per 1 secondo viene eseguito un incremento di velocità di 1 rpm. Se si vuole un effetto immediato su velocità del motore è consigliato impostare su tempi brevi i parametri Tempo accelerazione e Tempo decelerazione.

Regolazione automatica della velocità per rudimentale controllo ballerino.

![Diagram of automatic speed regulation for rudimentary dancer control]

I fine corsa posizionati agli estremi dell’escursione del ballerino sono collegati ai comando Aumenta e Diminuisce della funzione Motopotenziometro. Se il ballerino arriva a premere il finecorsa inferiore significa che il motore 2 girerà lentamente quindi occorre eseguire il comando Aumenta. Se il ballerino arriva a premere il finecorsa superiore significa che il motore 2 girerà velocemente quindi occorre eseguire il comando Diminuisce.
Su entrambi i drive collegare il riferimento di linea su **Sorgente rif rampa 1**, su drive 2 collegare uscita della funzione Motopotenziometro su **Sorg rif velocità 1**.
Per ottenere una variazione immediata della velocità del motore è consigliato settare **Modalità Mpot = Rampa&Seguente** oppure **Rampa&Ult Val**.
9 – FUNZIONE JOG

Menu PAR Descrizione UM Tipo FB BIT Def Min Max Acc Mod

9.1 **910 Setpoint valore jog** rpm INT16 0 CALCI CALCI RW FVS

E’ il riferimento per il funzionamento in Jog. Il riferimento di marcia Jog viene abilitato quando è attivato il segnale utilizzato per il comando Jog + oppure Jog - e non è presente il comando di Marcia la frequenza di uscita del drive è nulla.

9.2 **912 Accelerazione jog** s FLOAT 5.0 0.01 1000.00 RW FVS
9.3 **914 Decelerazione jog** s FLOAT 5.0 0.01 1000.00 RW FVS

Impostazione del tempo di rampa di accelerazione/decelerazione (in secondi) utilizzato durante il funzionamento Jog.

9.4 **916 Sorg comando jog +** LINK 16 6000 0 16384 RW FVS

Selezione dell’origine (sorgente) del segnale di attivazione della funzione di Jog +. Attivando questo comando si avrà un riferimento di Marcia Jog con segno concorde al valore inserito al parametro Setpoint valore jog. Il segnale da associare a questa funzione può essere selezionato nella lista di selezione “L_DIGSEL2”.

NOTA! Il comando di Marcia ha la priorità sul comando di Jog +.

9.5 **918 Sorg comando jog -** LINK 16 6000 0 16384 RW FVS

Selezione dell’origine (sorgente) del segnale di attivazione della funzione di Jog -. Attivando questo comando si avrà un riferimento di Marcia Jog con segno invertito rispetto al valore inserito al parametro Setpoint valore jog. Il segnale da associare a questa funzione può essere selezionato nella lista di selezione “L_DIGSEL2”.

NOTA! Il comando di Marcia ha la priorità sul comando di Jog -.

9.6 **920 Monitor uscita jog** rpm INT16 16/32 0 0 0 ER FVS

Visualizzazione del valore del riferimento di velocità utilizzato dal comando di Jog.
10 – FUNZIONE MONITOR

10.1 930 Soglia riferimento 0 rpm INT16 30 0 CALCI RW FVS

Impostazione della soglia per il riconoscimento di riferimento di velocità = 0. Il valore ha effetto per entrambi i sensi di rotazione.

10.2 932 Ritardo riferimento0 ms UINT16 400 0 10000 RW FVS

Impostazione del tempo di ritardo in millisecondi dopo il quale viene attivata la segnalazione di raggiungimento riferimento = 0.

10.3 940 Soglia velocità 0 rpm INT16 30 0 CALCI RW FVS

Impostazione della soglia per il riconoscimento del valore di velocità = 0. Il valore ha effetto per entrambi i sensi di rotazione.

10.4 942 Ritardo velocità 0 ms UINT16 400 0 10000 RW FVS

Impostazione del tempo di ritardo in millisecondi dopo il quale viene attivata la segnalazione di raggiungimento velocità = 0. Quando il motore raggiunge una velocità inferiore alla soglia di velocità zero, viene arrestato e sul display si accende il led n=0.
<table>
<thead>
<tr>
<th>Menu</th>
<th>PAR</th>
<th>Descrizione</th>
<th>UM</th>
<th>Tipo</th>
<th>FB BIT</th>
<th>Def</th>
<th>Min</th>
<th>Max</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.5</td>
<td>950</td>
<td>Soglia velocità 1</td>
<td>rpm</td>
<td>INT32</td>
<td>CALCI</td>
<td>CALCI</td>
<td>0</td>
<td>CALCI</td>
<td>RW</td>
<td>FVS</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Impostazione della soglia di velocità 1 (superiore). Al superamento della soglia viene disattivato il segnale Soglia velocità, con un ritardo che può essere impostato in Rit soglia velocità.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Menu</th>
<th>PAR</th>
<th>Descrizione</th>
<th>UM</th>
<th>Tipo</th>
<th>FB BIT</th>
<th>Def</th>
<th>Min</th>
<th>Max</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.6</td>
<td>952</td>
<td>Soglia velocità 2</td>
<td>rpm</td>
<td>INT32</td>
<td>CALCI</td>
<td>CALCI</td>
<td>0</td>
<td>CALCI</td>
<td>RW</td>
<td>FVS</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Impostazione della soglia di velocità 2 (inferiore). Al superamento della soglia viene disattivato il segnale Soglia velocità, con un ritardo che può essere impostato in Rit soglia velocità.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Menu</th>
<th>PAR</th>
<th>Descrizione</th>
<th>UM</th>
<th>Tipo</th>
<th>FB BIT</th>
<th>Def</th>
<th>Min</th>
<th>Max</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.7</td>
<td>954</td>
<td>Rit soglia velocità</td>
<td>ms</td>
<td>UINT16</td>
<td>0</td>
<td>0</td>
<td>50000</td>
<td>RW</td>
<td>FVS</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Impostazione del tempo di ritardo con il quale viene attivata la transizione 0 (\rightarrow) 1. La transizione 0 (\rightarrow) 1 avviene quando la velocità è all’interno delle soglie impostate. La transizione del segnale Soglia velocità da 1 (\rightarrow) 0 avviene sempre in maniera immediata. Se la velocità del motore è compresa tra Soglia velocità 1 e Soglia velocità 2 allora la segnalazione Soglia velocità è attiva. Se si imposta Soglia velocità 1 < Soglia velocità 2 allora la segnalazione Soglia velocità non è significativa.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Menu</th>
<th>PAR</th>
<th>Descrizione</th>
<th>UM</th>
<th>Tipo</th>
<th>FB BIT</th>
<th>Def</th>
<th>Min</th>
<th>Max</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.8</td>
<td>960</td>
<td>Sorg rif velocità</td>
<td>LINK</td>
<td>16/32</td>
<td>628</td>
<td>0</td>
<td>16384</td>
<td>ERW</td>
<td>FVS</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Seleziona dell’origin (sorgente) del segnale utilizzato come riferimento di velocità e sul quale viene eseguito il controllo di velocità raggiunta (nel caso di controllo con rampa si deve utilizzare il Imposta valore rampa, nel caso di controllo senza rampa si deve utilizzare Setpoint velocità). Il segnale utilizzabile come riferimento di velocità può essere impostato tra quelli disponibili nella lista di selezione “L_CMP”.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Menu</th>
<th>PAR</th>
<th>Descrizione</th>
<th>UM</th>
<th>Tipo</th>
<th>FB BIT</th>
<th>Def</th>
<th>Min</th>
<th>Max</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.9</td>
<td>962</td>
<td>Imp banda errore vel</td>
<td>rpm</td>
<td>INT16</td>
<td>CALCI</td>
<td>100</td>
<td>0</td>
<td>CALCI</td>
<td>RW</td>
<td>FVS</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Impostazione della larghezza di banda di tolleranza all’interno della quale, anche se la velocità non sia uguale al riferimento, i due valori vengono ritenuti coincidenti e pertanto viene attivato il segnale Impozzion velocità.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Menu</th>
<th>PAR</th>
<th>Descrizione</th>
<th>UM</th>
<th>Tipo</th>
<th>FB BIT</th>
<th>Def</th>
<th>Min</th>
<th>Max</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.10</td>
<td>964</td>
<td>Imp rit errore vel</td>
<td>ms</td>
<td>UINT16</td>
<td>0</td>
<td>0</td>
<td>50000</td>
<td>RW</td>
<td>FVS</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Impostazione di un tempo di ritardo in ms alla segnalazione (Setpoint velocità programmato su una uscita digitale), nel caso in cui la velocità rientri in una fascia di tolleranza definita dal parametro Errore vel impostata, dopo il quale viene attivata la transizione 0 (\rightarrow) 1. La transizione del segnale Setpoint velocità da 1 (\rightarrow) 0 avviene sempre in maniera immediata.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Menu PAR Descrizione UM Tipo FB BIT Def Min Max Acc Mod

<p>| | | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>10.11 968</td>
<td>Imp rif dig vel</td>
<td>rpm</td>
<td>UINT16 16/32BIT</td>
<td>0</td>
<td>CALCI</td>
<td>CALCI</td>
<td>RW</td>
<td>FVS</td>
<td></td>
</tr>
</tbody>
</table>

Impostazione della soglia utilizzata come riferimento di velocità: questo parametro può essere utilizzato nel caso in cui si abbia la necessità di impostare una soglia fissa indipendentemente dal riferimento di velocità.

Menu PAR Descrizione UM Tipo FB BIT Def Min Max Acc Mod

<p>| | | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>10.12 970</td>
<td>Soglia 3 velocità</td>
<td>rpm</td>
<td>INT32</td>
<td>0</td>
<td>0</td>
<td>CALCI</td>
<td>ERW</td>
<td>FVS</td>
<td></td>
</tr>
</tbody>
</table>

Impostazione della soglia di velocità 3. Quando viene rilevato il superamento di questa soglia + la banda di tolleranza impostata nel parametro 972 Isteresi soglia vel, viene attivato il parametro 976 Mon soglia vel 3. Il segnale si disattiva quando la velocità del motore scende al di sotto della soglia - la banda di tolleranza. Se il valore della soglia è inferiore al valore impostato in 972 Isteresi soglia vel, il risultato prodotto è sempre 0. Il valore impostato in questo parametro è attivo in entrambi i sensi di rotazione.

Menu PAR Descrizione UM Tipo FB BIT Def Min Max Acc Mod

<p>| | | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>10.13 972</td>
<td>Isteresi soglia vel</td>
<td>rpm</td>
<td>UINT16</td>
<td>0</td>
<td>0</td>
<td>CALCI</td>
<td>RW</td>
<td>FVS</td>
<td></td>
</tr>
</tbody>
</table>

Impostazione della banda di tolleranza nell'intorno della Soglia velocità 3. La banda di tolleranza è uguale per entrambi i sensi di rotazione del motore.

Menu PAR Descrizione UM Tipo FB BIT Def Min Max Acc Mod

<p>| | | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>10.14 980</td>
<td>Soglia corrente</td>
<td>perc</td>
<td>UINT16</td>
<td>100</td>
<td>0</td>
<td>200</td>
<td>RW</td>
<td>FVS</td>
<td></td>
</tr>
</tbody>
</table>

Impostazione della soglia di corrente. Il valore 100% corrisponde al valore della corrente continuativa drive in servizio pesante, visualizzata nel parametro 488 Corr continuat drive, quando il parametro 566 Mod sovracarico drv è impostato su Serv Pesante. Quando viene rilevato il superamento di questa soglia + la banda di tolleranza impostata nel parametro 982 Isteresi soglia cor, viene attivato il parametro 986 Mon soglia corrente. Il segnale si disattiva quando la velocità del motore scende al di sotto della soglia - la banda di tolleranza. Se il valore della soglia è inferiore al valore impostato in 982 Isteresi soglia cor, il risultato prodotto è sempre 0. Il valore impostato in questo parametro è attivo in entrambi i sensi di rotazione.
Isteresi soglia corr

<table>
<thead>
<tr>
<th>Menu</th>
<th>PAR</th>
<th>Descrizione</th>
<th>UM</th>
<th>Tipo</th>
<th>FB BIT</th>
<th>Def</th>
<th>Min</th>
<th>Max</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.15</td>
<td>982</td>
<td>Isteresi soglia corr</td>
<td>perc</td>
<td>UINT16</td>
<td>0</td>
<td>0</td>
<td>100</td>
<td>RW</td>
<td>FVS</td>
<td></td>
</tr>
</tbody>
</table>

Impostazione della banda di tolleranza nell'intorno della Soglia corrente. Il valore 100% corrisponde al valore della corrente continuativa drive in servizio pesante, visualizzata nel parametro 488 **Corr continuat drive**, quando il parametro 566 **Mod sovraccarico drv** è impostato su **Serv Pesante**. La banda di tolleranza è uguale per entrambi i sensi di rotazione del motore.
E' possibile lavorare in modalità **Locale** oppure in modalità **Remoto**

In modalità **Remoto** con il parametro "Sel comandi remoti" si configura la provenienza dei comandi Abilitazione e Marcia che può essere **Morsettiera** (Ingresso digitale standard, Ingresso digitale della scheda di espansione) oppure **Digitale** (Modbus, Fieldbus, Profilo DS402, Profilo proﬁdrive).

In modalità **Locale** con il parametro "Sel comandi locali" si configura provenienza dei comandi Abilitazione e Marcia che può essere **Morsettiera** (Ingresso digitale standard, Ingresso digitale della scheda di espansione) oppure **Tastiera** (tasto Marcia, tasto Stop).

In modalità **Remoto** con i parametri Sorgente dig Enable e Sorgente dig Start si deve configurare la sorgente. Tipicamente le sorgenti sono i parametri **Pad**. Quindi Modbus o Fieldbus dovranno scrivere il valore desiderato sui parametri Pad. In alternativa si può scrivere direttamente sui parametri **Sorgente dig Enable** e **Sorgente dig Start** il valore 6000 per avere la sorgente a Null (0) o il valore 6002 per avere la sorgente a One (1).
Altra alternativa è configurare le sorgenti di **Sorgente dig Enable** e **Sorgente dig Start** su parametri BitX decomp mon, quindi da Modbus o Fieldbus dovranno scrivere il valore desiderato sul parametro **Word decomp digitale**.

La commutazione tra **Locale ↔ Remoto** avviene con il valore della variabile configurata su Sorg Locale/Remoto, cioè può essere un Ingresso digitale standard, Ingresso digitale della scheda di espansione, Modbus, Fieldbus, Locale/Remoto dig.

Nelle condizioni di default la variabile collegata è Locale/Remoto dig, la quale viene scritta dal tasto LOC del tastierino: pertanto per eseguire la commutazione è necessario premere il tasto LOC.

Per motivi di sicurezza la commutazione **Locale ↔ Remoto** premendo il tasto LOC del tastierino viene eseguita solo se **Terminal Enable = 0**.

Esempio 1

In funzionamento automatico della macchina il drive lavora in modalità Remoto -> Digitale -> Fieldbus.

In funzionamento manuale della macchina il drive lavora in modalità Locale ->Morsettiera -> Ingresso digitale standard.

Commutando il funzionamento della macchina da automatico a manuale il drive deve commutare tra modalità Remoto e modalità Locale. Il comando per eseguire la commutazione può essere fornito tramite Ingresso digitale standard o Fieldbus.

Esempio 2

Commutando il pulpito di comando il drive deve commutare tra modalità Remoto e modalità Locale. Il comando per eseguire la commutazione può essere fornito tramite Ingresso digitale standard o Ingresso digitale della scheda di espansione.

 QUESTA CONFIGURAZIONE È AMMESSA PERCHÉ NELLE LISTE DI SELEZIONE DEI COMANDI DIGITALI SONO DISPONIBILI LE VARIABILI MORSETTIERA.

<table>
<thead>
<tr>
<th>Menu</th>
<th>PAR</th>
<th>Descrizione</th>
<th>UM</th>
<th>Tipo</th>
<th>FB Bit</th>
<th>Def</th>
<th>Min</th>
<th>Max</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.1</td>
<td>1000</td>
<td>Sel comandi remoti</td>
<td>ENUM</td>
<td>Morsettiera</td>
<td>0</td>
<td>1</td>
<td>RWZ</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Questo parametro definisce la provenienza dei segnali di comando quando il drive viene utilizzato in modalità Remota.

Il comando di Abilitazione è impostabile solo per via hardware, collegando una tensione positiva (+24VDC) al morsetto 7.

0 Morsettiera

1 Digitale

Impostando il parametro su **Morsettiera** la sorgente del comando Mon comando Enable è il morsetto Abilitazione (7) e l’origine del comando Mon comando Start viene configurata con il parametro Sorgente dig Start.

Impostando il parametro su **Digitale** l’origine del comando Mon comando Enable si configura con il parametro Sorgente dig Enable e l’origine del comando Mon comando Start si configura con il parametro Sorgente dig Start.

Impostando **Digitale** per la generazione del comando Mon comando Enable, oltre alla variabile collegata a Sorgente dig Enable, è necessario fornire anche l’abilitazione hardware sul morsetto Abilitazione.

<table>
<thead>
<tr>
<th>Menu</th>
<th>PAR</th>
<th>Descrizione</th>
<th>UM</th>
<th>Tipo</th>
<th>FB Bit</th>
<th>Def</th>
<th>Min</th>
<th>Max</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.2</td>
<td>1002</td>
<td>Sel comandi locali</td>
<td>ENUM</td>
<td>Tastiera</td>
<td>0</td>
<td>2</td>
<td>ERWZ</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Questo parametro definisce la provenienza dei segnali di comando quando il drive viene utilizzato in modalità Locale.
Morsettiera

Tastiera

Impostando il parametro su **Morsettiera** la sorgente del comando **Mon comando Enable** è il morsetto **Abilitazione** (7) e l’origine del comando **Mon comando Start** viene configurata con il parametro **Sorg morsetto Start**.

Impostando il parametro su **Tastiera** l’origine dei comandi **Mon comando Start** è il tasto **Marcia**. Impostando **Tastiera** per la generazione del comando **Mon comando Start** oltre al tasto **Marcia** è necessario fornire anche l’abilitazione hardware sul morsetto **Abilitazione**.

<table>
<thead>
<tr>
<th>Menu</th>
<th>PAR</th>
<th>Descrizione</th>
<th>UM</th>
<th>Tipo</th>
<th>FB.BIT</th>
<th>Def</th>
<th>Min</th>
<th>Max</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.3</td>
<td>1004</td>
<td>Modo Enable/Disable</td>
<td>ENUM</td>
<td>Stop/FS&Spd=0</td>
<td>0</td>
<td>3</td>
<td>ERW</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Con questo parametro si imposta la generazione di **Mon comando Enable**, cioè si configura il tipo di controllo utilizzato per abilitazione e disabilitazione del drive.

0 Spento
1 Stop/FS&Spd=0
2 Stop&Spd = 0
3 FS&Spd = 0

Impostando 0 Spento:

in modalità **Morsettiera** l’abilitazione e disabilitazione del drive avvengono tramite il morsetto **Abilitazione**.

In modalità **Digitale** l’abilitazione e disabilitazione del drive avviene con la presenza contemporanea del segnale sul morsetto **Abilitazione** e del comando **Digital Enable**.

In modalità **Tastiera** il drive si abilita se è presente l’abilitazione hardware sul morsetto **Abilitazione** e viene premuto il tasto **Marcia**.

In modalità **Tastiera** la disabilitazione avviene se viene a mancare l’abilitazione hardware sul morsetto **Abilitazione** oppure se si preme due volte il tasto **Arresto**.

Impostando 1 Stop/FS&Spd=0:

in modalità **Morsettiera** il drive viene abilitato in presenza dell’abilitazione hardware sul morsetto **Abilitazione**, sul morsetto programmato come **Morsetto Start** e non deve essere attivo il morsetto **Arresto rapido**.

In modalità **Morsettiera** la disabilitazione del drive avviene istantaneamente se viene a mancare il segnale sul morsetto **Abilitazione**, oppure al raggiungimento di velocità=0 se viene disattivato il comando **Marcia** o attivato il morsetto programmato come **Arresto rapido**.

In modalità **Digital** il drive viene abilitato in presenza dell’abilitazione hardware sul morsetto **Abilitazione**, del comando **Digital Enable**, **DigitalStart** e non deve essere attivo il morsetto **Arresto rapido**.

In modalità **Digitale** la disabilitazione del drive avviene istantaneamente se viene a mancare il segnale sul morsetto **Abilitazione**, oppure al raggiungimento di velocità=0 se viene disattivato il comando **Digital Start** o attivato il morsetto programmato come **Arresto rapido**.

In modalità **Tastiera** il drive viene abilitato in presenza dell’abilitazione hardware sul morsetto **Abilitazione** e premendo il tasto **Marcia**, con il comando sul morsetto **Arresto rapido** non attivo.

In modalità **Tastiera** la disabilitazione del drive avviene istantaneamente se viene a mancare il segnale sul morsetto **Abilitazione** o si preme due volte il tasto **Arresto**.

Impostando 2 Stop&Spd = 0

In modalità **Morsettiera** il drive viene abilitato in presenza dell’abilitazione hardware sul morsetto **Abilitazione** e del segnale sul morsetto programmato come morsetto **Start**.

In modalità **Morsettiera** la disabilitazione del drive avviene istantaneamente se viene a mancare il segnale sul morsetto **Abilitazione**, oppure al raggiungimento di velocità=0 se viene disattivato il comando morsetto **Start**.

In modalità **Digitale** il drive viene abilitato in presenza dell’abilitazione hardware sul morsetto **Abilitazione** e
dei segnali Digital Enable e DigitalStart.
In modalità Digitale la disabilitazione del drive avviene istantaneamente se viene a mancare il segnale sul morsetto Abilitazione o il comando Digital Enable, oppure al raggiungimento di velocità=0 se il comando Digital Start viene posto a 0.
In modalità Tastiera il drive viene abilitato in presenza dell’abilitazione hardware sul morsetto Abilitazione e premendo il tasto Marcia.
In modalità Tastiera la disabilitazione del drive avviene istantaneamente se viene a mancare il segnale sul morsetto Abilitazione o si preme due volte il tasto Arresto, oppure al raggiungimento di velocità=0 se viene premuto il tasto Arresto.

Impostando 3 FS&Spd = 0

In modalità Morsettiera il drive viene abilitato in presenza dell’abilitazione hardware sul morsetto Abilitazione e non deve essere attivo il morsetto Arresto rapido.
In modalità Morsettiera la disabilitazione del drive avviene istantaneamente se viene a mancare il segnale sul morsetto Abilitazione, oppure al raggiungimento di velocità=0 se viene attivato il morsetto programmato come Arresto rapido.
In modalità Digital il drive viene abilitato in presenza dell’abilitazione hardware sul morsetto Abilitazione e del segnale Digital Enable, con il comando sul morsetto Arresto rapido non attivo.
In modalità Digitale la disabilitazione del drive avviene istantaneamente se viene a mancare il segnale sul morsetto Abilitazione o il comando Digital Enable, oppure al raggiungimento di velocità=0 se il comando Digital Start viene posto a 0.
In modalità Tastiera il drive viene abilitato in presenza dell’abilitazione hardware sul morsetto Abilitazione e premendo il tasto Marcia, con il comando Arresto rapido non attivo.
In modalità Tastiera la disabilitazione del drive avviene istantaneamente viene a mancare il segnale sul morsetto Abilitazione o si preme due volte il tasto Arresto, oppure al raggiungimento di velocità=0 se viene attivato il morsetto programmato come Arresto rapido.

Menu PAR Descrizione UM Tipo FB BIT Def Min Max Acc Mod
11.4 1006 Rit disabilita vel 0 ms UINT16 1000 0 10000 ERW FVS

Impostazione di un tempo di ritardo in millisecondi tra il raggiungimento della velocità zero e la disabilitazione del drive nel caso di Mod abilit/disabilit impostato ad un valore differente da Spento.

Menu PAR Descrizione UM Tipo FB BIT Def Min Max Acc Mod
11.5 1008 Modalità tasto Stop ENUM Inattivo 0 1 ERW FVS

Impostazione del funzionamento del tasto Arresto sul tastierino in caso di modalità Remoto->Morsettiera o Remoto->Digitale o Locale->Morsettiera. In modalità Locale -> Tastiera questa configurazione non ha nessun effetto.

0 Inattivo
1 ArrEmer&Allarm

Impostando il comando su Inattivo la pressione sul tasto Arresto del tastierino non ha alcun effetto.
Impostando il comando su ArrEmer&Allarm, la pressione del tasto Arresto produce l’arresto del motore in Arresto rapido e la generazione dell’allarme All stop Emerg. Quando il motore raggiunge velocità = 0 il drive si disabilita automaticamente e rimane in attesa del comando Fault reset. Il comando Fault reset deve essere applicato due volte per ripristinare il drive.

Menu PAR Descrizione UM Tipo FB BIT Def Min Max Acc Mod
11.6 1010 Comando Safe Start BIT 1 0 1 ERW FVS

Con questo parametro si configura se al power-on del drive il controllo di partenza in sicurezza è disabilitato oppure abilitato.

0 Spento
1 On

Impostando Spento il controllo di partenza in sicurezza è disabilitato, quindi se il drive viene alimentato con
l’abilitazione hardware presente sul morsetto **Abilitazione** il motore potrebbe mettersi in rotazione.

Impostando On il controllo di partenza in sicurezza è abilitato, quindi se il drive viene alimentato con l’abilitazione hardware presente sul morsetto **Abilitazione** il motore non si mette in rotazione. E’ necessaria l’operazione aprire l’abilitazione hardware sul morsetto **Abilitazione** e quindi richiederla per poter predisporre il drive ad accettare i successivi comandi.

Menu PAR Descrizione UM Tipo FB BIT Def Min Max Acc Mod

<table>
<thead>
<tr>
<th>N.</th>
<th>PAR</th>
<th>Descrizione</th>
<th>UM</th>
<th>Tipo</th>
<th>FB</th>
<th>BIT</th>
<th>Def</th>
<th>Min</th>
<th>Max</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.7</td>
<td>1012</td>
<td>Locale/Remoto dig</td>
<td>ENUM</td>
<td>16</td>
<td></td>
<td>Remoto</td>
<td>0</td>
<td>1</td>
<td>ERW</td>
<td>FVS</td>
<td></td>
</tr>
</tbody>
</table>

Impostazione della modalità di funzionamento **Locale** o **Remoto**.

0 Locale

1 Remoto

La scrittura di questo parametro produce un effetto solo se è collegata a **Sorg Locale/Remoto** e se avviene senza l’abilitazione hardware sul morsetto **Abilitazione**. Premendo il tasto **LOC** si modifica il valore di questo parametro 0<>1.

Se si vuole disabilitare il tasto **LOC** si deve impostare **Sorg Locale/Remoto** ad un valore diverso da **Locale/ remoto dig**.

Menu PAR Descrizione UM Tipo FB BIT Def Min Max Acc Mod

<table>
<thead>
<tr>
<th>N.</th>
<th>PAR</th>
<th>Descrizione</th>
<th>UM</th>
<th>Tipo</th>
<th>FB</th>
<th>BIT</th>
<th>Def</th>
<th>Min</th>
<th>Max</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.8</td>
<td>1014</td>
<td>Sorg Locale/Remoto</td>
<td>LINK</td>
<td>16</td>
<td>1012</td>
<td></td>
<td>0</td>
<td>16384</td>
<td>ERW</td>
<td>FVS</td>
<td></td>
</tr>
</tbody>
</table>

Selezione dell’origine (sorgente) del segnale che commuta tra **Remoto** e **Locale**.

Il segnale da associare a questa funzione è selezionato dalla lista di selezione “**L_DIGSEL3**”.

0 Locale

1 Remoto

In modalità **Remoto** con il parametro “**Sel comandi remoti**” si configura la provenienza dei comandi Abilitazione e Marcia che può essere **Morsettiera** (Ingresso digitale standard , Ingresso digitale della scheda di espansione) oppure **Digital** (Modbus, Fieldbus, Profile DS402, Profile profidrive).

In modalità **Locale** con il parametro “**Sel comandi locali**” si configura la provenienza dei comandi Abilitazione e Marcia che può essere **Morsettiera** (Ingresso digitale standard , Ingresso digitale della scheda di espansione) oppure **Tastiera** (tasto Marcia, tasto Arresto).

Menu PAR Descrizione UM Tipo FB BIT Def Min Max Acc Mod

<table>
<thead>
<tr>
<th>N.</th>
<th>PAR</th>
<th>Descrizione</th>
<th>UM</th>
<th>Tipo</th>
<th>FB</th>
<th>BIT</th>
<th>Def</th>
<th>Min</th>
<th>Max</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.9</td>
<td>1016</td>
<td>Sorg morsetto Start</td>
<td>LINK</td>
<td>16</td>
<td>1048</td>
<td></td>
<td>0</td>
<td>16384</td>
<td>ERW</td>
<td>FVS</td>
<td></td>
</tr>
</tbody>
</table>

Selezione dell’origine (sorgente) del segnale **Morsetto Start**. Questa commutazione può essere eseguita solo nel caso in cui non sia presente l’abilitazione hardware sul morsetto **Abilitazione**.

Il segnale da associare a questa funzione è selezionato dalla lista di selezione “**L_DIGSEL3**”.

Nelle condizioni di default l’origine del segnale **Morsetto Start** è l’uscita **Start** del blocco **ForwardReverseControl** (FRC).

Menu PAR Descrizione UM Tipo FB BIT Def Min Max Acc Mod

<table>
<thead>
<tr>
<th>N.</th>
<th>PAR</th>
<th>Descrizione</th>
<th>UM</th>
<th>Tipo</th>
<th>FB</th>
<th>BIT</th>
<th>Def</th>
<th>Min</th>
<th>Max</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.10</td>
<td>1018</td>
<td>Sorgente dig Enable</td>
<td>LINK</td>
<td>16</td>
<td>6000</td>
<td></td>
<td>0</td>
<td>16384</td>
<td>ERW</td>
<td>FVS</td>
<td></td>
</tr>
</tbody>
</table>

Selezione dell’origine (sorgente) del segnale Digital Enable. Il comando da associare a questa funzione può essere selezionato nella lista di selezione “**L_DIGSEL2**”.

Menu PAR Descrizione UM Tipo FB BIT Def Min Max Acc Mod

<table>
<thead>
<tr>
<th>N.</th>
<th>PAR</th>
<th>Descrizione</th>
<th>UM</th>
<th>Tipo</th>
<th>FB</th>
<th>BIT</th>
<th>Def</th>
<th>Min</th>
<th>Max</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.11</td>
<td>1020</td>
<td>Sorgente dig Start</td>
<td>LINK</td>
<td>16</td>
<td>6000</td>
<td></td>
<td>0</td>
<td>16384</td>
<td>ERW</td>
<td>FVS</td>
<td></td>
</tr>
</tbody>
</table>

Selezione dell’origine (sorgente) del segnale Digital Start. Il segnale da associare a questa funzione può essere selezionato nella lista di selezione “**L_DIGSEL2**”.
Selezione dell'origine (sorgente) per il segnale di arresto rapido. Il segnale da associare a questa funzione può essere selezionato nella lista di selezione “L_DIGSEL2”. Durante l’esecuzione del comando Arresto rapido le rampe utilizzate sono Tempo accelerazione3 e Tempo decelerazione3.

Visualizzazione dello stato del comando Abilitazione.

Visualizzazione dello stato del comando Marcia.

Visualizzazione dello stato del comando Arresto rapido.

Impostazione della modalità di funzionamento del blocco Forward Reverse Control (FRC).

0 Normale
1 Due fili Controllo a due fili
2 Tre fili Controllo a tre fili

Di seguito è riportato l’utilizzo di default del blocco FRC.
Il comando Marcia è collegato al Morsetto Start e il comando Indietro FR è collegato a Ramp ref invert.

Impostando il controllo 0 - Normale (controllo normale) il motore si metterà in rotazione soltanto in presenza del comando di Avanti FR in direzione forward. Se è presente il comando Indietro FR il motore ruoterà in direzione contraria.
L'uscita Monitor Start FR ripete lo stato del comando Avanti FR, mentre l'uscita Monitor indietro FR ripete lo stato del comando Indietro FR.

Impostando il controllo 1 - Due fili (controllo a due fili) il motore si metterà in rotazione soltanto in presenza del comando Avanti FR o del comando Indietro FR. La presenza contemporanea del comando Avanti FR e del comando Indietro FR comporta l'arresto del motore.

L'uscita Monitor Start FR sarà attiva nei casi in cui ci sia la presenza non contemporanea dei comandi Avanti FR e Indietro FR.

L'uscita Monitor indietro FR ripete lo stato del comando Indietro FR.

Per eseguire il controllo 2 - Tre fili è indispensabile la presenza del comando *Stop FR su un ingresso digitale programmato dal parametro Sorgente *Stop FR (non presente nella condizione di default). Impostando il controllo su Tre fili (controllo a 3 fili) la partenza del motore avverrà alla ricezione sul morsetto Avanti FR di un impulso di durata non inferiore a 50 msec. Una volta che il motore si è avviato non è più necessaria la presenza del comando sul morsetto di Avanti FR. Per effettuare un'inversione del senso di rotazione abilitare il comando di
Indietro FR: il motore si porterà a velocità zero con la rampa impostata e ripartirà nel senso di rotazione opposto. Finché il segnale di **Indietro FR** è attivo il motore girerà in direzione Indietro, se il segnale di **Indietro FR** si disattiva il motore girerà in direzione Forward. Per arrestare il motore aprire il contatto *Stop FR*.

<table>
<thead>
<tr>
<th>Menu</th>
<th>PAR</th>
<th>Descrizione</th>
<th>UM</th>
<th>Tipo</th>
<th>FB</th>
<th>BIT</th>
<th>Def</th>
<th>Min</th>
<th>Max</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.17</td>
<td>1042</td>
<td>Sorgente Avanti FR</td>
<td>LINK</td>
<td>16</td>
<td>1112</td>
<td>0</td>
<td>16384</td>
<td>ERW</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Selezione dell’origine (sorgente) per il segnale di Avanti FR. Con questo comando il motore inizia a ruotare (con il comando di Abilitazione attivato). Il morsetto da associare a questa funzione può essere selezionato nella lista di selezione “L_DIGSEL2”.

<table>
<thead>
<tr>
<th>Menu</th>
<th>PAR</th>
<th>Descrizione</th>
<th>UM</th>
<th>Tipo</th>
<th>FB</th>
<th>BIT</th>
<th>Def</th>
<th>Min</th>
<th>Max</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.18</td>
<td>1044</td>
<td>Sorgente Indietro FR</td>
<td>LINK</td>
<td>16</td>
<td>1114</td>
<td>0</td>
<td>16384</td>
<td>ERW</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Selezione dell’origine (sorgente) per il segnale di Indietro FR. Con questo comando il motore inverte il senso di rotazione (con il comando di Abilitazione attivato) Il morsetto da associare a questa funzione può essere selezionato nella lista di selezione “L_DIGSEL2”.

<table>
<thead>
<tr>
<th>Menu</th>
<th>PAR</th>
<th>Descrizione</th>
<th>UM</th>
<th>Tipo</th>
<th>FB</th>
<th>BIT</th>
<th>Def</th>
<th>Min</th>
<th>Max</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.19</td>
<td>1046</td>
<td>Sorgente *Stop FR</td>
<td>LINK</td>
<td>16</td>
<td>6000</td>
<td>0</td>
<td>16384</td>
<td>ERW</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Selezione dell’origine (sorgente) per il segnale di Arresto FR. Il morsetto da associare a questa funzione può essere selezionato nella lista di selezione “L_DIGSEL2”.

<table>
<thead>
<tr>
<th>Menu</th>
<th>PAR</th>
<th>Descrizione</th>
<th>UM</th>
<th>Tipo</th>
<th>FB</th>
<th>BIT</th>
<th>Def</th>
<th>Min</th>
<th>Max</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.20</td>
<td>1048</td>
<td>Monitor Start FR</td>
<td>BIT</td>
<td>16</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>ER</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Visualizzazione dello stato dell’uscita Marcia del blocco Forward Reverse Control (FRC).

<table>
<thead>
<tr>
<th>Sorgente *Stop FR</th>
<th>Sorgente Indietro FR</th>
<th>Sorgente Avanti FR</th>
<th>Monitor comando FR</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>6</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>7</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Menu</th>
<th>PAR</th>
<th>Descrizione</th>
<th>UM</th>
<th>Tipo</th>
<th>FB</th>
<th>BIT</th>
<th>Def</th>
<th>Min</th>
<th>Max</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.21</td>
<td>1050</td>
<td>Monitor Indietro FR</td>
<td>BIT</td>
<td>16</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>ER</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Visualizzazione dello stato dell’uscita Reverse del blocco Forward Reverse Control (FRC).

<table>
<thead>
<tr>
<th>Sorgente *Stop FR</th>
<th>Sorgente Indietro FR</th>
<th>Sorgente Avanti FR</th>
<th>Monitor comando FR</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>6</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>7</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Menu</th>
<th>PAR</th>
<th>Descrizione</th>
<th>UM</th>
<th>Tipo</th>
<th>FB</th>
<th>BIT</th>
<th>Def</th>
<th>Min</th>
<th>Max</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.22</td>
<td>1052</td>
<td>Monitor comando FR</td>
<td>UINT16</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>ER</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Visualizzazione dello stato dei comandi del blocco Forward Reverse Control (FRC).
12 – INGRESSI DIGITALI

Nota: La numerazione e la descrizione dei successivi parametri possono essere modificati nel caso sia attiva un’applicazione MDPlc
<table>
<thead>
<tr>
<th>Menu</th>
<th>PAR</th>
<th>Descrizione</th>
<th>UM</th>
<th>Tipo</th>
<th>FB BIT</th>
<th>Def</th>
<th>Min</th>
<th>Max</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.1</td>
<td>1132</td>
<td>Inv ing digitale 1</td>
<td></td>
<td>BIT</td>
<td></td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>RW</td>
<td>FVS</td>
</tr>
<tr>
<td>12.2</td>
<td>1134</td>
<td>Inv ing digitale 2</td>
<td></td>
<td>BIT</td>
<td></td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>RW</td>
<td>FVS</td>
</tr>
<tr>
<td>12.3</td>
<td>1136</td>
<td>Inv ing digitale 3</td>
<td></td>
<td>BIT</td>
<td></td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>RW</td>
<td>FVS</td>
</tr>
<tr>
<td>12.4</td>
<td>1138</td>
<td>Inv ing digitale 4</td>
<td></td>
<td>BIT</td>
<td></td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>RW</td>
<td>FVS</td>
</tr>
<tr>
<td>12.5</td>
<td>1140</td>
<td>Inv ing digitale 5</td>
<td></td>
<td>BIT</td>
<td></td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>RW</td>
<td>FVS</td>
</tr>
</tbody>
</table>

Inversione dello stato logico della funzione associata all’ingresso digitale (es. da attivo con segnale a +24V ad attivo con segnale basso).

<table>
<thead>
<tr>
<th>Menu</th>
<th>PAR</th>
<th>Descrizione</th>
<th>UM</th>
<th>Tipo</th>
<th>FB BIT</th>
<th>Def</th>
<th>Min</th>
<th>Max</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.6</td>
<td>1150</td>
<td>Dest ing digitale E</td>
<td></td>
<td>ILINK</td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>ER</td>
<td>FVS</td>
</tr>
<tr>
<td>12.7</td>
<td>1152</td>
<td>Dest ing digitale 1</td>
<td></td>
<td>ILINK</td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>ER</td>
<td>FVS</td>
</tr>
<tr>
<td>12.8</td>
<td>1154</td>
<td>Dest ing digitale 2</td>
<td></td>
<td>ILINK</td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>ER</td>
<td>FVS</td>
</tr>
<tr>
<td>12.9</td>
<td>1156</td>
<td>Dest ing digitale 3</td>
<td></td>
<td>ILINK</td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>ER</td>
<td>FVS</td>
</tr>
<tr>
<td>12.10</td>
<td>1158</td>
<td>Dest ing digitale 4</td>
<td></td>
<td>ILINK</td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>ER</td>
<td>FVS</td>
</tr>
<tr>
<td>12.11</td>
<td>1160</td>
<td>Dest ing digitale 5</td>
<td></td>
<td>ILINK</td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>ER</td>
<td>FVS</td>
</tr>
</tbody>
</table>

Visualizzazione della funzione a cui fa riferimento l’ingresso digitale associato.

<table>
<thead>
<tr>
<th>Menu</th>
<th>PAR</th>
<th>Descrizione</th>
<th>UM</th>
<th>Tipo</th>
<th>FB BIT</th>
<th>Def</th>
<th>Min</th>
<th>Max</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.12</td>
<td>1240</td>
<td>Inv ing digitale 1X</td>
<td></td>
<td>BIT</td>
<td></td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>RW</td>
<td>FVS</td>
</tr>
<tr>
<td>12.13</td>
<td>1242</td>
<td>Inv ing digitale 2X</td>
<td></td>
<td>BIT</td>
<td></td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>RW</td>
<td>FVS</td>
</tr>
<tr>
<td>12.14</td>
<td>1244</td>
<td>Inv ing digitale 3X</td>
<td></td>
<td>BIT</td>
<td></td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>RW</td>
<td>FVS</td>
</tr>
<tr>
<td>12.15</td>
<td>1246</td>
<td>Inv ing digitale 4X</td>
<td></td>
<td>BIT</td>
<td></td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>RW</td>
<td>FVS</td>
</tr>
<tr>
<td>12.16</td>
<td>1248</td>
<td>Inv ing digitale 5X</td>
<td></td>
<td>BIT</td>
<td></td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>RW</td>
<td>FVS</td>
</tr>
<tr>
<td>12.17</td>
<td>1250</td>
<td>Inv ing digitale 6X</td>
<td></td>
<td>BIT</td>
<td></td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>RW</td>
<td>FVS</td>
</tr>
<tr>
<td>12.18</td>
<td>1252</td>
<td>Inv ing digitale 7X</td>
<td></td>
<td>BIT</td>
<td></td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>RW</td>
<td>FVS</td>
</tr>
<tr>
<td>12.19</td>
<td>1254</td>
<td>Inv ing digitale 8X</td>
<td></td>
<td>BIT</td>
<td></td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>RW</td>
<td>FVS</td>
</tr>
</tbody>
</table>

Inversione dello stato logico della funzione associata all’ingresso digitale della scheda di espansione.

<table>
<thead>
<tr>
<th>Menu</th>
<th>PAR</th>
<th>Descrizione</th>
<th>UM</th>
<th>Tipo</th>
<th>FB BIT</th>
<th>Def</th>
<th>Min</th>
<th>Max</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.20</td>
<td>1270</td>
<td>Dest ing digitale 1X</td>
<td></td>
<td>ILINK</td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>ER</td>
<td>FVS</td>
</tr>
<tr>
<td>12.21</td>
<td>1272</td>
<td>Dest ing digitale 2X</td>
<td></td>
<td>ILINK</td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>ER</td>
<td>FVS</td>
</tr>
<tr>
<td>12.22</td>
<td>1274</td>
<td>Dest ing digitale 3X</td>
<td></td>
<td>ILINK</td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>ER</td>
<td>FVS</td>
</tr>
<tr>
<td>12.23</td>
<td>1276</td>
<td>Dest ing digitale 4X</td>
<td></td>
<td>ILINK</td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>ER</td>
<td>FVS</td>
</tr>
<tr>
<td>12.24</td>
<td>1278</td>
<td>Dest ing digitale 5X</td>
<td></td>
<td>ILINK</td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>ER</td>
<td>FVS</td>
</tr>
<tr>
<td>12.25</td>
<td>1280</td>
<td>Dest ing digitale 6X</td>
<td></td>
<td>ILINK</td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>ER</td>
<td>FVS</td>
</tr>
<tr>
<td>12.26</td>
<td>1282</td>
<td>Dest ing digitale 7X</td>
<td></td>
<td>ILINK</td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>ER</td>
<td>FVS</td>
</tr>
<tr>
<td>12.27</td>
<td>1284</td>
<td>Dest ing digitale 8X</td>
<td></td>
<td>ILINK</td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>ER</td>
<td>FVS</td>
</tr>
</tbody>
</table>

Visualizzazione della destinazione dell’ingresso digitale della scheda di espansione associato.
Nota: La numerazione e la descrizione dei successivi parametri possono essere modificati nel caso sia attiva un’applicazione MDPlc
Selezione dell’origine (sorgente) del segnale da assegnare alla relativa uscita digitale. L’elenco delle funzioni associabili alle uscite digitali sono nella lista di selezione “L_DIGSEL1”.

<table>
<thead>
<tr>
<th>Menu</th>
<th>PAR</th>
<th>Descrizione</th>
<th>UM</th>
<th>Tipo</th>
<th>FB BIT</th>
<th>Def</th>
<th>Min</th>
<th>Max</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>13.1</td>
<td>1310</td>
<td>Sorg uscita dig 1</td>
<td>LINK 16</td>
<td>1062</td>
<td>0</td>
<td>16384</td>
<td>RW</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13.2</td>
<td>1312</td>
<td>Sorg uscita dig 2</td>
<td>LINK 16</td>
<td>1064</td>
<td>0</td>
<td>16384</td>
<td>RW</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13.3</td>
<td>1314</td>
<td>Sorg uscita dig 3</td>
<td>LINK 16</td>
<td>946</td>
<td>0</td>
<td>16384</td>
<td>RW</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13.4</td>
<td>1316</td>
<td>Sorg uscita dig 4</td>
<td>LINK 16</td>
<td>936</td>
<td>0</td>
<td>16384</td>
<td>RW</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Inversione dello stato logico della funzione associata all’uscita digitale.

<table>
<thead>
<tr>
<th>Menu</th>
<th>PAR</th>
<th>Descrizione</th>
<th>UM</th>
<th>Tipo</th>
<th>FB BIT</th>
<th>Def</th>
<th>Min</th>
<th>Max</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>13.5</td>
<td>1330</td>
<td>Inv uscita dig 1</td>
<td>BIT</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>RW</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13.6</td>
<td>1332</td>
<td>Inv uscita dig 2</td>
<td>BIT</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>RW</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13.7</td>
<td>1334</td>
<td>Inv uscita dig 3</td>
<td>BIT</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>RW</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13.8</td>
<td>1336</td>
<td>Inv uscita dig 4</td>
<td>BIT</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>RW</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Selezione dell’origine (sorgente) del segnale da assegnare alla relativa uscita digitale della scheda di espansione. L’elenco delle funzioni associabili alle uscite digitali sono nella lista di selezione “L_DIGSEL1”.

<table>
<thead>
<tr>
<th>Menu</th>
<th>PAR</th>
<th>Descrizione</th>
<th>UM</th>
<th>Tipo</th>
<th>FB BIT</th>
<th>Def</th>
<th>Min</th>
<th>Max</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>13.9</td>
<td>1410</td>
<td>Sorg uscita dig 1X</td>
<td>LINK 16</td>
<td>6000</td>
<td>0</td>
<td>16384</td>
<td>RW</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13.10</td>
<td>1412</td>
<td>Sorg uscita dig 2X</td>
<td>LINK 16</td>
<td>6000</td>
<td>0</td>
<td>16384</td>
<td>RW</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13.11</td>
<td>1414</td>
<td>Sorg uscita dig 3X</td>
<td>LINK 16</td>
<td>6000</td>
<td>0</td>
<td>16384</td>
<td>RW</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13.12</td>
<td>1416</td>
<td>Sorg uscita dig 4X</td>
<td>LINK 16</td>
<td>6000</td>
<td>0</td>
<td>16384</td>
<td>RW</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13.13</td>
<td>1418</td>
<td>Sorg uscita dig 5X</td>
<td>LINK 16</td>
<td>6000</td>
<td>0</td>
<td>16384</td>
<td>RW</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13.14</td>
<td>1420</td>
<td>Sorg uscita dig 6X</td>
<td>LINK 16</td>
<td>6000</td>
<td>0</td>
<td>16384</td>
<td>RW</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13.15</td>
<td>1422</td>
<td>Sorg uscita dig 7X</td>
<td>LINK 16</td>
<td>6000</td>
<td>0</td>
<td>16384</td>
<td>RW</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13.16</td>
<td>1424</td>
<td>Sorg uscita dig 8X</td>
<td>LINK 16</td>
<td>6000</td>
<td>0</td>
<td>16384</td>
<td>RW</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Inversione dello stato logico della funzione associata all’uscita digitale della scheda di espansione.

<table>
<thead>
<tr>
<th>Menu</th>
<th>PAR</th>
<th>Descrizione</th>
<th>UM</th>
<th>Tipo</th>
<th>FB BIT</th>
<th>Def</th>
<th>Min</th>
<th>Max</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>13.17</td>
<td>1430</td>
<td>Inv uscita dig 1X</td>
<td>BIT</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>RW</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13.18</td>
<td>1432</td>
<td>Inv uscita dig 2X</td>
<td>BIT</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>RW</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13.19</td>
<td>1434</td>
<td>Inv uscita dig 3X</td>
<td>BIT</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>RW</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13.20</td>
<td>1436</td>
<td>Inv uscita dig 4X</td>
<td>BIT</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>RW</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13.21</td>
<td>1438</td>
<td>Inv uscita dig 5X</td>
<td>BIT</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>RW</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13.22</td>
<td>1440</td>
<td>Inv uscita dig 6X</td>
<td>BIT</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>RW</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13.23</td>
<td>1442</td>
<td>Inv uscita dig 7X</td>
<td>BIT</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>RW</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13.24</td>
<td>1444</td>
<td>Inv uscita dig 8X</td>
<td>BIT</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>RW</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
14 – INGRESSI ANALOGICI

Visualizzazione del valore della tensione all’uscita del blocco funzione del relativo ingresso analogico.

Scelta del tipo di ingresso (Ingresso in tensione oppure in corrente). In base al segnale d’ingresso, si devono spostare gli switch sulla scheda di regolazione. Come impostazione di fabbrica gli ingressi sono settati per segnali differenziali in tensione (± 10V).

0 -10V…+10V
1 0,20mA … 10V
2 4…20mA

Selezionando l’opzione 0 all’ingresso analogico interessato può essere collegata una tensione massima di ±12,5V (tipico ±10V/5mA). Se il segnale è impiegato come riferimento, si può ottenere l’inversione del senso di rotazione dell’azionamento invertendo la polarità della tensione.

Selezionando l’opzione 1 all’ingresso analogico interessato può essere collegata una tensione max di 12,5V (tipico 10V/5mA) oppure un segnale in corrente da 0 … 20 mA. Il segnale deve essere positivo.

Selezionando l’opzione 2 all’ingresso analogico interessato può essere collegato un segnale in corrente da 4…20 mA. Il segnale deve essere positivo.

Impostazione di un coefficiente moltiplicativo da applicare al relativo ingresso analogico.
Il riferimento di velocità di un azionamento viene assegnato con una tensione esterna max di 5V. Con questo valore l’azioneamento deve raggiungere la velocità massima ammessa (impostata con Fondo scala velocità).

Come parametro Scala ing analogico X viene inserito il fattore di scala 2 (10V : 5V)

Menu PAR Descrizione UM Tipo FB BIT Def Min Max Acc Mod
14.4 1506 Tar offset ing an 1 BIT 0 0 1 RW FVS
14.20 1556 Tar offset ing an 2 BIT 0 0 1 RW FVS

Comando di autotaratura per l’offset del relativo ingresso analogico. Taratura fine automatica dell’ingresso. Per eseguire l’autotaratura impostare il segnale d’ingresso al suo valore minimo ed eseguire il comando. Le condizioni contenenti un offset possono essere compensate. Quando è dato questo comando, Tar offset ing an x viene scelto automaticamente in modo che il segnale d’ingresso disponibile corrisponda al valore zero della variabile. La taratura dell’offset può essere eseguita anche con il drive abilitato.

Per lo svolgimento della taratura automatica si deve verificare la seguente condizione:
- Tensione d’ingresso minore di 1V o corrente d’ingresso minore di 2 mA

NOTA! Il valore ottenuto automaticamente, in caso di necessità può essere cambiato manualmente tramite Offset ing an x.

Nel caso il valore di tensione impostato sull’ingresso analogico è superiore a 1V si attiva l’allarme Val ins troppo alto.

Menu PAR Descrizione UM Tipo FB BIT Def Min Max Acc Mod
14.5 1508 Tar guad ing an 1 BIT 0 0 1 RW FVS
14.21 1558 Tar guad ing an 2 BIT 0 0 1 RW FVS

Comando di autotaratura per il guadagno del relativo ingresso analogico. Taratura fine automatica dell’ingresso. Quando è dato questo comando, Tar guad ing an x viene scelto automaticamente in modo che il segnale d’ingresso disponibile corrisponda al valore massimo della variabile. La taratura dell’offset può essere eseguita anche con il drive abilitato.

Per lo svolgimento della taratura automatica si devono verificare due condizioni:
- Tensione d’ingresso maggiore di 1V o corrente d’ingresso maggiore di 2 mA
- Polarità positiva. Il valore trovato viene automaticamente accettato per l’altro senso di rotazione.

NOTA! Il valore ottenuto automaticamente, in caso di necessità può essere cambiato manualmente tramite Guadagno ing an x.

Per eseguire l’autotaratura impostare il segnale d’ingresso al suo valore massimo ed eseguire il comando: verrà calcolato un coefficiente moltiplicativo da applicare al valore del segnale d’ingresso (non considerando il parametro Scala ing analogico) per raggiungere il valore di fondo scala.
Nel caso il valore di tensione impostato sull’ingresso analogico è inferiore a 1V si attiva l’allarme Val ins troppo basso.

<table>
<thead>
<tr>
<th>Menu</th>
<th>PAR</th>
<th>Descrizione</th>
<th>UM</th>
<th>Tipo</th>
<th>FB</th>
<th>BIT</th>
<th>Def</th>
<th>Min</th>
<th>Max</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>14.6</td>
<td>1510</td>
<td>Filtro ingresso an 1</td>
<td>ms</td>
<td>FLOAT</td>
<td>10.0</td>
<td>1.0</td>
<td>1000.0</td>
<td>ERW</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14.22</td>
<td>1560</td>
<td>Filtro ingresso an 2</td>
<td>ms</td>
<td>FLOAT</td>
<td>10.0</td>
<td>1.0</td>
<td>1000.0</td>
<td>ERW</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Filtro sulla misurazione dell’ingresso analogico corrispondente. Utilizzando questo parametro è possibile controllare la risposta dell’ingresso analogico ed attenuare pertanto possibili disturbi e interferenze.

<table>
<thead>
<tr>
<th>Menu</th>
<th>PAR</th>
<th>Descrizione</th>
<th>UM</th>
<th>Tipo</th>
<th>FB</th>
<th>BIT</th>
<th>Def</th>
<th>Min</th>
<th>Max</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>14.7</td>
<td>1512</td>
<td>Lim sup ing an 1</td>
<td>cnt</td>
<td>INT16</td>
<td></td>
<td></td>
<td></td>
<td>16384</td>
<td>-32768</td>
<td>+32767</td>
<td>ERW</td>
</tr>
<tr>
<td>14.23</td>
<td>1562</td>
<td>Lim sup ing an 2</td>
<td>cnt</td>
<td>INT16</td>
<td></td>
<td></td>
<td></td>
<td>16384</td>
<td>-32768</td>
<td>+32767</td>
<td>ERW</td>
</tr>
</tbody>
</table>

Impostazione del limite superiore del riferimento di velocità in funzione della tensione (o corrente) del relativo riferimento analogico.

<table>
<thead>
<tr>
<th>Menu</th>
<th>PAR</th>
<th>Descrizione</th>
<th>UM</th>
<th>Tipo</th>
<th>FB</th>
<th>BIT</th>
<th>Def</th>
<th>Min</th>
<th>Max</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>14.8</td>
<td>1514</td>
<td>Lim inf ing an 1</td>
<td>cnt</td>
<td>INT16</td>
<td></td>
<td></td>
<td></td>
<td>-16384</td>
<td>-32768</td>
<td>+32767</td>
<td>ERW</td>
</tr>
<tr>
<td>14.24</td>
<td>1564</td>
<td>Lim inf ing an 2</td>
<td>cnt</td>
<td>INT16</td>
<td></td>
<td></td>
<td></td>
<td>-16384</td>
<td>-32768</td>
<td>+32767</td>
<td>ERW</td>
</tr>
</tbody>
</table>

Impostazione del limite inferiore del riferimento di velocità in funzione della tensione (o corrente) del relativo riferimento analogico.

<table>
<thead>
<tr>
<th>Menu</th>
<th>PAR</th>
<th>Descrizione</th>
<th>UM</th>
<th>Tipo</th>
<th>FB</th>
<th>BIT</th>
<th>Def</th>
<th>Min</th>
<th>Max</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>14.9</td>
<td>1516</td>
<td>Offset ing an 1</td>
<td>cnt</td>
<td>INT16</td>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td>-32768</td>
<td>+32767</td>
<td>ERW</td>
</tr>
<tr>
<td>14.25</td>
<td>1566</td>
<td>Offset ing an 2</td>
<td>cnt</td>
<td>INT16</td>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td>-32768</td>
<td>+32767</td>
<td>ERW</td>
</tr>
</tbody>
</table>

Impostazione di un valore per compensare la condizione in cui il segnale analogico contenga un offset, oppure quando la variabile assegnata all’ingresso ha già un valore pur non essendo collegato alcun segnale.

![Diagram](image)

In questo parametro è inserito il valore del coefficiente moltiplicativo da applicare al riferimento analogico calcolato con la funzione Tar guad ing an.

Esempio:
Un riferimento analogico esterno raggiunge solamente 9,8V massimi anziché 10V. Come parametro Tar guad ing an x viene inserito 1,020 (10V : 9,8V).
Si può raggiungere lo stesso risultato con la funzione Tar guad ing an x. Allo scopo bisogna selezionare questo parametro nel menu del tastierino. Al morsetto deve essere presente il valore analogico massimo disponibile (in questo caso 9,8V) con polarità positiva. Premendo il tasto Enter del tastierino avviene la fase di “Auto tune” del riferimento analogico.
Impostazione della soglia per l’ingresso analogico per la segnalazione velocità non superata, che permette l’attivazione delle uscite digitali Ingresso an 1 (par. 1530) e Ingresso an 2 (par.1580).

![Diagram of analog input x<thr](image)

Banda morta riferita al segnale dell’ingresso analogico. Quando sul morsetto di ingresso il valore è al di sotto della soglia definita dal parametro, il segnale di uscita del blocco dell’ingresso analogico è forzato a zero. Al di fuori della banda morta, l’uscita del blocco varia linearmente da zero al 100%.

![Diagram of Analog inp x thr](image)

Impostazione di un valore alternativo fisso per il relativo ingresso analogico, selezionabile tramite un comando attivato da un ingresso digitale programmato con il parametro Sorg alt sel ing anx.

![Diagram of Analog inp Drive](image)
Selezione dell’origine (sorgente) del segnale da assegnare al relativo ingresso digitale per la scelta del senso di rotazione del motore. L’elenco delle funzioni associabili agli ingressi digitali sono nella lista di selezione “L_DIGSEL2”.

Visualizzazione della funzione per cui è stato programmato e su cui agisce il relativo ingresso analogico.

Scelta del tipo di ingresso della scheda di espansione (Ingresso in tensione oppure in corrente). In base al segnale d’ingresso, si devono spostare gli switch sulla scheda di regolazione. Standard gli ingressi sono codificati.
per segnali in tensione.

0 -10V…+10V
1 0,20mA … 10V
2 4..20mA

Selezionando l’opzione 0 all’ingresso analogico interessato può essere collegata una tensione massima di ±12,5V (tipico ±10V/5mA). Se il segnale è impiegato come riferimento, si può ottenere l’inversione del senso di rotazione dell’azionamento invertendo la polarità della tensione.

Selezionando l’opzione 1 all’ingresso analogico interessato può essere collegata una tensione max di 12,5V (tipico 10V/5mA) oppure un segnale in corrente da 0 ... 20 mA. Il segnale deve essere positivo.

Selezionando l’opzione 2 all’ingresso analogico interessato può essere collegato un segnale in corrente da 4...20 mA. Il segnale deve essere positivo.

<table>
<thead>
<tr>
<th>Menu</th>
<th>PAR</th>
<th>Descrizione</th>
<th>UM</th>
<th>Tipo</th>
<th>FB</th>
<th>BIT</th>
<th>Def</th>
<th>Min</th>
<th>Max</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>14.35</td>
<td>1604</td>
<td>Scala ing an 1X</td>
<td>FLOAT</td>
<td>1.0</td>
<td>-10.0</td>
<td>10.0</td>
<td>RW</td>
<td>FVS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14.46</td>
<td>1654</td>
<td>Scala ing an 2X</td>
<td>FLOAT</td>
<td>1.0</td>
<td>-10.0</td>
<td>10.0</td>
<td>RW</td>
<td>FVS</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Impostazione di un coefficiente moltiplicativo da applicare al relativo ingresso analogico della scheda di espansione.

Esempio:

Il riferimento di velocità di un azionamento viene assegnato con una tensione esterna max di 5V. Con questo valore l’azionamento deve raggiungere la velocità massima ammessa (impostata con Fondo scala velocità).

Come parametro Scala ing an XX viene inserito il fattore di scala 2 (10V : 5V)

<table>
<thead>
<tr>
<th>Menu</th>
<th>PAR</th>
<th>Descrizione</th>
<th>UM</th>
<th>Tipo</th>
<th>FB</th>
<th>BIT</th>
<th>Def</th>
<th>Min</th>
<th>Max</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>14.36</td>
<td>1606</td>
<td>Tar offset ing an 1X</td>
<td>BIT</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>RWZ</td>
<td>FVS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14.47</td>
<td>1656</td>
<td>Tar offset ing an 2X</td>
<td>BIT</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>RWZ</td>
<td>FVS</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Comando di autotaratura per l’offset del relativo ingresso analogico della scheda di espansione. Taratura fine automatica dell’ingresso. Per eseguire l’autotaratura impostare il segnale d’ingresso al suo valore minimo ed eseguire il comando. Le condizioni contenenti un offset possono essere compensate. Quando è dato questo comando, Tar offset ing an 1x viene scelto automaticamente in modo che il segnale d’ingresso disponibile corrisponda al valore zero della variabile.

Per lo svolgimento della taratura automatica si deve verificare la seguente condizione:

- Tensione d’ingresso minore di 1V o corrente d’ingresso minore di 2 mA
NOTA! Il valore ottenuto automaticamente, in caso di necessità può essere cambiato manualmente tramite Offset ing an x.

Nel caso il valore di tensione impostato sull’ingresso analogico è superiore a 1V si attiva l’allarme Val ins troppo alto.

<table>
<thead>
<tr>
<th>Menu</th>
<th>PAR</th>
<th>Descrizione</th>
<th>UM</th>
<th>Tipo</th>
<th>FB BIT</th>
<th>Def</th>
<th>Min</th>
<th>Max</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>14.37</td>
<td>1608</td>
<td>Tar guad ing an 1X</td>
<td>BIT</td>
<td></td>
<td></td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>RWZ</td>
<td>FVS</td>
</tr>
<tr>
<td>14.48</td>
<td>1658</td>
<td>Tar guad ing an 2X</td>
<td>BIT</td>
<td></td>
<td></td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>RWZ</td>
<td>FVS</td>
</tr>
</tbody>
</table>

Comando di autotaratura per il guadagno del relativo ingresso analogico. Taratura fine automatica dell’ingresso. Quando è dato questo comando, Tar guad ing an 1 viene scelto automaticamente in modo che il segnale d’ingresso disponibile corrisponda al valore massimo della variabile.

Per lo svolgimento della taratura automatica si devono verificare due condizioni:
- Tensione d’ingresso maggiore di 1V o corrente d’ingresso maggiore di 2 mA
- Polarità positiva. Il valore trovato viene automaticamente accettato per l’altro senso di rotazione.

NOTA! Il valore ottenuto automaticamente, in caso di necessità può essere cambiato manualmente tramite Guadagno ing an x.

Per eseguire l’autotaratura impostare il segnale d’ingresso al suo valore massimo ed eseguire il comando: verrà calcolato un coefficiente moltiplicativo da applicare al valore del segnale d’ingresso (non considerando il parametro Scala ing analogico) per raggiungere il valore di fondo scala.

Nel caso il valore di tensione impostato sull’ingresso analogico è inferiore a 1V si attiva l’allarme Val ins troppo basso.

<table>
<thead>
<tr>
<th>Menu</th>
<th>PAR</th>
<th>Descrizione</th>
<th>UM</th>
<th>Tipo</th>
<th>FB BIT</th>
<th>Def</th>
<th>Min</th>
<th>Max</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>14.38</td>
<td>1612</td>
<td>Lim sup ing an 1X</td>
<td>cnt</td>
<td>INT16</td>
<td></td>
<td>16384</td>
<td>-32768</td>
<td>+32767</td>
<td>ERW</td>
<td>FVS</td>
</tr>
<tr>
<td>14.49</td>
<td>1662</td>
<td>Lim sup ing an 2X</td>
<td>cnt</td>
<td>INT16</td>
<td></td>
<td>16384</td>
<td>-32768</td>
<td>+32767</td>
<td>ERW</td>
<td>FVS</td>
</tr>
</tbody>
</table>

Impostazione del limite superiore del riferimento di velocità in funzione della tensione (o corrente) del relativo riferimento analogico della scheda di espansione.

<table>
<thead>
<tr>
<th>Menu</th>
<th>PAR</th>
<th>Descrizione</th>
<th>UM</th>
<th>Tipo</th>
<th>FB BIT</th>
<th>Def</th>
<th>Min</th>
<th>Max</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>14.39</td>
<td>1614</td>
<td>Lim inf ing an 1X</td>
<td>cnt</td>
<td>INT16</td>
<td></td>
<td>-16384</td>
<td>-32768</td>
<td>+32767</td>
<td>ERW</td>
<td>FVS</td>
</tr>
<tr>
<td>14.50</td>
<td>1664</td>
<td>Lim inf ing an 2X</td>
<td>cnt</td>
<td>INT16</td>
<td></td>
<td>-16384</td>
<td>-32768</td>
<td>+32767</td>
<td>ERW</td>
<td>FVS</td>
</tr>
</tbody>
</table>

Impostazione del limite inferiore del riferimento di velocità in funzione della tensione (o corrente) del relativo riferimento analogico della scheda di espansione.

<table>
<thead>
<tr>
<th>Menu</th>
<th>PAR</th>
<th>Descrizione</th>
<th>UM</th>
<th>Tipo</th>
<th>FB BIT</th>
<th>Def</th>
<th>Min</th>
<th>Max</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>14.40</td>
<td>1616</td>
<td>Offset ing an 1X</td>
<td>cnt</td>
<td>INT16</td>
<td></td>
<td>0</td>
<td>-32768</td>
<td>+32767</td>
<td>ERW</td>
<td>FVS</td>
</tr>
<tr>
<td>14.51</td>
<td>1666</td>
<td>Offset ing an 2X</td>
<td>cnt</td>
<td>INT16</td>
<td></td>
<td>0</td>
<td>-32768</td>
<td>+32767</td>
<td>ERW</td>
<td>FVS</td>
</tr>
</tbody>
</table>

Impostazione di un valore di offset da sommare algebricamente al relativo ingresso analogico della scheda di espansione.
In questo parametro è inserito il valore del coefficiente moltiplicativo da applicare al riferimento analogico della scheda di espansione calcolato con la funzione `Tar guad ing an`.

Esempio:

Un riferimento analogico esterno raggiunge solamente 9,8V massimi anziché 10V. Come parametro `Guadagno ing an xx` viene inserito 1,020 (10V : 9,8V).

Si può raggiungere lo stesso risultato con la funzione `Tar guad ing an x`. Allo scopo bisogna selezionare questo parametro nel menu del tastierino. Al morsetto deve essere presente il valore analogico massimo disponibile (in questo caso 9,8V) con polarità positiva. Premendo il tasto Enter del tastierino avviene la fase di "Auto tune" del riferimento analogico.

Selezione dell’origine (sorgente) del segnale da assegnare al relativo ingresso digitale della scheda di espansione per la scelta del senso di rotazione del motore. L’elenco delle funzioni associabili agli ingressi digitali sono nella lista di selezione "L_DIGSEL2".

Visualizzazione della funzione per cui è stato programmato e su cui agisce il relativo ingresso analogico della scheda di espansione.
15 – USCITE ANALOGICHE

Sulla scheda di regolazione dell’ADV sono presenti due uscite analogiche programmabili.
L’uscita analogica 1 fornisce un segnale in tensione bipolare +/-10Vdc, mentre l’uscita analogica 2 può essere programmata per ottenere in uscita un segnale in corrente 0-20mA o 4-20mA oppure un segnale in tensione bipolare +/-10Vdc, in funzione del parametro assegnato.

Tabella: valore del segnale delle uscite analogiche in funzione della grandezza utilizzata

<table>
<thead>
<tr>
<th>PAR</th>
<th>Descrizione</th>
<th>Fondo scala uscita</th>
</tr>
</thead>
<tbody>
<tr>
<td>626</td>
<td>Monitor rif rampa</td>
<td></td>
</tr>
<tr>
<td>628</td>
<td>Imposta valore rampa</td>
<td></td>
</tr>
<tr>
<td>760</td>
<td>Monitor uscita rampa</td>
<td></td>
</tr>
<tr>
<td>664</td>
<td>Setpoint velocità</td>
<td></td>
</tr>
<tr>
<td>260</td>
<td>Velocità motore</td>
<td></td>
</tr>
<tr>
<td>262</td>
<td>Vel mot non filtrata</td>
<td></td>
</tr>
<tr>
<td>2150</td>
<td>Velocità encoder 1</td>
<td></td>
</tr>
<tr>
<td>852</td>
<td>Mon uscita multi rif</td>
<td></td>
</tr>
<tr>
<td>870</td>
<td>Setpoint valore Mpot</td>
<td></td>
</tr>
<tr>
<td>894</td>
<td>Monitor uscita Mpot</td>
<td></td>
</tr>
<tr>
<td>920</td>
<td>Monitor uscita pøg</td>
<td></td>
</tr>
<tr>
<td>250</td>
<td>Corrente di uscita</td>
<td></td>
</tr>
<tr>
<td>280</td>
<td>Rif corr di coppia</td>
<td></td>
</tr>
<tr>
<td>282</td>
<td>Rif corr magnetiz</td>
<td></td>
</tr>
<tr>
<td>284</td>
<td>Corrente di coppia</td>
<td></td>
</tr>
<tr>
<td>286</td>
<td>Corr magnetizzante</td>
<td></td>
</tr>
<tr>
<td>2360</td>
<td>Lim pos coppia att</td>
<td></td>
</tr>
<tr>
<td>2362</td>
<td>Lim neg coppia att</td>
<td></td>
</tr>
<tr>
<td>2386</td>
<td>Riferimento coppia</td>
<td></td>
</tr>
<tr>
<td>2388</td>
<td>Rif coppia no filtro</td>
<td></td>
</tr>
<tr>
<td>3070</td>
<td>Monitor uscita Droop</td>
<td></td>
</tr>
<tr>
<td>3104</td>
<td>Monitor comp inerzia</td>
<td></td>
</tr>
<tr>
<td>252</td>
<td>Tensione di uscita</td>
<td></td>
</tr>
<tr>
<td>254</td>
<td>Frequenza di uscita</td>
<td>10V = 200% Tensione di linea (Par 560)</td>
</tr>
<tr>
<td>270</td>
<td>Tensione DC link</td>
<td>10V = 7000V</td>
</tr>
<tr>
<td>3006</td>
<td>Uscita rapp velocità</td>
<td>10V = 200%</td>
</tr>
<tr>
<td>1500</td>
<td>Mon ing analogico 1</td>
<td>10V = 100%</td>
</tr>
<tr>
<td>1550</td>
<td>Mon ing analogico 2</td>
<td>10V = 100%</td>
</tr>
<tr>
<td>1600</td>
<td>Mon ing analogico 1X</td>
<td>10V = 100%</td>
</tr>
<tr>
<td>1650</td>
<td>Mon ing analogico 2X</td>
<td>10V = 100%</td>
</tr>
<tr>
<td>368</td>
<td>Accum sovracc drive</td>
<td>5V = 100% Accumulator</td>
</tr>
<tr>
<td>3212</td>
<td>Accum sovracc motore</td>
<td></td>
</tr>
<tr>
<td>3260</td>
<td>Accum sovr res fren</td>
<td></td>
</tr>
<tr>
<td>2232</td>
<td>Guad P att reg vel</td>
<td></td>
</tr>
<tr>
<td>2234</td>
<td>Guad I att reg vel</td>
<td>10V = 400%</td>
</tr>
<tr>
<td>3446</td>
<td>Rapporto Powerloss</td>
<td>10V = 50%</td>
</tr>
<tr>
<td>4024</td>
<td>Mon M->SX bus campo</td>
<td>10V = 16384 * 2 ^ 16</td>
</tr>
<tr>
<td>3700</td>
<td>Pad X</td>
<td></td>
</tr>
</tbody>
</table>
Selezione dell’origine (sorgente) dei segnali che possono essere collocati come variabili sulle uscite analogiche. Le funzioni assegnabili alle uscite analogiche sono elencate nella lista di selezione "L_ANOUT".

Menu PAR Descrizione UM Tipo FB BIT Def Min Max Acc Mod
15.1 1800 Sorgente uscita an 1 LINK 16/32 6000 0 16384 RW FVS
15.2 1802 Sorgente uscita an 2 LINK 16/32 6000 0 16384 RW FVS

Parametro per l’impostazione di un fattore moltiplicativo del segnale della relativa uscita analogica. Può essere utilizzato per amplificare o attenuare il valore di ingresso del relativo blocco di uscita analogica.

Par. 1808 (1810) = 1
Par. 1808 (1810) = 0,5
Par. 1808 (1810) = -1

Vout = 10 x \left(\frac{\text{Stp Var} \times \text{par. 1808 (1810)}}{\text{FS Var}} \right)

dove:

- \text{Vout} \quad \text{tensione di uscita ai morsetti della scheda.}
- \text{Stp Var} \quad \text{valore attuale della variabile (unità della variabile)}
- \text{FS Var} \quad \text{fondo scala della variabile (unità della variabile)}

Esempio per il calcolo del fattore di scala Scala uscita an x.

Per visualizzare la velocità dell’azionamento, si vuol utilizzare uno strumento analogico che abbia un campo di misura da 0 ... 2V. Significa che, per visualizzare la velocità del drive, alla velocità massima deve corrispondere sull’uscita analogica del drive stesso una tensione di 2V. Con un fattore di scala uguale ad 1 si avrebbero 10V in corrispondenza della velocità massima.

Con un fattore di scala uguale ad 0,2 = 2V/10V si avrebbero 2V in corrispondenza della velocità massima.

Menu PAR Descrizione UM Tipo FB BIT Def Min Max Acc Mod
15.3 1808 Scala uscita an 1 FLOAT 1.0 -10.0 10.0 RW FVS
15.4 1810 Scala uscita an 2 FLOAT 1.0 -10.0 10.0 RW FVS

Visualizzazione del valore della tensione effettiva presente sull’uscita analogica 1.

Menu PAR Descrizione UM Tipo FB BIT Def Min Max Acc Mod
15.5 1816 Monitor uscita an 1 cnt INT16 0 0 0 ER FVS

Visualizzazione del valore della tensione o della corrente effettiva presente sull’uscita analogica 2.
15.7 1824 Usc an 1 assoluta

<table>
<thead>
<tr>
<th>Menu</th>
<th>PAR</th>
<th>Descrizione</th>
<th>UM</th>
<th>Tipo</th>
<th>FB</th>
<th>BIT</th>
<th>Def</th>
<th>Min</th>
<th>Max</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>15.7</td>
<td>1824</td>
<td>Usc an 1 assoluta</td>
<td>ENUM</td>
<td>Disabilita</td>
<td>0</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>ERW</td>
<td>FVS</td>
</tr>
</tbody>
</table>

Abilitazione della relativa uscita analogica in valore assoluto. Impostando a 1 questo parametro la tensione sull’uscita analogica assumerà il valore 0 - 10V indipendentemente dal segno del segnale di comando.

0 Disabilita
1 Abilita

15.8 1826 Usc an 2 assoluta

<table>
<thead>
<tr>
<th>Menu</th>
<th>PAR</th>
<th>Descrizione</th>
<th>UM</th>
<th>Tipo</th>
<th>FB</th>
<th>BIT</th>
<th>Def</th>
<th>Min</th>
<th>Max</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>15.8</td>
<td>1826</td>
<td>Usc an 2 assoluta</td>
<td>ENUM</td>
<td>Disabilita</td>
<td>0</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>ERW</td>
<td>FVS</td>
</tr>
</tbody>
</table>

15.9 1832 Minimo uscita an 1

<table>
<thead>
<tr>
<th>Menu</th>
<th>PAR</th>
<th>Descrizione</th>
<th>UM</th>
<th>Tipo</th>
<th>FB</th>
<th>BIT</th>
<th>Def</th>
<th>Min</th>
<th>Max</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>15.9</td>
<td>1832</td>
<td>Minimo uscita an 1</td>
<td>cnt</td>
<td>INT16</td>
<td>-16384</td>
<td>-32768</td>
<td>+32767</td>
<td>ERW</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Impostazione dei valori minimi e massimi per l’uscita analogica per la tensione presente sull’uscita analogica 1.

15.10 1834 Massimo uscita an 1

<table>
<thead>
<tr>
<th>Menu</th>
<th>PAR</th>
<th>Descrizione</th>
<th>UM</th>
<th>Tipo</th>
<th>FB</th>
<th>BIT</th>
<th>Def</th>
<th>Min</th>
<th>Max</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>15.10</td>
<td>1834</td>
<td>Massimo uscita an 1</td>
<td>cnt</td>
<td>INT16</td>
<td>16384</td>
<td>-32768</td>
<td>+32767</td>
<td>ERW</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

15.11 1840 Minimo uscita an 2

<table>
<thead>
<tr>
<th>Menu</th>
<th>PAR</th>
<th>Descrizione</th>
<th>UM</th>
<th>Tipo</th>
<th>FB</th>
<th>BIT</th>
<th>Def</th>
<th>Min</th>
<th>Max</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>15.11</td>
<td>1840</td>
<td>Minimo uscita an 2</td>
<td>cnt</td>
<td>INT16</td>
<td>-16384</td>
<td>-32768</td>
<td>+32767</td>
<td>ERW</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

15.12 1842 Massimo uscita an 2

<table>
<thead>
<tr>
<th>Menu</th>
<th>PAR</th>
<th>Descrizione</th>
<th>UM</th>
<th>Tipo</th>
<th>FB</th>
<th>BIT</th>
<th>Def</th>
<th>Min</th>
<th>Max</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>15.12</td>
<td>1842</td>
<td>Massimo uscita an 2</td>
<td>cnt</td>
<td>INT16</td>
<td>16384</td>
<td>-32768</td>
<td>+32767</td>
<td>ERW</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Impostazione dei valori minimi e massimi per l’uscita analogica per la corrente o la tensione presente sull’uscita analogica 2.

15.13 1848 Tipo uscita an 2

<table>
<thead>
<tr>
<th>Menu</th>
<th>PAR</th>
<th>Descrizione</th>
<th>UM</th>
<th>Tipo</th>
<th>FB</th>
<th>BIT</th>
<th>Def</th>
<th>Min</th>
<th>Max</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>15.13</td>
<td>1848</td>
<td>Tipo uscita an 2</td>
<td>ENUM</td>
<td>-10V..+10V</td>
<td>0</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td>ERW</td>
<td>FVS</td>
</tr>
</tbody>
</table>

Selezione del tipo di uscita (Uscita in tensione oppure in corrente). In base al segnale d’uscita, si devono spostare lo switch S3 sulla scheda di regolazione. Standard l’uscita è codificata per segnale in tensione.

0 0...20mA
1 4...20mA
2 -10V..+10V

Selezionando l’opzione 0 l’uscita analogica fornisce 0...20mA
Selezionando l’opzione 1 l’uscita analogica fornisce 4...20mA
Selezionando l’opzione 2 l’uscita analogica fornisce -10...+10V

15.14 1850 Sorgente uscita an1X

<table>
<thead>
<tr>
<th>Menu</th>
<th>PAR</th>
<th>Descrizione</th>
<th>UM</th>
<th>Tipo</th>
<th>FB</th>
<th>BIT</th>
<th>Def</th>
<th>Min</th>
<th>Max</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>15.14</td>
<td>1850</td>
<td>Sorgente uscita an1X</td>
<td>LINK</td>
<td>16/32</td>
<td>6000</td>
<td>0</td>
<td>16384</td>
<td>RW</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Selezione dell’origine (sorgente) dei segnali che possono essere collocati come variabili sulle uscite analogiche della scheda di espansione. Le funzioni assegnabili alle uscite analogiche sono elencate nella lista di selezione “L_ANOUT”.

15.15 1852 Sorgente uscita an2X

<table>
<thead>
<tr>
<th>Menu</th>
<th>PAR</th>
<th>Descrizione</th>
<th>UM</th>
<th>Tipo</th>
<th>FB</th>
<th>BIT</th>
<th>Def</th>
<th>Min</th>
<th>Max</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>15.15</td>
<td>1852</td>
<td>Sorgente uscita an2X</td>
<td>LINK</td>
<td>16/32</td>
<td>6000</td>
<td>0</td>
<td>16384</td>
<td>RW</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Parametro per l’impostazione di un fattore moltiplicativo del segnale della relativa uscita analogica della scheda di espansione. Può essere utilizzato per amplificare o attenuare il valore di ingresso del relativo blocco di uscita analogica.

![Diagram](diagram.png)

\[
V_{out} = 10 \times \left(\frac{\text{Stp Var} \times \text{par. 1858 (1860)}}{\text{FS Var}} \right)
\]

dove:
- \(V_{out} \): tensione di uscita ai morsetti della scheda.
- \(\text{Stp Var} \): valore attuale della variabile (unità della variabile)
- \(\text{FS Var} \): fondo scala della variabile (unità della variabile)

Esempio per il calcolo del fattore di scala **Scala uscita an x**

Per visualizzare la velocità dell’azionamento, si vuol utilizzare uno strumento analogico che abbia un campo di misura da 0 ... 2V. Significa che, per visualizzare la velocità del drive, alla velocità massima deve corrispondere sull’uscita analogica del drive una tensione di 2V. Con un fattore di scala uguale ad 1 si avrebbero 10V (Fattore di scala = 2V / 10V = 0.200).
sull’uscita analogica assumerà il valore 0 - 10V indipendentemente dal segno del segnale di comando.

0 Disabilita
1 Abilita

Menu PAR Descrizione UM Tipo FB BIT Def Min Max Acc Mod
15.22 1882 Minimo uscita an 1X cnt INT16 -16384 -32768 +32767 ERW FVS
15.23 1884 Massimo uscita an 1X cnt INT16 16384 -32768 +32767 ERW FVS

Impostazione dei valori minimi e massimi per l’uscita analogica per la tensione presente sull’uscita analogica 1 della scheda di espansione.

Menu PAR Descrizione UM Tipo FB BIT Def Min Max Acc Mod
15.24 1890 Minimo uscita an 2X cnt INT16 -16384 -32768 +32767 ERW FVS
15.25 1892 Massimo uscita an 2X cnt INT16 16384 -32768 +32767 ERW FVS

Impostazione dei valori minimi e massimi per l’uscita analogica in corrente o in tensione presente sull’uscita analogica 2 della scheda di espansione.

Menu PAR Descrizione UM Tipo FB BIT Def Min Max Acc Mod
15.26 1898 Tipo uscita an 2X ENUM -10V..+10V 0 2 ERW FVS

Selezione del segnale programmato sull’uscita analogica 2 della scheda di espansione. In base al segnale d’uscita, si devono spostare lo switch S3 sulla scheda di regolazione. Standard l’uscita è codificata per segnale in tensione.

0 0...20mA
1 4..20mA
2 -10V..+10V

Selezionando l’opzione 0 l’uscita analogica fornisce 0...20mA
Selezionando l’opzione 1 l’uscita analogica fornisce 4...20mA
Selezionando l’opzione 2 l’uscita analogica fornisce -10...+10V
16 – DATI MOTORE

Questo menu prevede l’immissione dei dati di targa del motore ed i valori di “base” per la caratteristica tensione / frequenza. La correttezza dei dati inseriti comporta un funzionamento ottimale del drive e di conseguenza di tutta l’applicazione. Questi dati sono richiesti per ottenere:

a) Il calcolo dei fattori di normalizzazione necessari per la regolazione
b) Il calcolo dei valori stimati per i parametri motore necessari per la regolazione

Tensione nominale, velocità nominale, frequenza nominale, corrente nominale, Cos phi, tensione base e frequenza base devono venire inseriti (il valore in default di Cos phi può essere usato se detto valore non è presente sulla targa). Dopo avere impostato questi parametri bisogna comandare Acquisisci parametri per poter calcolare i dati (a) e (b) sopracitati. L’azionamento non può essere azionato fino a quando non è stato impostato il comando Acquisisci parametri. Se alcuni valori risultano incompatibili, oppure se la taglia motore è di gran lunga più piccola di quella dell’inverter, viene visualizzato un messaggio di errore che indica una eccedenza di capacità numerica (“overflow”) e nel sottomenu “Mot plate data” viene ripristinata la precedente serie di parametri.

Esempio di targhette motore in kW e HP

<table>
<thead>
<tr>
<th>Menu</th>
<th>PAR</th>
<th>Descrizione</th>
<th>UM</th>
<th>Tipo</th>
<th>FB</th>
<th>BIT</th>
<th>Def</th>
<th>Min</th>
<th>Max</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>16.1</td>
<td>2000</td>
<td>Tensione nominale</td>
<td>V</td>
<td>FLOAT</td>
<td>SIZE</td>
<td>50.0</td>
<td>690.0</td>
<td>RWZS</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Impostare la tensione nominale del motore indicata sulla targa. E’ la la tensione che il drive deve fornire alla frequenza nominale del motore.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16.2</td>
<td>2002</td>
<td>Corrente nominale</td>
<td>A</td>
<td>FLOAT</td>
<td>SIZE</td>
<td>1.0</td>
<td>2200.0</td>
<td>RWZS</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Corrente nominale del motore al suo valore nominale di potenza (kW / Hp) e tensione (indicato sulla targhetta dati del motore stesso)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>In caso di controllo di più motori in parallelo comandati con un unico drive (possibile solo in modalità V/f), inserire un valore corrispondente alla somma delle correnti nominali di tutti i motori; in questo caso non eseguire alcuna operazione di “autotaratura”.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16.3</td>
<td>2004</td>
<td>Velocità nominale</td>
<td>rpm</td>
<td>FLOAT</td>
<td>SIZE</td>
<td>10.0</td>
<td>32000.0</td>
<td>RWZS</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Velocità nominale del motore a pieno carico in rpm (giri al minuto = m-1). In alcuni motori sulla targa viene indicata la velocità sincrona (es. 1500 rpm per un motore a 4 poli) e lo scorrimento, cioè la perdita di giri tra la condizione di motore a vuoto e motore al carico nominale (es. 80 rpm). Il dato da inserire è pertanto: velocità sincrona – scorrimento.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Frequenza nominale del motore espressa in Hz, alla quale ha inizio la gamma di indebolimento flusso.

P = \frac{60 \, [s] \times f \, [Hz]}{nN \, [rpm]}

Dove:

- \(p \) = paia poli motore
- \(f \) = frequenza nominale del motore (P. 2006)
- \(nN \) = velocità nominale del motore (P. 2004)

Potenza nominale del motore alla tensione ed alla frequenza nominale, Questo valore rappresenta la potenza meccanica resa all’albero indicata sulla targhetta del motore.

Fattore di potenza del motore, rilevato dalla targhetta (\(\cos \phi \)). Tale parametro talvolta non è presente sulla targhetta del motore: in questi casi utilizzare il valore di default presente nel drive.

Memorizza nel drive i dati del motore impostati. Questo comando deve essere fornito per ultimo dopo avere inserito i valori appropriati di tutti i parametri sopraelencati. Questo comporta il calcolo dei fattori di normalizzazione (a) e dei valori stimati per i parametri motore (b). Il drive non può essere azionato fino a quando non è stato impostato il comando **Acquisisci parametri**.

NOTA! Questa memorizzazione non è permanente. Utilizzare il comando **Salva parametri** nel menu **CONFIG DRIVE** per salvare nella memoria permanentemente.

Esegue l’autotaratura in rotazione: il motore deve essere disaccoppiato dal carico o la trasmissione non deve rappresentare più del 5% del carico. E’ la procedura che permette la maggior accuratezza nel rilevamento dei parametri del motore. Per poter eseguire il comando per prima cosa è necessario aprire l’abilitazione hardware tra i morsetti 7 ed S3. Impostare poi il parametro **Modalità regolazione** su **Autoautaratura**. A questo punto, se non si è già in modalità Locale, premere il tasto Local (si attiverà il led LOC) e ri richiedere l’abilitazione hardware (morsetti 7 e S3). Ora è possibile attivare l’autoapprendimento. Alla fine della procedura di autoapprendimento riaprire il contatto tra i morsetti 7 e S3 e ripristinare i parametri modificati.

Esegue l’autotaratura con motore accoppiato alla trasmissione. L’esecuzione dell’autoapprendimento può provocare una rotazione limitata dell’albero del motore. Per eseguire l’autoapprendimento seguire la procedura descritta nella descrizione del parametro precedente.
16.11 Modalità selftune

<table>
<thead>
<tr>
<th>Menu</th>
<th>PAR</th>
<th>Descrizione</th>
<th>UM</th>
<th>Tipo</th>
<th>FB</th>
<th>BIT</th>
<th>Def</th>
<th>Min</th>
<th>Max</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>16.11</td>
<td>2026</td>
<td>Modalità selftune</td>
<td>ENUM</td>
<td>Ridotto</td>
<td>0</td>
<td>1</td>
<td>ERWZ</td>
<td>FVS</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Selezione della modalità di autoapprendimento dei parametri motore.

0 Ridotto

1 Completato

Impostando 0 vengono misurati tutti i parametri motore tranne quelli relativi alla curva non lineare di saturazione. Utilizzare questa modalità per ottenere una procedura di autoapprendimento più rapida.

Impostando 1 vengono misurati tutti i parametri motore. Utilizzare questa modalità per ottenere le massime prestazioni: questa procedura può durare qualche minuto.

16.12 Stato acquisizione

<table>
<thead>
<tr>
<th>Menu</th>
<th>PAR</th>
<th>Descrizione</th>
<th>UM</th>
<th>Tipo</th>
<th>FB</th>
<th>BIT</th>
<th>Def</th>
<th>Min</th>
<th>Max</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>16.12</td>
<td>2028</td>
<td>Stato acquisizione</td>
<td>ENUM</td>
<td>Richiesto</td>
<td>0</td>
<td>0</td>
<td>R</td>
<td>FVS</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Indicazione dello stato della memorizzazione dei parametri.

0 Richiesto

1 Eseguito

Il parametro visualizza l’indicazione Richiesto quando è richiesta la memorizzazione dei parametri motore inseriti. A memorizzazione eseguita il parametro indicherà Eseguito.

16.13 Stato selftune

<table>
<thead>
<tr>
<th>Menu</th>
<th>PAR</th>
<th>Descrizione</th>
<th>UM</th>
<th>Tipo</th>
<th>FB</th>
<th>BIT</th>
<th>Def</th>
<th>Min</th>
<th>Max</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>16.13</td>
<td>2030</td>
<td>Stato selftune</td>
<td>ENUM</td>
<td>Richiesto</td>
<td>0</td>
<td>0</td>
<td>R</td>
<td>FVS</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Indicazione dello stato dell’esecuzione dell’autotaratura dei parametri motore.

0 Richiesto

1 Eseguito

Il parametro visualizza l’indicazione Richiesto quando è richiesta la procedura di autoapprendimento dei parametri motore. Al termine dell’esecuzione dell’autoapprendimento il parametro indicherà Eseguito.

16.14 Rs misurata

<table>
<thead>
<tr>
<th>Menu</th>
<th>PAR</th>
<th>Descrizione</th>
<th>UM</th>
<th>Tipo</th>
<th>FB</th>
<th>BIT</th>
<th>Def</th>
<th>Min</th>
<th>Max</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>16.14</td>
<td>2050</td>
<td>Rs misurata</td>
<td>ohm</td>
<td>FLOAT</td>
<td>CALCF</td>
<td>0.0005</td>
<td>200.0</td>
<td>ERWS</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Valore misurato della resistenza statorica.

16.15 DTL misurato

<table>
<thead>
<tr>
<th>Menu</th>
<th>PAR</th>
<th>Descrizione</th>
<th>UM</th>
<th>Tipo</th>
<th>FB</th>
<th>BIT</th>
<th>Def</th>
<th>Min</th>
<th>Max</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>16.15</td>
<td>2052</td>
<td>DTL misurato</td>
<td>V</td>
<td>FLOAT</td>
<td>0.0</td>
<td>0.0</td>
<td>100.0</td>
<td>ERWS</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Valore misurato della compensazione tempo morto.

16.16 DTS misurato

<table>
<thead>
<tr>
<th>Menu</th>
<th>PAR</th>
<th>Descrizione</th>
<th>UM</th>
<th>Tipo</th>
<th>FB</th>
<th>BIT</th>
<th>Def</th>
<th>Min</th>
<th>Max</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>16.16</td>
<td>2054</td>
<td>DTS misurato</td>
<td>V/A</td>
<td>FLOAT</td>
<td>0.0</td>
<td>0.0</td>
<td>100.0</td>
<td>ERWS</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Valore misurato del gradiente di compensazione.

16.17 Lsig misurata

<table>
<thead>
<tr>
<th>Menu</th>
<th>PAR</th>
<th>Descrizione</th>
<th>UM</th>
<th>Tipo</th>
<th>FB</th>
<th>BIT</th>
<th>Def</th>
<th>Min</th>
<th>Max</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>16.17</td>
<td>2056</td>
<td>Lsig misurata</td>
<td>mH</td>
<td>FLOAT</td>
<td>CALCF</td>
<td>0.1</td>
<td>200.0</td>
<td>ERWS</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Valore misurato dell’induttanza di dispersione.

16.18 ImN misurata

<table>
<thead>
<tr>
<th>Menu</th>
<th>PAR</th>
<th>Descrizione</th>
<th>UM</th>
<th>Tipo</th>
<th>FB</th>
<th>BIT</th>
<th>Def</th>
<th>Min</th>
<th>Max</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>16.18</td>
<td>2058</td>
<td>ImN misurata</td>
<td>A</td>
<td>FLOAT</td>
<td>CALCF</td>
<td>0.1</td>
<td>1000.0</td>
<td>ERWS</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Valore misurato della corrente magnetizzante nominale.

16.19 ImX misurata

<table>
<thead>
<tr>
<th>Menu</th>
<th>PAR</th>
<th>Descrizione</th>
<th>UM</th>
<th>Tipo</th>
<th>FB</th>
<th>BIT</th>
<th>Def</th>
<th>Min</th>
<th>Max</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>16.19</td>
<td>2060</td>
<td>ImX misurata</td>
<td>A</td>
<td>FLOAT</td>
<td>CALCF</td>
<td>0.0</td>
<td>0.0</td>
<td>ERWS</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Valore misurato della corrente magnetizzante in saturazione.
Menu PAR Descrizione UM Tipo FB BIT Def Min Max Acc Mod

16.20 2062 FlxN misurato Wb FLOAT CALCF 0.05 10.0 ERWS FVS
Valore misurato del flusso nominale.

16.21 2064 FlxX misurato Wb FLOAT CALCF 0.0 0.0 ERWS FVS
Valore misurato del flusso in saturazione.

16.22 2066 P1 misurato FLOAT 0.05 0.0 1.0 ERWS FVS
Valore misurato del primo parametro per definire la curva di magnetizzazione del motore.

16.23 2068 P2 misurato FLOAT 9.0 3.0 18.0 ERWS FVS
Valore misurato del secondo parametro per definire la curva di magnetizzazione del motore.

16.24 2070 P3 misurato FLOAT 0.87 0.0 1.0 ERWS FVS
Valore misurato del terzo parametro per definire la curva di magnetizzazione del motore.

16.25 2072 Rr misurata ohm FLOAT CALCF 0.0005 200.0 ERWS FVS
Valore misurato della resistenza rotorica.

16.26 2078 Acq param selftune BIT 0 0 1 ERWZ FVS
Memorizza nel drive i dati del motore calcolati dall’autotaratura.

NOTA! Questa memorizzazione non è permanente. Utilizzare il comando “**Salva parametri**” nel menu **CONFIG DRIVE** per salvare permanentemente nella memoria.
La modalità di controllo ad anello chiuso richiede una lettura della velocità data da un encoder digitale accoppiato sull'albero del motore. Per l'acquisizione di diversi tipi di segnali encoder sono state realizzate 5 schede opzionali, che permettono di retroazionare il drive sia con segnali incrementali che assoluti. La naturale variazione in velocità generata per induzione dal carico della macchina, conosciuta come scorrimento, può essere compensata attraverso la retroazione di velocità fornita dall'encoder in modalità V/f. Nella modalità Vettoriale ad orientamento di campo la retroazione dell'encoder in anello chiuso è indispensabile per il corretto funzionamento del drive.
Menu PAR Descrizione UM Tipo FB BIT Def Min Max Acc Mod

17.1 2100 Impulsi encoder 1

Impostazione del numero di impulsi dell’encoder di retroazione.

<table>
<thead>
<tr>
<th>Tipo opzione encoder</th>
<th>Def</th>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enc1 EXP-DE-I1R1F2-ADV</td>
<td>5.2V</td>
<td>5.2V</td>
<td>20.0V</td>
</tr>
<tr>
<td>Enc2 EXP-SE-I1R1F2-ADV</td>
<td>5.2V</td>
<td>5.2V</td>
<td>6.0V</td>
</tr>
<tr>
<td>Enc3 EXP-SESC-I1R1F2-ADV</td>
<td>5.2V</td>
<td>5.2V</td>
<td>6.0V</td>
</tr>
<tr>
<td>Enc4 EXP-EN/SSI-I1R1F2-ADV</td>
<td>5.2V</td>
<td>5.2V</td>
<td>10.0V</td>
</tr>
<tr>
<td>Enc5 EXP-HIP-I1R1F2-ADV</td>
<td>8.0V</td>
<td>7.0V</td>
<td>12.0V</td>
</tr>
</tbody>
</table>

17.2 2102 Alimentaz encoder1

Impostazione della tensione di alimentazione dell’encoder fornita dalla relativa scheda opzionale. I valori min e max vengono modificati in funzione del tipo di scheda encoder applicata.

<table>
<thead>
<tr>
<th>Tipo opzione encoder</th>
<th>Def</th>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enc1 EXP-DE-I1R1F2-ADV</td>
<td>5.2V</td>
<td>5.2V</td>
<td>20.0V</td>
</tr>
<tr>
<td>Enc2 EXP-SE-I1R1F2-ADV</td>
<td>5.2V</td>
<td>5.2V</td>
<td>6.0V</td>
</tr>
<tr>
<td>Enc3 EXP-SESC-I1R1F2-ADV</td>
<td>5.2V</td>
<td>5.2V</td>
<td>6.0V</td>
</tr>
<tr>
<td>Enc4 EXP-EN/SSI-I1R1F2-ADV</td>
<td>5.2V</td>
<td>5.2V</td>
<td>10.0V</td>
</tr>
<tr>
<td>Enc5 EXP-HIP-I1R1F2-ADV</td>
<td>8.0V</td>
<td>7.0V</td>
<td>12.0V</td>
</tr>
</tbody>
</table>

17.3 2104 Config ingr encoder1

Impostazione della configurazione d’ingresso dell’encoder digitale incrementale, TTL o HTL.

0 HTL
1 TTL

Il valore di questo parametro è impostato automaticamente in HTL quando il valore immesso nel parametro Alimentaz encoder1 è superiore a 6.0V.

17.4 2106 Ripetiz. encoder 1

Impostazione del divisore da applicare alla frequenza d’uscita della ripetizione encoder.

0 Ness divisione
1 Diviso 2
2 Diviso 4
3 Diviso 8

17.5 2108 Segnale enc 1 Vpp

Impostazione del valore di tensione picco-picco del segnale encoder. Tipicamente gli encoder incrementale Sinus ed encoder assoluto SinCos producono dei segnali il cui valore di tensione picco-picco è 1 Vpp ma a causa della caduta di tensione lungo il cavo, alla scheda di retroazione può arrivare un segnale dal valore di tensione picco-picco attenuato, causando l’intervento dell’allarme Perd retroazione.

Con questo parametro è possibile configurare il valore della tensione picco-picco dei segnali encoder incrementale Sinus ed encoder assoluto SinCos presente sui morsetti d’ingresso della scheda di retroazione.

17.6 2110 Errore segnali enc 1

Configurazione di quali canali dell’encoder digitale incrementale devono essere controllati al fine dell’elaborazione del segnale d’allarme Perd Retroaz [22].

0 Contr disabil
1 Contr A-B
2 Contr A-B-Z
4 Contr A-B-SE

Impostando 1, viene verificata la presenza dei segnali dei canali A-B
Impostando 2, viene verificata la presenza dei segnali dei canali A-B-Z
Impostando 4, viene abilitato il controllo della perdita retroazione per gli encoder SE (single ended).
Nel caso in cui venga rilevata l’assenza della retroazione viene generato l’allarme **Perd Retroaz [22]**
Siccome non è possibile rilevare la perdita di retroazione a velocità prossime a zero, il controllo viene eseguito solo in caso che il riferimento di velocità sia superiore al valore impostato nel parametro **4654 Soglia SpdFbkLoss**. Bisogna inoltre considerare che quando si lavora con il riferimento di velocità leggermente superiore al limite impostato nel parametro parametro **4654 Soglia SpdFbkLoss** è possibile che, a causa del carico o del limite di corrente, l’errore di velocità ecceda quello impostato come soglia, generando falsi allarmi.
In questo caso aumentare il valore del parametro **4550 Soglia perd rif vel** o del parametro **4554 Filtro perd rif vel**.

<table>
<thead>
<tr>
<th>Menu</th>
<th>PAR</th>
<th>Descrizione</th>
<th>UM</th>
<th>Tipo</th>
<th>FB BIT</th>
<th>Def</th>
<th>Min</th>
<th>Max</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>17.7</td>
<td>2112</td>
<td>Bits SSI encoder 1</td>
<td>ENUM</td>
<td>25</td>
<td>13</td>
<td>25</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Impostazione della lunghezza del pacchetto SSI, definita come numero di cicli di clock, in quanto gli encoder assoluti SSI in commercio hanno la lunghezza del pacchetto stesso variabile da 13 a 25 bits.

<table>
<thead>
<tr>
<th>Menu</th>
<th>PAR</th>
<th>Descrizione</th>
<th>UM</th>
<th>Tipo</th>
<th>FB BIT</th>
<th>Def</th>
<th>Min</th>
<th>Max</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>17.8</td>
<td>2130</td>
<td>Direzione encoder 1</td>
<td>ENUM</td>
<td>Non invertita</td>
<td>0</td>
<td>1</td>
<td>RWZ</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Selezione della direzione dell’encoder
- 0 Non invertito
- 1 Invertita

Impostando 0 i segnali di retroazione dell’encoder non vengono invertiti.
Impostando 1 i segnali di retroazione dell’encoder vengono invertiti

<table>
<thead>
<tr>
<th>Menu</th>
<th>PAR</th>
<th>Descrizione</th>
<th>UM</th>
<th>Tipo</th>
<th>FB BIT</th>
<th>Def</th>
<th>Min</th>
<th>Max</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>17.9</td>
<td>2132</td>
<td>Modalità encoder 1</td>
<td>ENUM</td>
<td>Nessuna</td>
<td>CALCI</td>
<td>CALCI</td>
<td>ERWZ</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Impostazione del metodo di misurazione della velocità dell’encoder collegato alla scheda opzionale. Il drive riconosce automaticamente la scheda encoder inserita e propone solo le modalità compatibili.
- 0 Nessuno
- 1 Digitale FP
- 2 Digitale F
- 3 Sinusoidale
- 4 Sinusoidale SINCOS
- 5 Sinusoidale ENDAT
- 6 Sinusoidale SSI
- 7 Sinusoidale HIPER
- 8 Resolver

La modalità di misura di velocità è in funzione del tipo di scheda encoder; i valori di default, minimo e massimo sono impostati in funzione del tipo di scheda di retroazione applicata.

<table>
<thead>
<tr>
<th>Tipo opzione encoder</th>
<th>Def</th>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enc 1 Digital F</td>
<td>Digital FP</td>
<td>Digital F</td>
<td></td>
</tr>
<tr>
<td>Enc 2 Sinus</td>
<td>Sinus</td>
<td>Sinus</td>
<td></td>
</tr>
<tr>
<td>Enc 3 Sinus SINCOS</td>
<td>Sinus SINCOS</td>
<td>Sinus SINCOS</td>
<td></td>
</tr>
<tr>
<td>Enc 4 Sinus SSI</td>
<td>Sinus ENDAT</td>
<td>Sinus SSI</td>
<td></td>
</tr>
<tr>
<td>Enc 5 Sinus HIPER</td>
<td>Sinus HIPER</td>
<td>Sinus HIPER</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Menu</th>
<th>PAR</th>
<th>Descrizione</th>
<th>UM</th>
<th>Tipo</th>
<th>FB BIT</th>
<th>Def</th>
<th>Min</th>
<th>Max</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>17.10</td>
<td>2134</td>
<td>Filtro vel encoder 1</td>
<td>ms</td>
<td>FLOAT</td>
<td>2.0</td>
<td>0.1</td>
<td>20.0</td>
<td>ERWZ</td>
<td>FVS</td>
<td></td>
</tr>
</tbody>
</table>

Impostazione della costante di tempo del filtro applicata alla lettura degli impulsi dell’encoder di retroazione. Il parametro influenza sia l’accuratezza della misura di velocità che la dinamica ottenibile nel controllo ad anello
chiuso. Tempi di aggiornamento elevati permettono una maggiore stabilità (maggior filtraggio) della misura di velocità, poiché un maggior numero di impulsi encoder vengono contati ad una data velocità di rotazione. D’altro canto, il filtraggio sulla misura di velocità introduce dei ritardi che non permettono elevate dinamiche dell’anello di controllo. Bassi valori di impostazione ampliano la banda passante di regolazione ma possono accentuare eventuali disturbi.

Menu PAR Descrizione UM Tipo FB BIT Def Min Max Acc Mod

17.11 2150 Velocità encoder 1

<table>
<thead>
<tr>
<th>Menu</th>
<th>PAR</th>
<th>Descrizione</th>
<th>UM</th>
<th>Tipo</th>
<th>FB BIT</th>
<th>Def</th>
<th>Min</th>
<th>Max</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>17.11</td>
<td>2150</td>
<td>Velocità encoder 1</td>
<td>rpm</td>
<td>INT16</td>
<td>16/32</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>ER</td>
<td>FVS</td>
</tr>
</tbody>
</table>

Visualizzazione della velocità del motore misurata dall’encoder.

Menu PAR Descrizione UM Tipo FB BIT Def Min Max Acc Mod

17.12 2162 Posizione encoder 1

<table>
<thead>
<tr>
<th>Menu</th>
<th>PAR</th>
<th>Descrizione</th>
<th>UM</th>
<th>Tipo</th>
<th>FB BIT</th>
<th>Def</th>
<th>Min</th>
<th>Max</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>17.12</td>
<td>2162</td>
<td>Posizione encoder 1</td>
<td>cnt</td>
<td>UINT16 16</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>ER</td>
<td>FVS</td>
<td></td>
</tr>
</tbody>
</table>

Visualizzazione della posizione dell’encoder. La scalatura è Numero impulsi encoder *4.

Menu PAR Descrizione UM Tipo FB BIT Def Min Max Acc Mod

17.13 5100 Impulsi encoder 2

<table>
<thead>
<tr>
<th>Menu</th>
<th>PAR</th>
<th>Descrizione</th>
<th>UM</th>
<th>Tipo</th>
<th>FB BIT</th>
<th>Def</th>
<th>Min</th>
<th>Max</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>17.13</td>
<td>5100</td>
<td>Impulsi encoder 2</td>
<td>ppr</td>
<td>UINT16</td>
<td>1024</td>
<td>128</td>
<td>16384</td>
<td>ERWZ</td>
<td>FVS</td>
<td></td>
</tr>
</tbody>
</table>

Impostazione del numero impulsi/giro dell’encoder incrementale montato nello slot 1 o 3.

Menu PAR Descrizione UM Tipo FB BIT Def Min Max Acc Mod

17.14 5102 Alimentaz encoder 2

<table>
<thead>
<tr>
<th>Menu</th>
<th>PAR</th>
<th>Descrizione</th>
<th>UM</th>
<th>Tipo</th>
<th>FB BIT</th>
<th>Def</th>
<th>Min</th>
<th>Max</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>17.14</td>
<td>5102</td>
<td>Alimentaz encoder 2</td>
<td>V</td>
<td>FLOAT</td>
<td>5.2</td>
<td>5.2</td>
<td>CALCF</td>
<td>ERWZ</td>
<td>FVS</td>
<td></td>
</tr>
</tbody>
</table>

Impostazione della tensione di alimentazione dell’encoder fornita dalla relativa scheda opzionale. I valori min e max vengono sono riferiti alle schede encoder digitale incrementale con uno o due encoder.

Menu PAR Descrizione UM Tipo FB BIT Def Min Max Acc Mod

17.15 5104 Config ingr encoder2

<table>
<thead>
<tr>
<th>Menu</th>
<th>PAR</th>
<th>Descrizione</th>
<th>UM</th>
<th>Tipo</th>
<th>FB BIT</th>
<th>Def</th>
<th>Min</th>
<th>Max</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>17.15</td>
<td>5104</td>
<td>Config ingr encoder2</td>
<td>ENUM</td>
<td>TTL</td>
<td>0</td>
<td>1</td>
<td>ERWZ</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Impostazione della configurazione d’ingresso dell’encoder digitale incrementale, TTL o HTL.

0 HTL
1 TTL

Il valore di questo parametro è impostato automaticamente in HTL quando il valore immesso nel parametro **Alimentaz encoder 2** è superiore a 6.0V.

Menu PAR Descrizione UM Tipo FB BIT Def Min Max Acc Mod

17.16 5106 Ripetiz. encoder 2

<table>
<thead>
<tr>
<th>Menu</th>
<th>PAR</th>
<th>Descrizione</th>
<th>UM</th>
<th>Tipo</th>
<th>FB BIT</th>
<th>Def</th>
<th>Min</th>
<th>Max</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>17.16</td>
<td>5106</td>
<td>Ripetiz. encoder 2</td>
<td>ENUM</td>
<td>Ness divisione</td>
<td>0</td>
<td>3</td>
<td>ERWZ</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Impostazione del divisore da applicare alla frequenza d’uscita della ripetizione encoder.

0 Ness divisione
1 Diviso 2
2 Diviso 4
3 Diviso 8

Menu PAR Descrizione UM Tipo FB BIT Def Min Max Acc Mod

17.17 5110 Errore segnali enc 2

<table>
<thead>
<tr>
<th>Menu</th>
<th>PAR</th>
<th>Descrizione</th>
<th>UM</th>
<th>Tipo</th>
<th>FB BIT</th>
<th>Def</th>
<th>Min</th>
<th>Max</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>17.17</td>
<td>5110</td>
<td>Errore segnali enc 2</td>
<td>ENUM</td>
<td>Contr A-B</td>
<td>0</td>
<td>3</td>
<td>ERWZ</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Configurazione di quali canali dell’encoder digitale incrementale devono essere controllati al fine dell’elaborazione del segnale d’allarme Perd Retroaz [22].

0 Contr disabil
1 Contr A-B
2 Contr A-B-Z
4 Contr A-B-SE

Impostando 1, viene verificata la presenza dei segnali dei canali A-B
Impostando 2, viene verificata la presenza dei segnali dei canali A-B-Z

Impostando 4, viene abilitato il controllo della perdita retroazione per gli encoder SE (single ended).
Nel caso in cui venga rilevata l'assenza della retroazione viene generato l'allarme **Perd Retroaz [22]**
Siccome non è possibile rilevare la perdita di retroazione a velocità prossime a zero, il controllo viene eseguito solo in caso che il riferimento di velocità sia superiore al valore impostato nel parametro **4564 Soglia SpdFbkLoss**. Bisogna inoltre considerare che quando si lavora con il riferimento di velocità leggermente superiore al limite impostato nel parametro parametro **4564 Soglia SpdFbkLoss** è possibile che, a causa del carico o del limite di corrente, l’errore di velocità ecceda quello impostato come soglia, generando falsi allarmi.

In questo caso aumentare il valore del parametro **4550 Soglia perd rif vel** o del parametro **4554 Filtro perd rif vel**.

Menu PAR Descrizione UM Tipo FB BIT Def Min Max Acc Mod

<table>
<thead>
<tr>
<th>17.18</th>
<th>5130 Direzione encoder 2</th>
<th>ENUM</th>
<th>Non invertita</th>
<th>0</th>
<th>1</th>
<th>ERWZ</th>
<th>FVS</th>
</tr>
</thead>
</table>

Selezione della direzione dell’encoder

- 0 Non invertita
- 1 Invertita

Impostando 0 i segnali di retroazione dell’encoder non vengono invertiti.
Impostando 1 i segnali di retroazione dell’encoder vengono invertiti.

Menu PAR Descrizione UM Tipo FB BIT Def Min Max Acc Mod

<table>
<thead>
<tr>
<th>17.19</th>
<th>5132 Modalità encoder 2</th>
<th>ENUM</th>
<th>Nessuna</th>
<th>0</th>
<th>2</th>
<th>ERWZ</th>
<th>FVS</th>
</tr>
</thead>
</table>

Impostazione del metodo di misurazione della velocità dell’encoder digitale collegato alla scheda opzionale.

- 0 Nessuna
- 1 Digital FP
- 2 Digital F

Impostando 1 viene selezionato il metodo di misurazione frequenza e periodo. Questo tipo di misurazione consente di ottenere una notevole precisione e dinamica a velocità medie ed alte.

Impostando 2 viene selezionato il metodo di misurazione frequenza. Questo tipo di selezione è da preferire per quelle applicazioni che necessitano di un funzionamento a bassissime velocità di rotazione.

Menu PAR Descrizione UM Tipo FB BIT Def Min Max Acc Mod

<table>
<thead>
<tr>
<th>17.20</th>
<th>5134 Filtro vel encoder 2</th>
<th>ms</th>
<th>FLOAT</th>
<th>2.0</th>
<th>0.1</th>
<th>20.0</th>
<th>ERWZ</th>
<th>FVS</th>
</tr>
</thead>
</table>

Impostazione della costante di tempo del filtro applicata alla lettura degli impulsi dell’encoder di retroazione. Il parametro influenza sia l’accuratezza della misura di velocità che la dinamica ottenibile nel controllo ad anello chiuso. Tempi di aggiornamento elevati permettono una maggiore stabilità (maggior filtraggio) della misura di velocità, poiché un maggior numero di impulsi encoder vengono contati ad una data velocità di rotazione. D’altro canto, il filtraggio sulla misura di velocità introduce dei ritardi che non permettono elevate dinamiche dell’anello di controllo. Bassi valori di impostazione ampliano la banda passante di regolazione ma possono accentuare eventuali disturbi.

Menu PAR Descrizione UM Tipo FB BIT Def Min Max Acc Mod

<table>
<thead>
<tr>
<th>17.21</th>
<th>5150 Velocità encoder 2</th>
<th>rpm</th>
<th>INT16 16/32BIT</th>
<th>0</th>
<th>0</th>
<th>0</th>
<th>ER</th>
<th>FVS</th>
</tr>
</thead>
</table>

Visualizzazione della velocità misurata dell’encoder 2.

Menu PAR Descrizione UM Tipo FB BIT Def Min Max Acc Mod

<table>
<thead>
<tr>
<th>17.22</th>
<th>5162 Posizione encoder 2</th>
<th>cnt</th>
<th>UINT16 16BIT</th>
<th>0</th>
<th>0</th>
<th>0</th>
<th>ER</th>
<th>FVS</th>
</tr>
</thead>
</table>

Visualizzazione della posizione dell’encoder. La scalatura è Numero impulsi encoder *4.
Menu PAR Descrizione UM Tipo FB BIT Def Min Max Acc Mod
17.23 5200 Impulsi encoder 3 ppr UINT16 1024 128 16384 ERWZ FVS
Impostazione del numero impulsi/giro dell’encoder incrementale montato nello slot 1 o 3.

Menu PAR Descrizione UM Tipo FB BIT Def Min Max Acc Mod
17.24 5204 Config ingr encoder3 ENUM TTL 0 1 ERWZ FVS
Impostazione della configurazione d’ingresso dell’encoder digitale incrementale 3, TTL o HTL. In caso di alimentazione interna dell’encoder il livello della tensione di alimentazione dell’encoder stesso sarà uguale a quella impostata per l’encoder 2.
0 HTL
1 TTL
Il valore di questo parametro è impostato automaticamente in HTL quando il valore immesso nel parametro Alimentaz encoder 2 è superiore a 6.0V.

Menu PAR Descrizione UM Tipo FB BIT Def Min Max Acc Mod
17.25 5230 Direzione encoder 3 ENUM Non invertita 0 1 ERWZ FVS
Selezione della direzione dell’encoder
0 Non invertita
1 Invertita
Impostando 0 i segnali di retroazione dell’encoder non vengono invertiti.
Impostando 1 i segnali di retroazione dell’encoder vengono invertiti.

Menu PAR Descrizione UM Tipo FB BIT Def Min Max Acc Mod
17.26 5262 Posizione encoder 3 cnt UINT16 16BIT 0 0 0 ER FVS
Visualizzazione della posizione dell’encoder. La scalatura è Numero impulsi encoder *4.

Menu PAR Descrizione UM Tipo FB BIT Def Min Max Acc Mod
17.27 5310 Sorg sel encoder LINK 16BIT 6000 0 16384 ERW FVS
Selezione dell’origine (sorgente) dell’ingresso da utilizzare per la selezione dell’encoder di retroazione di velocità. L’elenco degli ingressi digitali utilizzabili per la selezione sono selezionabili nella lista di selezione “L_DIG-SEL2”.
0 Encoder 1
1 Encoder 2

Menu PAR Descrizione UM Tipo FB BIT Def Min Max Acc Mod
17.28 5314 Mon sel encoder UINT16 0 0 1 ER FVS
Visualizzazione dell’encoder selezionato come dispositivo di retroazione.
0 Encoder 1
1 Encoder 2

Menu PAR Descrizione UM Tipo FB BIT Def Min Max Acc Mod
17.29 2172 Codice perd retr vel UINT32 0 0 0 ER FVS
Visualizzazione dell’allarme Perd retroazione generato da un anomalia dell’encoder. Ogni tipo di encoder genera l’allarme in maniera differente (erroe da segnali incrementali, errore da segnali assoluti, errore su seriale), pertanto è possibile visualizzare con questo parametro l’informazione dell’allarme intervenuto. Se sono attive più cause contemporaneamente queste verranno riportate su questo parametro.
Bit Valore Nome

<table>
<thead>
<tr>
<th>Bit</th>
<th>Valore</th>
<th>Nome</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0x01</td>
<td>CHA</td>
</tr>
<tr>
<td>1</td>
<td>0x02</td>
<td>CHB</td>
</tr>
<tr>
<td>2</td>
<td>0x04</td>
<td>CHZ</td>
</tr>
<tr>
<td>3</td>
<td>0x08</td>
<td>MOD_INCR</td>
</tr>
<tr>
<td>4</td>
<td>0x10</td>
<td>MOD_ABS</td>
</tr>
<tr>
<td>5</td>
<td>0x20</td>
<td>CRC_CKS_P</td>
</tr>
<tr>
<td>6</td>
<td>0x40</td>
<td>ACK_TMO</td>
</tr>
<tr>
<td>7</td>
<td>0x80</td>
<td>DT1_ERR</td>
</tr>
<tr>
<td>8</td>
<td>0x100</td>
<td>Errore Setup</td>
</tr>
<tr>
<td>9..15</td>
<td>Liberi</td>
<td></td>
</tr>
<tr>
<td>16..31</td>
<td>Dipendente dall'encoder</td>
<td></td>
</tr>
</tbody>
</table>

Per ulteriori informazioni fare riferimento alla descrizione dell'allarme **Perd retroazione** ed al capitolo 9.2.1 **Allarme Perd Retroaz in funzione del tipo di retroazione** (manuale ADV200 Guida rapida all’installazione).

NOTA! Per la corretta interpretazione delle cause che hanno provocato l’allarme, è necessario trasformare il codice esadecimale scritto nel parametro 17.29 Codice perd retr vel, PAR 2172, nel corrispondente binario e verificare quindi nella tabella dell’encoder utilizzato i vari bit attivi e la relativa descrizione.

Esempio con encoder Endat:

PAR 2172 = A0H (valore esadecimale)

Nella tabella "**Allarme Perd Retroaz [22]** con encoder assoluto EnDat" A0 non è presente nella colonna valore.

A0 deve essere visto come una bitword che significa A0 -> 10100000 -> bit 5 e bit 7. Sono quindi intervenute contemporaneamente le seguenti cause:

- Bit 5 = 20H Causa: segnali SSI disturbati causano un errore **CKS oppure Parity**
- Bit 7 = 80H Causa: Encoder ha rilevato un suo malfunzionamento e lo segnala al Drive tramite Error bit. Nei bit 16..31 è presente il tipo di malfunzionamento rilevato da encoder.
L’adattativo di velocità consente di ottenere diversi guadagni del regolatore di velocità in funzione della velocità oppure di un’altra grandezza. Il comportamento del regolatore di velocità può così essere configurato nel modo ottimale per le specifiche esigenze applicative.

NOTA!
I regolatori di corrente, flusso e tensione possono essere impostati con la procedura di autoapprendimento. Se questa non dovesse avere successo, è possibile tarare manualmente i regolatori di corrente e di flusso (questo non vale per i regolatori di tensione, non devono essere eseguiti cambiamenti da parte dell’utente). Il regolatore di velocità deve essere tarato manualmente. Normalmente i guadagni vengono variati in funzione della velocità del drive.

Menu PAR Descrizione UM Tipo FB BIT Def Min Max Acc Mod

<table>
<thead>
<tr>
<th></th>
<th>PAR</th>
<th>Descrizione</th>
<th>UM</th>
<th>Tipo</th>
<th>FB</th>
<th>BIT</th>
<th>Def</th>
<th>Min</th>
<th>Max</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>18.1</td>
<td>2200 Guad P1 regol vel</td>
<td>perc</td>
<td>INT16</td>
<td>100</td>
<td>0</td>
<td>1000</td>
<td>RW</td>
<td>F_S</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18.2</td>
<td>2202 Guad I1 regol vel</td>
<td>perc</td>
<td>INT16</td>
<td>100</td>
<td>0</td>
<td>1000</td>
<td>RW</td>
<td>F_S</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Impostazione del guadagno proporzionale ed integrale del regolatore di velocità, set 1.

<table>
<thead>
<tr>
<th></th>
<th>PAR</th>
<th>Descrizione</th>
<th>UM</th>
<th>Tipo</th>
<th>FB</th>
<th>BIT</th>
<th>Def</th>
<th>Min</th>
<th>Max</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>18.3</td>
<td>2204 Guad P2 regol vel</td>
<td>perc</td>
<td>INT16</td>
<td>100</td>
<td>0</td>
<td>1000</td>
<td>ERW</td>
<td>F_S</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18.4</td>
<td>2206 Guad I2 regol vel</td>
<td>perc</td>
<td>INT16</td>
<td>100</td>
<td>0</td>
<td>1000</td>
<td>ERW</td>
<td>F_S</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Impostazione del guadagno proporzionale ed integrale del regolatore di velocità, set 2.

<table>
<thead>
<tr>
<th></th>
<th>PAR</th>
<th>Descrizione</th>
<th>UM</th>
<th>Tipo</th>
<th>FB</th>
<th>BIT</th>
<th>Def</th>
<th>Min</th>
<th>Max</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>18.5</td>
<td>2216 Sorg guad adattivo</td>
<td>LINK</td>
<td>16/32</td>
<td>664</td>
<td>0</td>
<td>16384</td>
<td>ERW</td>
<td>F_S</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Selezione dell’origine (sorgente) del segnale da utilizzare per il guadagno adattativo di velocità. L’elenco delle grandezze associabili alla funzione sono nella lista di selezione “L_REF”.

<table>
<thead>
<tr>
<th></th>
<th>PAR</th>
<th>Descrizione</th>
<th>UM</th>
<th>Tipo</th>
<th>FB</th>
<th>BIT</th>
<th>Def</th>
<th>Min</th>
<th>Max</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>18.6</td>
<td>2218 Soglia g adat vel1_2</td>
<td>perc</td>
<td>FLOAT</td>
<td>0.0</td>
<td>0.0</td>
<td>100.0</td>
<td>ERW</td>
<td>F_S</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Impostazione della soglia di velocità per la variazione dei guadagni dal set 1 al set 2.
Menu	PAR	Descrizione	UM	Tipo	FB	BIT	Def	Min	Max	Acc	Mod
18.7 | 2220 | Banda g adat vel1_2 | perc | FLOAT | 0.0 | 0.0 | 100.0 | ERW | F_S
 Impostazione della banda all’interno della quale avviene la variazione dei guadagni tra il set 1 ed il set 2. L’utilizzo di questo parametro permette un passaggio dolce tra le due gamme di parametri.

18.8 | 2226 | Abil guadagno vel 0 | ENUM | Disabilita | 0 | 1 | ERW | F_S
 Abilitazione del guadagno a velocità zero.

 0 Disabilita
 1 Abilita

 Impostando questo parametro a 0 il controllo dei guadagni a velocità zero sono disabilitati. Impostando questo parametro a 1 il controllo dei guadagni a velocità zero sono abilitati. Questa funzione permette di migliorare la risposta del motore sotto la soglia soglia velocità 0.

18.9 | 2228 | Guad P0 regol vel | perc | INT16 | 100 | 0 | 1000 | ERW | F_S
 Impostazione del guadagno proporzionale del regolatore di velocità a velocità zero.

18.10 | 2230 | Guad I0 regol vel | perc | INT16 | 100 | 0 | 1000 | ERW | F_S
 Impostazione del guadagno integrale del regolatore di velocità a velocità zero.

18.11 | 2232 | Guad P att reg vel | perc | INT16 | 100 | 0 | 1000 | ER | F_S
 Visualizzazione in percentuale del coefficiente proporzionale attuale del regolatore di velocità.

18.12 | 2234 | Guad I att reg vel | perc | INT16 | 100 | 0 | 1000 | ER | F_S
 Visualizzazione in percentuale del coefficiente integrale attuale del regolatore di velocità.

18.13 | 2236 | Guadagno P regol vel | N/rpm | FLOAT | CALCF | 0.0 | 500.0 | ERWS | F_S
 Impostazione del coefficiente proporzionale del regolatore di velocità.

18.14 | 2238 | Tempo I regol vel | ms | FLOAT | CALCF | 1.0 | 5000.0 | ERWS | F_S
 Impostazione del coefficiente integrale del regolatore di velocità.
<table>
<thead>
<tr>
<th>Menu</th>
<th>PAR</th>
<th>Descrizione</th>
<th>UM</th>
<th>Tipo</th>
<th>FB BIT</th>
<th>Def</th>
<th>Min</th>
<th>Max</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>18.15</td>
<td>2240</td>
<td>Inerzia</td>
<td>kgm2</td>
<td>FLOAT</td>
<td>SIZE</td>
<td>0.001</td>
<td>100.0</td>
<td>RWZS</td>
<td>F_S</td>
<td></td>
</tr>
</tbody>
</table>

Impostazione del coefficiente di compensazione dell’inerzia. Un incremento della risposta dinamica del regolatore di velocità ad una variazione del riferimento, può essere modificata eseguendo una variazione del valore della corrente durante la fase di accelerazione/decelerazione, per opporsi all’inerzia della macchina applicata.

<table>
<thead>
<tr>
<th>Menu</th>
<th>PAR</th>
<th>Descrizione</th>
<th>UM</th>
<th>Tipo</th>
<th>FB BIT</th>
<th>Def</th>
<th>Min</th>
<th>Max</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>18.16</td>
<td>2242</td>
<td>Larghezza banda</td>
<td>rad/s</td>
<td>FLOAT</td>
<td>SIZE</td>
<td>1.0</td>
<td>500.0</td>
<td>RWZS</td>
<td>F_S</td>
<td></td>
</tr>
</tbody>
</table>

Impostazione dell’ampiezza della banda passante. Aumentando l’impostazione di questo parametro la risposta dinamica risulterà più elevata ed il sistema avrà una maggiore rigidità.
19 – GUAD REGOLATORI

Menu PAR Descrizione UM Tipo FB BIT Def Min Max Acc Mod

<p>| | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>19.1</td>
<td>2250</td>
<td>Guad P regol corr</td>
<td>V/A</td>
<td>FLOAT</td>
<td>CALCF</td>
<td>0.0</td>
</tr>
</tbody>
</table>

Impostazione del coefficiente proporzionale del regolatore di corrente.

<p>| | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>19.2</td>
<td>2252</td>
<td>Tempo I regol corr</td>
<td>ms</td>
<td>FLOAT</td>
<td>CALCF</td>
<td>0.01</td>
</tr>
</tbody>
</table>

Impostazione del coefficiente integrale del regolatore di corrente.

<p>| | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>19.3</td>
<td>2260</td>
<td>Guad P regol flusso</td>
<td>A/Wb</td>
<td>FLOAT</td>
<td>CALCF</td>
<td>0.0</td>
</tr>
</tbody>
</table>

Impostazione del coefficiente proporzionale del regolatore di flusso.

<p>| | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>19.4</td>
<td>2262</td>
<td>Tempo I regol flusso</td>
<td>ms</td>
<td>FLOAT</td>
<td>CALCF</td>
<td>0.01</td>
</tr>
</tbody>
</table>

Impostazione del coefficiente integrale del regolatore di flusso.
Impostazione del guadagno proporzionale del regolatore di flusso quando il drive viene utilizzato in controllo vettoriale sensorless in anello aperto. L’impostazione di questo parametro avviene eseguita automaticamente dalla procedura di auto taratura.

Impostazione del tempo integrale del regolatore di flusso quando il drive viene utilizzato in controllo vettoriale sensorless in anello aperto. L’impostazione di questo parametro avviene eseguita automaticamente dalla procedura di auto taratura.

Impostazione del coefficiente proporzionale del regolatore di tensione.

Impostazione del coefficiente integrale del regolatore di tensione.

La funzione di compensazione dei tempi morti (Dead time compensation), compensa le distorsioni della tensione d’uscita, causate dalla caduta di tensione degli IGBT e dalle loro caratteristiche di commutazione. La distorsione della tensione d’uscita potrebbe causare una rotazione del motore non uniforme.

Impostazione del valore della compensazione in tensione per i tempi morti.

Imposta il valore del gradiente di compensazione per i tempi morti.

Impostazione del valore di tensione che determina la soglia iniziale dell’indebolimento di flusso (tensione massima di uscita del drive). Impostando questo parametro ad un valore pari a quello nominale del motore si ottiene un funzionamento al flusso nominale nella regione a coppia costante ed al flusso indebolito a frequenze maggiori. Il valore di default è impostato al valore della tensione di alimentazione.
Margine di tensione

Un valore del 5% consente una presa di carico molto rapida a scapito della tensione di uscita e quindi potenza di uscita (riduzione potenza di uscita).

Il valore minimo (1%) consente di ottenere la massima tensione in uscita (intorno al 98%) della tensione di rete ma a scapito della qualità della risposta dinamica.

Velocità minima OL

Impostazione della soglia di velocità minima nella modalità di regolazione Vettoriale sensorless. Sotto questo limite la velocità del motore viene portata a zero.

Ritardo vel min OL

Impostazione del tempo di ritardo per la disabilitazione del regolatore sensorless.

Filtro velocità OL

Impostazione della costante di tempo per la velocità stimata in modalità Vettoriale sensorless. Aumentando questo parametro è possibile ridurre il livello dei disturbi della velocità stimata; si ha però una diminuzione della dinamica di controllo della velocità.

Guad osser flusso OL

Guadagno osservatore di flusso nella modalità anello aperto vettoriale di flusso.

In caso di instabilità provare a cambiare il valore impostando la metà o il doppio del valore di default.

Riduzione flusso OL

Abilita o disabilita l’operazione di deflussaggio nella modalità anello aperto vettoriale di flusso.

Se è impostato come *Disabilita*, il flusso non viene ridotto quando la velocità del motore supera la velocità nominale. Questo causa perdita di controllo e instabilità.

Per evitare questo problema impostare il parametro come *Abilita*.

Nella modalità ad anello aperto un valore di flusso inferiore alla velocità nominale del motore da vantaggi in termini di stabilità.

0 Disabilita
1 Abilita

Tempo magnetiz

Questo parametro può essere utilizzato per rallentare il periodo transitorio di magnetizzazione ed evitare la rotazione dell’albero motore dovuta all’allineamento dello statore e del rotore.
20 – CONFIG COPPIA

Menu PAR Descrizione UM Tipo FB BIT Def Min Max Acc Mod

20.1 2350 Lim pos corr coppia

<table>
<thead>
<tr>
<th>Menu PAR</th>
<th>PAR</th>
<th>Descrizione</th>
<th>UM</th>
<th>Tipo</th>
<th>FB BIT</th>
<th>Def</th>
<th>Min</th>
<th>Max</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>20.1</td>
<td>2350</td>
<td>Lim pos corr coppia</td>
<td></td>
<td>A</td>
<td>FLOAT 16/32</td>
<td>CALCF</td>
<td>0.0</td>
<td>CALCF</td>
<td>ERWS</td>
<td>FVS</td>
</tr>
</tbody>
</table>

Impostazione del limite di coppia attiva del drive per il senso positivo della corrente (rotazione in senso orario e frenatura in senso antiorario).

20.2 2352 Lim neg corr coppia

<table>
<thead>
<tr>
<th>Menu PAR</th>
<th>PAR</th>
<th>Descrizione</th>
<th>UM</th>
<th>Tipo</th>
<th>FB BIT</th>
<th>Def</th>
<th>Min</th>
<th>Max</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>20.2</td>
<td>2352</td>
<td>Lim neg corr coppia</td>
<td></td>
<td>A</td>
<td>FLOAT 16/32</td>
<td>CALCF</td>
<td>0.0</td>
<td>CALCF</td>
<td>ERWS</td>
<td>FVS</td>
</tr>
</tbody>
</table>

Impostazione del limite di coppia attiva del drive per il senso negativo della corrente (rotazione in senso antiorario e frenatura in senso orario).

20.3 2354 Sel lim coppa

<table>
<thead>
<tr>
<th>Menu PAR</th>
<th>PAR</th>
<th>Descrizione</th>
<th>UM</th>
<th>Tipo</th>
<th>FB BIT</th>
<th>Def</th>
<th>Min</th>
<th>Max</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>20.3</td>
<td>2354</td>
<td>Sel lim coppa</td>
<td></td>
<td>ENUM</td>
<td>Spento</td>
<td>0</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Impostazione del tipo di comportamento del drive in limite di corrente.

- 0 Spento
- 1 Lim Copp+/−
2. Lim Ccop m/g

3. LimCop sim

4. LimCop pos/neg

Impostando **0** non viene impostato nessun specifico tipo di limitazione di corrente.

Impostando **1** il limite di coppia positivo attivo è *Lim pos corr coppia* ed il limite di coppia negativo attivo è *Lim neg corr coppia*.

![Diagram](image)

Limiti di coppia con **Sel lim corr coppia = 1**

Limiti di coppia con **Sel lim corr coppia = 2**

Impostando **2** sono possibili tre condizioni:

1. Se la velocità del motore è > +1% di *Velocità nominale* il limite di coppia positiva attiva è *Lim pos corr coppia* ed il limite di coppia negativo attivo è *Lim neg corr coppia*.

2. Se la velocità del motore è < -1% di *Velocità nominale* il limite di coppia positiva attiva è *Lim neg corr coppia* ed il limite di coppia negativo attivo è *Lim pos corr coppia*.

3. Se la velocità motore è compresa tra ± 1% di *Velocità nominale* il limite di coppia positiva attiva è *Lim pos corr coppia* ed il limite di coppia negativo attivo è *Lim neg corr coppia*.

Impostando **3** i limiti di coppia sono simmetrici. Viene preso come riferimento di coppia il valore del parametro **2358 Sorg lim cop sim/pos**. Questa modalità non è gestita in controllo V/f. Il limite viene effettuato sulla corrente di coppia.

Impostando **4** i limiti di coppia vengono assegnati in modo autonomo, impostando come riferimento di coppia positivo il valore del parametro **2358 Sorg lim cop sim/pos** e come riferimento di coppia negativo il valore del parametro **2370 Sorg lim coppia neg** simmetrici. Viene preso come riferimento di coppia il valore del parametro **2370 Sorg lim coppia neg**. Questa modalità non è gestita in controllo V/f. Il limite viene effettuato sulla corrente di coppia.

<table>
<thead>
<tr>
<th>Menu</th>
<th>PAR</th>
<th>Descrizione</th>
<th>UM</th>
<th>Tipo</th>
<th>FB</th>
<th>BIT</th>
<th>Def</th>
<th>Min</th>
<th>Max</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>20.4</td>
<td>2358</td>
<td>Sorg lim cop pos</td>
<td>LINK</td>
<td>16/32</td>
<td>6000</td>
<td>0</td>
<td>16384</td>
<td>ERWZ</td>
<td>F_S</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Selezione dell’origine (sorgente) da utilizzare per l’impostazione del limite di coppia:

Se il parametro **2354 Sel lim corr coppia** viene impostato a 3 il limite di coppia è simmetrico

Se il parametro **2354 Sel lim corr coppia** viene impostato a 4 il limite di coppia è positivo

L’elenco dei segnali associabili alla funzione possono essere selezionati nella lista di selezione “L_PLIM”.

ADV200 • Descrizione delle funzioni e lista parametri 87
<table>
<thead>
<tr>
<th>Menu PAR</th>
<th>Descrizione</th>
<th>UM</th>
<th>Tipo</th>
<th>FB BIT</th>
<th>Def</th>
<th>Min</th>
<th>Max</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>20.5</td>
<td>2370 Sorg lim coppia neg</td>
<td>LINK 16/32BIT</td>
<td>6000</td>
<td>0</td>
<td>16384</td>
<td>ERWZ</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Selezionare l'origine (sorgente) da utilizzare per il limite di coppia negativo. L'elenco dei segnali associabili alla funzione possono essere selezionati nella lista di selezione “L_NLIM”.

<table>
<thead>
<tr>
<th>Menu PAR</th>
<th>Descrizione</th>
<th>UM</th>
<th>Tipo</th>
<th>FB BIT</th>
<th>Def</th>
<th>Min</th>
<th>Max</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>20.6</td>
<td>2372 Lim pos coppia</td>
<td>perc</td>
<td>FLOAT</td>
<td>16/32</td>
<td>CALCF</td>
<td>0.0</td>
<td>CALCF</td>
<td>ERW</td>
<td>F_S</td>
</tr>
</tbody>
</table>

Impostazione del limite positivo della limitazione di coppia.

<table>
<thead>
<tr>
<th>Menu PAR</th>
<th>Descrizione</th>
<th>UM</th>
<th>Tipo</th>
<th>FB BIT</th>
<th>Def</th>
<th>Min</th>
<th>Max</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>20.7</td>
<td>2374 Lim neg coppia</td>
<td>perc</td>
<td>FLOAT</td>
<td>16/32</td>
<td>CALCF</td>
<td>0.0</td>
<td>CALCF</td>
<td>ERW</td>
<td>F_S</td>
</tr>
</tbody>
</table>

Impostazione del limite negativo della limitazione di coppia.

<table>
<thead>
<tr>
<th>Menu PAR</th>
<th>Descrizione</th>
<th>UM</th>
<th>Tipo</th>
<th>FB BIT</th>
<th>Def</th>
<th>Min</th>
<th>Max</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>20.8</td>
<td>2376 Sel unit lim coppia</td>
<td>ENUM</td>
<td>%</td>
<td>0</td>
<td>1</td>
<td>ERW</td>
<td>F_S</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Impostazione dell'unità di misura per i limiti di coppia.

<table>
<thead>
<tr>
<th>Menu PAR</th>
<th>Descrizione</th>
<th>UM</th>
<th>Tipo</th>
<th>FB BIT</th>
<th>Def</th>
<th>Min</th>
<th>Max</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>20.9</td>
<td>2360 Lim pos coppia att</td>
<td>A</td>
<td>FLOAT</td>
<td>16/32</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>ER</td>
<td>FVS</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Menu PAR</th>
<th>Descrizione</th>
<th>UM</th>
<th>Tipo</th>
<th>FB BIT</th>
<th>Def</th>
<th>Min</th>
<th>Max</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>20.10</td>
<td>2362 Lim neg coppia att</td>
<td>A</td>
<td>FLOAT</td>
<td>16/32</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>ER</td>
<td>FVS</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Menu PAR</th>
<th>Descrizione</th>
<th>UM</th>
<th>Tipo</th>
<th>FB BIT</th>
<th>Def</th>
<th>Min</th>
<th>Max</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>20.11</td>
<td>2380 Rif dig coppia 1</td>
<td>perc</td>
<td>FLOAT</td>
<td>16/32</td>
<td>0.0</td>
<td>-300.0</td>
<td>300.0</td>
<td>ERW</td>
<td>F_S</td>
</tr>
</tbody>
</table>

Impostazione di un riferimento digitale di coppia. L'entità del riferimento di corrente è proporzionale alla corrente attiva del motore e determina l'entità della coppia, il segno determina il senso della coppia.

<table>
<thead>
<tr>
<th>Menu PAR</th>
<th>Descrizione</th>
<th>UM</th>
<th>Tipo</th>
<th>FB BIT</th>
<th>Def</th>
<th>Min</th>
<th>Max</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>20.12</td>
<td>2382 Sorg rif coppia 1</td>
<td>LINK</td>
<td>16/32</td>
<td>3104</td>
<td>0.0</td>
<td>16384</td>
<td>ERWZ</td>
<td>F_S</td>
<td></td>
</tr>
</tbody>
</table>

Selezionare l'origine (sorgente) del segnale da utilizzare come riferimento di coppia. L'elenco dei segnali associabili alla funzione sono nella lista di selezione “L_VREF”.

<table>
<thead>
<tr>
<th>Menu PAR</th>
<th>Descrizione</th>
<th>UM</th>
<th>Tipo</th>
<th>FB BIT</th>
<th>Def</th>
<th>Min</th>
<th>Max</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>20.13</td>
<td>2384 Filtro rif coppia</td>
<td>ms</td>
<td>FLOAT</td>
<td>16/32</td>
<td>1.0</td>
<td>0.1</td>
<td>10.0</td>
<td>ERW</td>
<td>F_S</td>
</tr>
</tbody>
</table>

Impostazione di un filtro sul riferimento di coppia.

<table>
<thead>
<tr>
<th>Menu PAR</th>
<th>Descrizione</th>
<th>UM</th>
<th>Tipo</th>
<th>FB BIT</th>
<th>Def</th>
<th>Min</th>
<th>Max</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>20.14</td>
<td>2386 Riferimento coppia %</td>
<td>perc</td>
<td>FLOAT</td>
<td>16/32</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>ER</td>
<td>F_S</td>
</tr>
</tbody>
</table>

Impostazione del valore del riferimento di coppia in %.

<table>
<thead>
<tr>
<th>Menu PAR</th>
<th>Descrizione</th>
<th>UM</th>
<th>Tipo</th>
<th>FB BIT</th>
<th>Def</th>
<th>Min</th>
<th>Max</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>20.15</td>
<td>2390 Riferimento coppia</td>
<td>Nm</td>
<td>FLOAT</td>
<td>16/32</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>ER</td>
<td>F_S</td>
</tr>
</tbody>
</table>

Impostazione del valore del riferimento di coppia in Nm.
<table>
<thead>
<tr>
<th>Menu</th>
<th>PAR</th>
<th>Descrizione</th>
<th>UM</th>
<th>Tipo</th>
<th>FB BIT</th>
<th>Def</th>
<th>Min</th>
<th>Max</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>20.16</td>
<td>2366</td>
<td>Rid lim corr coppia</td>
<td>A</td>
<td>FLOAT</td>
<td>16/32BIT</td>
<td>CALCF</td>
<td>0.0</td>
<td>CALCF</td>
<td>ERWS</td>
<td>F_S</td>
</tr>
</tbody>
</table>

Impostazione del limite di corrente di coppia quando si attiva il comando **2368 Sorg rid lim Copp**. Il valore di default ed il valore massimo vengono automaticamente calcolati dal drive ogni qualvolta vengono modificati i dati di targa del motore e dopo una procedura di autoapprendimento.

<table>
<thead>
<tr>
<th>Menu</th>
<th>PAR</th>
<th>Descrizione</th>
<th>UM</th>
<th>Tipo</th>
<th>FB BIT</th>
<th>Def</th>
<th>Min</th>
<th>Max</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>20.17</td>
<td>2368</td>
<td>Sorg rid lim Ccop</td>
<td>LINK</td>
<td>16BIT</td>
<td>6000</td>
<td>0</td>
<td>16384</td>
<td>ERW</td>
<td>F_S</td>
<td></td>
</tr>
</tbody>
</table>

Selezione dell’origine (sorgente) da utilizzare per la riduzione del limite di corrente di coppia. Quando questo comando viene attivato il limite di coppia si porta al livello definito dal parametro **2366 Rid lim corr coppia**. L’elenco dei segnali associabili alla funzione possono essere selezionati nella lista di selezione “L_DIGSEL2”.
21 – PARAMETRI VF

- **Menu**
- **Descrizione**
- **UM**
- **Tipo**
- **FB BIT**
- **Def**
- **Min**
- **Max**
- **Acc**
- **Mod**

21.1 2400 Boost tens flusso

<table>
<thead>
<tr>
<th>UM</th>
<th>Tipo</th>
<th>FB BIT</th>
<th>Def</th>
<th>Min</th>
<th>Max</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>perc</td>
<td>FLOAT</td>
<td></td>
<td>0.0</td>
<td>0.0</td>
<td>15.0</td>
<td>RWS</td>
<td>V</td>
</tr>
</tbody>
</table>

Impostazione della tensione di boost. L’impedenza resistiva degli avvolgimenti del motore, causa una caduta di tensione all’interno del motore stesso, che ha come conseguenza una riduzione di coppia alle basse velocità. La compensazione a tale effetto viene ottenuta incrementando la tensione d’uscita. Se viene eseguita la procedura di autoapprendimento il valore di boost viene calcolato in maniera automatica.

21.2 2402 Guad boost tensione

<table>
<thead>
<tr>
<th>UM</th>
<th>Tipo</th>
<th>FB BIT</th>
<th>Def</th>
<th>Min</th>
<th>Max</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>V/A</td>
<td>FLOAT</td>
<td></td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>ERWS</td>
<td>V</td>
</tr>
</tbody>
</table>

Impostazione manuale del guadagno della tensione di boost da applicarsi ai capi del motore per la caratteristica V/f impostata. Se viene eseguita la procedura di autoapprendimento il valore di boost viene calcolato in maniera automatica.

21.3 2404 Boost tens coppia

<table>
<thead>
<tr>
<th>UM</th>
<th>Tipo</th>
<th>FB BIT</th>
<th>Def</th>
<th>Min</th>
<th>Max</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENUM</td>
<td>Disabilita</td>
<td></td>
<td>0</td>
<td>1</td>
<td></td>
<td>ERWZ</td>
<td>V</td>
</tr>
</tbody>
</table>

Abilita la compensazione di coppia vettoriale. Nell’impostazione di default il drive è settato per un controllo V/f puro.

- 0 Disabilita
- 1 Abilita
Menu PAR Descrizione UM Tipo FB BIT Def Min Max Acc Mod

| 21.4 | 2406 Tensione Vf | V | FLOAT | CALCF | 10.0 | 690.0 | ERWZS V |

Impostazione del massimo valore della tensione da applicarsi ai capi del motore (normalmente impostata in funzione del dato di targa del motore stesso).

Menu PAR Descrizione UM Tipo FB BIT Def Min Max Acc Mod

| 21.5 | 2408 Frequenza Vf | Hz | FLOAT | CALCF | 10.0 | 2000.0 | ERWZS V |

Impostazione della frequenza nominale del motore (indicata sulla targhetta dati del motore stesso)
È la frequenza a cui la tensione di uscita del drive raggiunge il massimo della tensione d'uscita sul motore (FV voltage)

Menu PAR Descrizione UM Tipo FB BIT Def Min Max Acc Mod

| 21.6 | 2410 Tensione 1 Vf | V | FLOAT | CALCF | CALCF | CALCF | ERWZS V |

Impostazione di un valore di tensione intermedio per la caratteristica V/f Personalizzata.

Menu PAR Descrizione UM Tipo FB BIT Def Min Max Acc Mod

| 21.7 | 2412 Frequenza 1 Vf | Hz | FLOAT | CALCF | 0.0 | CALCF | ERWZS V |

Impostazione di un valore di frequenza intermedio per la caratteristica V/f Personalizzata.

Menu PAR Descrizione UM Tipo FB BIT Def Min Max Acc Mod

| 21.8 | 2414 Tensione 0 Vf | V | FLOAT | CALCF | 0.0 | CALCF | ERWZS V |

Compensazione della caduta di tensione IR a 0 Hz. Questo parametro deve essere aumentato in caso di controllo V/f puro. L'aumento dipende dalla taglia del motore. Valori eccessivi possono causare sovracorrenti e saturazione del motore.

Menu PAR Descrizione UM Tipo FB BIT Def Min Max Acc Mod

| 21.9 | 2430 Curva Vf | ENUM | Lineare | 0 | 2 | ERWS V |

Selezione del tipo di caratteristica V/f

- 0 Lineare
- 1 Personalizzata
- 2 Quadratica

Impostando 0 (Lineare) si ottiene una caratteristica V/f di tipo lineare, i cui punti intermedi sono reimpostati ad un valore pari alla metà di quelli dei parametri 2406 e 2408.
Il raccordo del Boost sulla curva avverrà in modo automatico.

![Diagram](attachment:image.png)

Impostando 1 (Personalizzata) si ottiene una caratteristica V/f personalizzata, in cui i valori intermedi di tensione e frequenza sono definiti dai parametri 2410 e 2412, così come il raccordo del Boost sulla curva della caratteristica.
Impostando 2 (Quadratica) si ottiene una caratteristica V/f di tipo quadratico, utile nei controlli di pompe e ventilatori, dove la coppia è proporzionale al quadrato della velocità. Quando viene selezionata tale tipo di curva, il punto mediano di tensione è fissato allo 0,25% della tensione massima di uscita (par.2406), e il punto mediano di frequenza al 50% della frequenza base (par.2408).

Impostazione della compensazione di scorrimento. Quando il motore asincrono viene caricato, la velocità meccanica dell’albero motore varia in funzione dello scorrimento elettrico, il quale influenza sulla generazione della coppia. Al fine di mantenere costante la velocità sull’albero motore, può essere usata la funzione di compensazione di scorrimento. La compensazione viene eseguita variando la frequenza di uscita del drive in funzione della sua corrente di uscita e dei parametri del motore. Quindi, per ottenere il miglior effetto, i dati di targa del motore devono essere adeguatamente impostati, e il valore corretto della resistenza statorica (Par.2050) deve essere sia impostato oppure misurato con la funzione di autoapprendimento. Il valore della compensazione dello scorrimento viene calcolata automaticamente durante la procedura di autoapprendimento o impostata manualmente in questo parametro.

Durante la taratura della compensazione di scorrimento il drive non deve essere in condizioni di limite di corrente.

Impostazione del filtro per la compensazione di scorrimento. Il valore impostato in questo parametro determina...
il tempo di reazione della funzione di compensazione di scorrimento. Più basso sarà l’impostazione di questo parametro, più alta sarà la reazione della compensazione di scorrimento. Regolazioni troppo basse del volare di questo parametro potrebbero dar luogo ad oscillazioni indesiderate della velocità dopo improvvisi variazioni del carico applicato.

Impostazione della modalità di compensazione dello scorrimento.

0 Anello aperto
1 Anello chiuso

Impostando 0 (Anello aperto) il valore della compensazione di scorrimento sarà quello impostato manualmente nel parametro 5210 o calcolato dalla procedura di autoapprendimento.

Impostando 1 (Anello chiuso) il valore della compensazione di scorrimento viene rilevato tramite la lettura dei segnali di un encoder digitale calettato sull’albero del motore. Per l’acquisizione dei segnali dell’encoder è necessario montare nel drive la scheda di espansione EXP-DE-11R1F1-ADV.

Impostazione del guadagno proporzionale della compensazione di scorrimento.

Impostazione del guadagno integrale della compensazione di scorrimento.

Impostazione del limite del guadagno proporzionale in modalità V/f. Viene calcolato in maniera automatica nel caso in cui venga eseguita la procedura di autotaratura.

Impostazione del limite del guadagno proporzionale in modalità V/f. Viene calcolato in maniera automatica nel caso in cui venga eseguita la procedura di autotaratura.
Menu PAR Descrizione UM Tipo FB BIT Def Min Max Acc Mod
21.17 2470 Guadagno damping perc UINT16 0 0 100 ERW V

Impostazione del guadagno di smorzamento. Il parametro è utilizzato per eliminare qualsiasi oscillazione od anomalie nella corrente d’uscita del drive, derivanti da configurazioni capaci di generare oscillazioni nel sistema drive/cavo/motore. Se intervengono delle oscillazioni, è consigliato incrementare progressivamente il valore di questo parametro, fino alla scomparsa delle oscillazioni.

Menu PAR Descrizione UM Tipo FB BIT Def Min Max Acc Mod
21.18 2472 Soglia damping 1 Hz INT16 20 5 100 ERW V

Impostazione della prima soglia di regolazione del guadagno di smorzamento. Generalmente queste impostazione hanno efficacia per valori di frequenza intermedi e permettono di limitare le oscillazioni sul motore.

Menu PAR Descrizione UM Tipo FB BIT Def Min Max Acc Mod
21.19 2474 Soglia damping 2 Hz INT16 30 5 100 ERW V

Impostazione della seconda soglia di regolazione del guadagno di smorzamento. Generalmente queste impostazione hanno efficacia per valori di frequenza intermedi e permettono di limitare le oscillazioni sul motore.

Menu PAR Descrizione UM Tipo FB BIT Def Min Max Acc Mod
21.20 2480 Frequenza minima Vf Hz FLOAT 1.0 0.2 5.0 ERW V

Menu PAR Descrizione UM Tipo FB BIT Def Min Max Acc Mod
21.21 2482 Ritardo freq min Vf ms UINT16 800 0 5000 ERW V

Impostazione del tempo di ritardo per la segnalazione di frequenza minima in modalità di controllo V/F.

Menu PAR Descrizione UM Tipo FB BIT Def Min Max Acc Mod
21.22 2490 Scala digitale Vf FLOAT 16/32 1.0 0.0 1.0 ERWZ V

Impostazione di un coefficiente digitale moltiplicativo per la tensione d’uscita del drive in modalità V/f.

Menu PAR Descrizione UM Tipo FB BIT Def Min Max Acc Mod
21.23 2492 Sorgente scala Vf LINK 16/32 3374 0 16384 ERW V

Selezione dell’origine (sorgente) del segnale da utilizzare per impostare un coefficiente moltiplicativo per la tensione d’uscita del drive. L’elenco delle funzioni associabili funzione sono nella lista di selezione “L_REF”.
22 – FUNZIONI

22.1 - FUNZIONI/RAPPORTO VELOC

<table>
<thead>
<tr>
<th>Menu</th>
<th>PAR</th>
<th>Descrizione</th>
<th>UM</th>
<th>Tipo</th>
<th>FB</th>
<th>BIT</th>
<th>Def</th>
<th>Min</th>
<th>Max</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>22.1.1</td>
<td>3000</td>
<td>Rapp dig velocità</td>
<td></td>
<td>perc</td>
<td>INT16</td>
<td>100</td>
<td>CALCI</td>
<td>CALCI</td>
<td>ERW</td>
<td>FVS</td>
<td></td>
</tr>
</tbody>
</table>

Questa funzione consente di applicare una rapporto di velocità configurabile (Rapporto vel) al riferimento principale e determina il valore percentuale del rapporto di velocità. Questa impostazione può essere eseguita in forma digitale, attraverso Bus di campo o tramite un ingresso analogico. Questa funzione è utile in sistemi “multidrive” dove è richiesto un valore di scorrimento tra i diversi motori utilizzati. Il valore di velocità risultante può essere letto tramite il parametro Mon rapp velocità su una uscita analogica programmabile.

<table>
<thead>
<tr>
<th>Menu</th>
<th>PAR</th>
<th>Descrizione</th>
<th>UM</th>
<th>Tipo</th>
<th>FB</th>
<th>BIT</th>
<th>Def</th>
<th>Min</th>
<th>Max</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>22.1.2</td>
<td>3002</td>
<td>Sorg rapp velocità</td>
<td></td>
<td>LINK</td>
<td>16/32</td>
<td>3000</td>
<td>0</td>
<td>16384</td>
<td>ERW</td>
<td>FVS</td>
<td></td>
</tr>
</tbody>
</table>

Selezione dell’origine (sorgente) del segnale che determina il valore percentuale del rapporto di velocità. Il morsetto da associare a questa funzione può essere selezionato nella lista di selezione “L_VREF”.

<table>
<thead>
<tr>
<th>Menu</th>
<th>PAR</th>
<th>Descrizione</th>
<th>UM</th>
<th>Tipo</th>
<th>FB</th>
<th>BIT</th>
<th>Def</th>
<th>Min</th>
<th>Max</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>22.1.3</td>
<td>3008</td>
<td>Div rapp velocità</td>
<td></td>
<td>ENUM</td>
<td>1</td>
<td>1</td>
<td>1000</td>
<td>ERW</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Questo parametro imposta il numero di decimali per l’impostazione del PAR 3000 Rapp dig velocità. I valori ottenibili sono illustrati nella tabella seguente:

<table>
<thead>
<tr>
<th>Divisore rapp velocità</th>
<th>Valori programmati in PAR 3000 Rapp dig velocità</th>
<th>Valore % corrispondente</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0-200</td>
<td>0-200</td>
</tr>
<tr>
<td>10</td>
<td>0-2000</td>
<td>0-200.0</td>
</tr>
<tr>
<td>100</td>
<td>0-20000</td>
<td>0-200.00</td>
</tr>
<tr>
<td>1000</td>
<td>0-32000</td>
<td>0-32.000</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Menu</th>
<th>PAR</th>
<th>Descrizione</th>
<th>UM</th>
<th>Tipo</th>
<th>FB</th>
<th>BIT</th>
<th>Def</th>
<th>Min</th>
<th>Max</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>22.1.4</td>
<td>3010</td>
<td>Mon rapp velocità</td>
<td></td>
<td>perc</td>
<td>FLOAT</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>ER</td>
<td>FVS</td>
<td></td>
</tr>
</tbody>
</table>

Visualizzazione del valore del rapporto di velocità da applicare al valore del segnale del riferimento di velocità selezionato.
La funzione Droop è attiva solo in **Modalità regolazione** uguale a *Vett Flusso OL* oppure a *Vett Flusso CL*.

Il blocco è composto da:

- un nodo di confronto tra **Sorgente rif Droop** riferimento di coppia del drive master (settare su uscita analogica del master **Rif coppia no filtro**) e riferimento di coppia del drive slave (**Rif coppia no filtro** prodotto da regolatore di velocità).
- un regolatore proporzionale la cui uscita è sommata o sottratta al riferimento del regolatore di velocità del drive slave. Settare “**Sorg rif velocità 1**” uguale a “*Monitor uscita Droop*”.

La correzione prima di essere applicata al riferimento del regolatore di velocità del drive slave passa attraverso un filtro passa basso e un limite.

La funzione Droop è usata per controllare due motori accoppiati.

Usando il blocco Droop si ha il vantaggio che si può lasciare il regolatore di velocità abilitato su entrambi i drive. Se si utilizza la funzione Droop, la sua correzione evita la saturazione del regolatore di velocità su uno dei due drive. In caso di perdita di carico di uno dei due drive la correzione fornita dal blocco Droop viene limitata attraverso il parametro dedicato.

Questa funzione è usata per realizzare una scalatura sulla corrente. Tipicamente questo blocco è usato quando due motori sono meccanicamente accoppiati l’uno all’altro. (esempio loro sono collegato allo stesso albero). Essi devono ruotare alla stessa velocità. Se uno dei due motori tende a girare ad una velocità superiore, come conseguenza si ha una differenza delle condizioni di carico che provoca una situazione di Overload. Il secondo motore si comporta come un freno. Questa condizione causa uno sbilanciamento delle correnti il quale può essere eliminato attraverso la funzione Droop. Sommando o sottraendo una correzione al riferimento del regolatore di velocità del drive slave (proporzionale alla differenza di carico), le due correnti vengono nuovamente bilanciate.

Esempio di macchina dove utilizzare la funzione droop.
Configurazione parametri:

Drive master:
Sorgente uscita an x collegata a Rif coppia no filtro
Drive slave:
Sorgente rif Droop collegato ad Ing analogico.
Sorg rif velocità 1 collegato a Monitor uscita Droop.

<table>
<thead>
<tr>
<th>Menu</th>
<th>PAR</th>
<th>Descrizione</th>
<th>UM</th>
<th>Tipo</th>
<th>FB Bit</th>
<th>Def</th>
<th>Min</th>
<th>Max</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>22.2.1</td>
<td>3052</td>
<td>Sorgente rif Droop</td>
<td>LINK</td>
<td>16/32</td>
<td>6000</td>
<td>0</td>
<td>16384</td>
<td></td>
<td>ERW</td>
<td>F_S</td>
</tr>
</tbody>
</table>

Con questo parametro è possibile selezionare l’origine (sorgente) del segnale Sorgente rif Droop. Il segnale da associare a questa funzione è selezionato dalla lista di selezione “L_LIM”. Tipicamente si deve selezionare un ingresso analogico al quale sarà collegato un segnale analogico proveniente dal drive master con informazione sul livello del riferimento di coppia.

<table>
<thead>
<tr>
<th>Menu</th>
<th>PAR</th>
<th>Descrizione</th>
<th>UM</th>
<th>Tipo</th>
<th>FB Bit</th>
<th>Def</th>
<th>Min</th>
<th>Max</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>22.2.2</td>
<td>3060</td>
<td>Guadagno Droop</td>
<td>perc</td>
<td>FLOAT</td>
<td>0.0</td>
<td>0.0</td>
<td>100.0</td>
<td></td>
<td>ERW</td>
<td>F_S</td>
</tr>
</tbody>
</table>

Con il parametro Guadagno Droop è possibile tarare il guadagno del regolatore proporzionale. Impostando questo parametro al valore 0.0 si forza uscita del blocco Droop a 0.

<table>
<thead>
<tr>
<th>Menu</th>
<th>PAR</th>
<th>Descrizione</th>
<th>UM</th>
<th>Tipo</th>
<th>FB Bit</th>
<th>Def</th>
<th>Min</th>
<th>Max</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>22.2.3</td>
<td>3062</td>
<td>Filtro Droop</td>
<td>ms</td>
<td>UINT16</td>
<td>10</td>
<td>1</td>
<td>100</td>
<td></td>
<td>ERW</td>
<td>F_S</td>
</tr>
</tbody>
</table>

Con il parametro Filtro Droop è possibile tarare la costante di tempo del filtro.

<table>
<thead>
<tr>
<th>Menu</th>
<th>PAR</th>
<th>Descrizione</th>
<th>UM</th>
<th>Tipo</th>
<th>FB Bit</th>
<th>Def</th>
<th>Min</th>
<th>Max</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>22.2.4</td>
<td>3064</td>
<td>Limite Droop</td>
<td>rpm</td>
<td>INT16</td>
<td>16/32</td>
<td>30</td>
<td>0</td>
<td>CALCI</td>
<td>ERWZ</td>
<td>F_S</td>
</tr>
</tbody>
</table>

Con il parametro Limite Droop è possibile tarare il valore assoluto della massima correzione applicata al riferimento di velocità dal blocco Droop.

<table>
<thead>
<tr>
<th>Menu</th>
<th>PAR</th>
<th>Descrizione</th>
<th>UM</th>
<th>Tipo</th>
<th>FB Bit</th>
<th>Def</th>
<th>Min</th>
<th>Max</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>22.2.5</td>
<td>3070</td>
<td>Monitor uscita Droop</td>
<td>rpm</td>
<td>INT16</td>
<td>16/32</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>ER</td>
<td>F_S</td>
</tr>
</tbody>
</table>

Con il parametro Monitor uscita Droop è possibile leggere entità della correzione applicata dal blocco Droop.
Tipicamente questa variabile viene collegata su Sorg rif velocità 1 per sommare o sottrarre al riferimento di velocità la correzione della funzione Droop.
Questo parametro è disponibile nelle liste di selezione dei riferimenti di velocità, delle uscite analogiche, del slave->master, dei compare.

22.3 - FUNZIONI/COMPENS INERZIA

Un incremento della risposta dinamica del regolatore di velocità ad una variazione del riferimento, può
essere modificata eseguendo una variazione del valore della corrente durante la fase di accelerazione/decelerazione, per opporsi all’inerzia della macchina applicata.
Tali parametri sono calcolati dalla procedura di autoapprendimento dell’anello di velocità ma possono essere anche impostati manualmente dall’utente.

Menu PAR Descrizione UM Tipo FB BIT Def Min Max Acc Mod

| 22.3.1 | 3100 Comp inerzia | kgm² | FLOAT | 0.0 | 0.0 | 100.0 | ERWS F_S |

Valore totale dell’inerzia all’albero del motore in Kg m^2 identificato durante la procedura di autoapprendimento. Questo valore, se conosciuto, può essere impostato anche manualmente dall’utilizzatore.

Menu PAR Descrizione UM Tipo FB BIT Def Min Max Acc Mod

| 22.3.2 | 3102 Filtro comp inerzia | ms | UINT16 | 30 | 1 | 100 | ERW F_S |

Impostazione di un filtro sulla compensazione di coppia. Il filtro riduce il rumore dovuto all’operazione di differenziazione di velocità nel blocco Inerzia.

Menu PAR Descrizione UM Tipo FB BIT Def Min Max Acc Mod

| 22.3.3 | 3104 Monitor comp inerzia | perc | FLOAT 16/32 | 0.0 | 0.0 | 0.0 | ER F_S |

Visualizzazione del valore della compensazione dell’inerzia all’uscita del blocco funzione.

22.4 - FUNZIONI/FRENATURA DC

![Diagramma di frenatura DC](image.png)
Il drive è in grado di gestire una fase di iniezione in corrente continua. Durante questa fase viene generata una coppia frenante che può essere utilizzata per arrestare il motore o per mantenere bloccato il rotore del motore.

E' possibile configurare le seguenti caratteristiche:
- segnale usato per attivare la fase di iniezione in corrente continua
- modalità di attivazione della fase di iniezione in corrente continua
- ritardo tra istante di attivazione della richiesta di frenatura DC e istante di inizio iniezione corrente in continua
- durata della fase di iniezione in corrente continua
- intensità della corrente continua iniettata

Questa funzione è utile per:
- frenare fino a velocità zero il motore che sta girando ad una qualsiasi velocità
- frenare un motore trascinato dal carico prima di applicare il comando di start
- mantenere bloccato il rotore del motore al termine di una rampa di decelerazione in seguito al comando stop.

Questa funzione non può essere utilizzata per effettuare frenate intermedie ma si deve prevedere di portare a zero la velocità del motore.

Durante la fase di iniezione in corrente continua l'energia cinetica del motore viene dissipata nel motore sotto forma di calore.

I parametri sotto riportati consentono un controllo completo della funzione.
Con questo parametro è possibile selezionare l’origine (sorgente) del segnale **Comando fren DC**. Il segnale da associare a questa funzione può essere selezionato dalla lista di selezione “L_DIGSEL2”.

Se viene attivato il comando (= 1) viene abilitata la frenatura DC.

Nelle condizioni di default l’origine del segnale **Comando fren DC** è 6000 (disabilitato).

Impostazione della modalità di frenatura in corrente continua.

- **0 Spento**
- **1 In arresto**
- **2 Su Comando**
- **3 SuCmd & InArr**

Impostando 0 non viene mai eseguita la fase di iniezione in corrente continua.

Impostando 1 viene eseguita la fase di iniezione in corrente continua quando viene comandato lo stop e si raggiunge la soglia di riferimento velocità = zero.

Esempio:
Motore in rotazione ad una qualsiasi velocità, attivando il comando stop l’uscita della rampa diminuisce in base al tempo di rampa selezionato, quando viene raggiunta la soglia di riferimento velocità = zero PAR 934 Riferimento = 0 si attiva la fase di iniezione in corrente continua e dopo un ritardo configurabile con PAR 3154 Ritardo frenatura DC si inizia iniezione della corrente continua. Con PAR 3156 Durata frenatura DC si configura la durata della fase d’iniezione e con PAR 3158 Corrente fren DC si configura l’intensità della corrente della fase d’iniezione.

In modalità “Su Comando” viene eseguita la fase di iniezione in corrente continua quando viene attivato il **Comando fren DC** configurato con il parametro PAR 3150 Sorg comando fren DC.

Esempio:
Motore in rotazione trascinato dal carico, abilitando il drive ed attivando il Comando fren DC si attiva la fase di iniezione in corrente continua. Ad attivazione del comando e dopo il ritardo configurabile con PAR 3154 Ritardo frenatura DC si inizia iniezione della corrente continua. Con PAR 3156 Durata frenatura DC si configura la durata della fase d’iniezione e con PAR 3158 Corrente fren DC si configura l’intensità della corrente della fase d’iniezione.

Se il comando è un impulso più corto della durata programmata con PAR 3156 Durata frenatura DC, allora la fase d’iniezione di corrente continua dura come minimo per il tempo impostato con parametro 3156 Durata frenatura DC.

Se il comando è un impulso più lungo della durata programmata con parametro 3156 Durata frenatura DC, allora la fase d’iniezione di corrente continua dura finché è presente il comando.

In modalità “SuCmd & InArr” viene eseguita la fase di iniezione in corrente continua quando esiste una delle due condizioni descritte nella modalità “In arresto” o “Su Comando”.
Con questo parametro si configura la durata dell’iniezione in corrente continua negli avvolgimenti del motore. Il valore di questo parametro, sommato al parametro 3154 Ritardo frenatura DC, deve essere inferiore al valore del parametro 1006 Rit disabilita vel 0, in caso contrario l’iniezione in corrente continua si interromperà alla disabilitazione del drive.

Con questo parametro si configura il valore della corrente continua iniettata. Viene espressa come percentuale della corrente continuativa del drive (PAR 488 Corr continuat drive).

Visualizzazione dello stato della frenatura in corrente continua.

NOTA! Durante la fase di iniezione in corrente continua è consigliato avere il comando Marcia non attivo. Se al drive viene fornito il comando Marcia allora l’uscita della rampa inizia a seguire il riferimento impostato; in uscita comunque si produce la corrente continua. Nell’istante in cui si rimuove il Comando fren DC si ha istantaneamente un gradino di velocità senza effettuare la variazione in rampa.

Durante la fase di iniezione in corrente continua per il comando Jog è consigliato seguire le stesse indicazioni fornite per il comando Marcia.

22.5 - FUNZIONI/SOVRACC MOTORE

La funzione controllo sovraccarico fornisce una logica integrativa per proteggere il motore contro sovraccarichi termici. Questa protezione presenta il comportamento caratteristico I²t ed emula la protezione del relè termico del motore controllato dal drive ADV200.

Abilitazione del controllo del sovraccarico sul motore.
Menu PAR Descrizione UM Tipo FB BIT Def Min Max Acc Mod

22.5.2 3202 Fatt sovracc motore

<table>
<thead>
<tr>
<th>UM</th>
<th>Tipo</th>
<th>FB BIT</th>
<th>Def</th>
<th>Min</th>
<th>Max</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>perc</td>
<td>FLOAT</td>
<td>150.0</td>
<td>100.0</td>
<td>300.0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Menu PAR Descrizione UM Tipo FB BIT Def Min Max Acc Mod

22.5.3 3204 Tempo sovracc motore

<table>
<thead>
<tr>
<th>UM</th>
<th>Tipo</th>
<th>FB BIT</th>
<th>Def</th>
<th>Min</th>
<th>Max</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>s</td>
<td>FLOAT</td>
<td>30.0</td>
<td>10.0</td>
<td>300.0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Impostazione della durata del sovraccarico motore in secondi. Rappresenta il momento in cui la protezione ("Sovraccarico Motore") diventa attiva, se il valore della corrente del motore è maggiore del sovraccarico impostato nel parametro Fatt sovracc motore. E' possibile assegnare questo allarme ad un'uscita digitale programmabile (All sovracc motore).

Il tempo di intervento è in funzione del valore della corrente del motore ed è il seguente:

\[
\text{Trip time [s]} = \frac{\text{Fatt sovracc motore}}{\text{Corrente nominale}} \times \text{Motor current [%]}
\]

Menu PAR Descrizione UM Tipo FB BIT Def Min Max Acc Mod

22.5.4 3206 Fatt servizio motore

<table>
<thead>
<tr>
<th>UM</th>
<th>Tipo</th>
<th>FB BIT</th>
<th>Def</th>
<th>Min</th>
<th>Max</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>perc</td>
<td>FLOAT</td>
<td>100.0</td>
<td>25.0</td>
<td>200.0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Impostazione del fattore di servizio del motore. E' la differenza tra la corrente di picco e la corrente nominale. Viene utilizzato nel calcolo dell'immagine termica del motore.

22.6 - FUNZIONI/SOVRACC RES FRE

I resistori di frenatura possono essere soggetti a sovraccarichi non previsti a seguito di guasti. E' assolutamente necessario proteggere i resistori mediante l'utilizzo di dispositivi di protezione termica. Questi dispositivi non devono interrompere il circuito in cui e' inserito il resistore, ma il loro contatto ausiliario deve interrompere l'alimentazione della parte di potenza del drive. Nel caso in cui il resistore preveda un contatto di protezione, questo deve essere utilizzato unitamente a quello del dispositivo di protezione termica.

Menu PAR Descrizione UM Tipo FB BIT Def Min Max Acc Mod

22.6.1 3250 Controllo res fren

<table>
<thead>
<tr>
<th>UM</th>
<th>Tipo</th>
<th>FB BIT</th>
<th>Def</th>
<th>Min</th>
<th>Max</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIT</td>
<td></td>
<td></td>
<td>0</td>
<td>0</td>
<td>1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Abilitazione del controllo del sovraccarico della resistenza di frenatura esterna.

Menu PAR Descrizione UM Tipo FB BIT Def Min Max Acc Mod

22.6.2 3252 Valore frenatura

<table>
<thead>
<tr>
<th>UM</th>
<th>Tipo</th>
<th>FB BIT</th>
<th>Def</th>
<th>Min</th>
<th>Max</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>ohm</td>
<td>FLOAT</td>
<td>SIZE</td>
<td>7.0</td>
<td>1000.0</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Impostazione del valore ohmico della resistenza di frenatura esterna.

Menu PAR Descrizione UM Tipo FB BIT Def Min Max Acc Mod

22.6.3 3254 Pot cont res fren

<table>
<thead>
<tr>
<th>UM</th>
<th>Tipo</th>
<th>FB BIT</th>
<th>Def</th>
<th>Min</th>
<th>Max</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>kW</td>
<td>FLOAT</td>
<td>SIZE</td>
<td>0.1</td>
<td>100.0</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Impostazione della potenza dissipabile continuativamente dalla resistenza di frenatura esterna.
Nel drive ADV200 è possibile memorizzare due set di parametri indipendenti, che possono essere selezionati da tastierino o tramite un comando esterno.

In questo modo è possibile cambiare rapidamente ed in modo automatico tutti i parametri del drive per adattarli a diverse esigenze di funzionamento. Ad esempio è possibile pilotare alternativamente due motori con diverse caratteristiche.

Nei due set di parametri non sono presenti i parametri dell’applicazione Mdplc. Sarà possibile commutare tutti i parametri del drive tra due set indipendenti, ma si avrà un unico set di parametri dell’applicazione.

Abilitazione della gestione di due set di parametri

0 Disabilita
1 Abilita

Impostando 0 viene gestito solo un set di parametri (quello utilizzato come set di default).

Impostando 1 è possibile impostare due distinti set di parametri, selezionabili tramite un segnale di comando portato su un ingresso digitale della morsettiera.

Selezione dell’origine (sorgente) del segnale da utilizzare per la selezione del set di parametri da utilizzare. Il morsetto o il comando digitale associabile alla funzione può essere selezionato tra quelli disponibili nella lista di selezione “L_DIGSEL2”.

Visualizzazione del set di parametri attualmente in uso.

0 Set 0
1 Set 1
Procedure per la preparazione e la gestione del doppio set di parametri

Creazione secondo set:

Eseguendo questa funzione, il set di parametri 0 viene copiato sul set 1. Prima di attivare la gestione del doppio set di parametri conviene che il primo set venga programmat o con i valori corretti.

Quando il primo set è pronto è possibile attivare il secondo seguendo questi passi:

1 Attivare la gestione del doppio set di parametri, abilitando il parametro 3300 Abil set parametri.
2 Copiare il set 0 su set 1 tramite il comando 3306 Copia param set 0->1.
 In questo modo si crea nel set 1 una base di parametri di partenza su cui apportare le modifiche.
 Salvare i parametri.
3 Rendere attivo il set 1 utilizzando il parametro 3302 Sorg sel set param.
 Per selezionare manualmente il set 1, impostare questo parametro su "Uno".
 Altrimenti selezionare la sorgente desiderata.
4 Modificare i parametri del set 1 in base alle esigenze.
5 Salvare i parametri.

Per cambiare il set in uso bisognerà agire sulla sorgente selezionata nel parametro 3302 Sorg sel set param. Questo cambio potrà avvenire solo a drive disabilitato.

Quando è attiva la doppia parametrizzazione, sul tastierino accanto al numero di ogni parametro comparirà il numero del set in uso.

Modifica e salvataggio dei parametri:

Quando è attiva la doppia parametrizzazione, la modifica di parametri che devono essere uguali nei due set deve essere effettuata su ciascun set separatamente.

L’operazione di salvataggio avviene solo sul set attivo in quel momento per cui, se si vogliono salvare entrambi i set, bisogna prima salvarne uno, poi selezionare l’altro e salvarlo.

Qualsiasi modifica dei parametri relativi alla “serie di parametri”, eseguita quando è attiva, alla prossima commutazione sarà persa se non viene dato un comando Copia param set 0->1. Per una memorizzazione permanente (anche togliendo l’alimentazione al drive) è necessario eseguire il comando Salva parametri (menu CONFIG DRIVE).

22.8 - FUNZIONI/AGGANCIO VELOC

Questa funzione permette di agganciare il drive ad un motore in rotazione per inerzia o perché trascinato dal carico. La funzione è attiva anche in caso di Restart automatico dopo una condizione di allarme.

Campi principali d’impiego:
- Aggancio ad un motore messo in movimento dal carico (ad esempio con motori di pompe trascinati dal fluido)
- Aggancio ad un motore che era collegato direttamente alla rete elettrica
- Aggancio ad un motore in rotazione a causa di una momentanea disabilitazione del drive
- Aggancio ad un motore in rotazione in casi di restart automatico dopo intervento di un allarme

Nel caso in cui si abilita il drive con il motore in rotazione e questa funzione disabilitata si può verificare il blocco del drive per intervento delle protezioni di Sovraccorrente oppure Sovratensione.

NOTA! Qualsiasi modifica dei parametri relativi alla “serie di parametri”, eseguita quando è attiva, alla prossima commutazione sarà persa se non viene dato un comando Copia param set 0->1. Per una memorizzazione permanente (anche togliendo l’alimentazione al drive) è necessario eseguire il comando Salva parametri (menu CONFIG DRIVE).

22.8.1 3350 Ripresa al volo

Con questo parametro è possibile abilitare la funzione di aggancio ad un motore in rotazione.

0 Disabilita
1 Dopo allarme
2 Dopo En&Allarm
Impostando 0 la funzione aggancio ad un motore in rotazione è disabilitata. La frequenza d’uscita parte da 0 e si porta al riferimento impostato utilizzando la rampa.

Impostando 1 la funzione aggancio ad un motore in rotazione verrà eseguita alla ripartenza dopo ogni reset automatico di un allarme.

Impostando 2 la funzione aggancio ad un motore in rotazione verrà eseguita ad ogni abilitazione del drive e dopo ogni reset automatico di un allarme.

Questa funzione è disponibile con Modalità regolazione = Vett Flusso CL o Controllo V/f.
Questa funzione non è disponibile con Modalità regolazione = Vett Flusso OL.

Con Modalità regolazione = Vett Flusso CL la procedura di aggancio consiste nel forzare la frequenza d’uscita al valore misurato da encoder, poi si porta la velocità del motore fino al valore di riferimento utilizzando la rampa

Con Modalità regolazione = Controllo V/f la procedura di aggancio consiste nel variare la frequenza d’uscita dell’inverter fino a che non viene rilevata la velocità reale del motore, poi si porta la velocità del motore fino al valore di riferimento utilizzando la rampa. La procedura può durare diversi secondi in funzione del tipo di carico e dell’impostazione dei parametri. Se questa funzione viene attivata su un motore a velocità = 0 e riferimento di velocità del drive = 0 può accadere che il motore si metta a girare fino all’istante in cui il drive rileva la velocità reale del motore, poi la velocità del motore viene portata al riferimento di velocità impostato cioè 0. Il valore iniziale della frequenza d’uscita dipende dalla condizione che ha attivato la procedura di aggancio. E’ possibile il verificarsi di diverse condizioni:

<table>
<thead>
<tr>
<th>Condizione</th>
<th>Valore di frequenza</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prima abilitazione del drive dopo l’accensione</td>
<td>Par 3364 Freq iniz ripresa VF</td>
</tr>
<tr>
<td>Drive abilitato ed in smagnetizzazione per un tempo > Par 3376</td>
<td>Par 3364 Freq iniz ripresa VF</td>
</tr>
<tr>
<td>Ritardo abil ripr VF</td>
<td></td>
</tr>
<tr>
<td>Drive abilitato ed in smagnetizzazione per un tempo < Par 3376</td>
<td>Ultima frequenza prima di disabilitare il drive</td>
</tr>
<tr>
<td>Ritardo abil ripr VF</td>
<td></td>
</tr>
<tr>
<td>Riavvio automatico dopo intervento di un allarme</td>
<td>Ultima frequenza prima di intervento dell’allarme</td>
</tr>
</tbody>
</table>
Con questo parametro si configura la frequenza a cui inizia la procedura di aggancio ad un motore in rotazione. Questo parametro è utilizzato nel caso in cui:

<table>
<thead>
<tr>
<th>Condizione</th>
<th>Valore di frequenza</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prima abilitazione del drive dopo l’accensione</td>
<td>Par 3364 Freq iniz ripresa Vf</td>
</tr>
<tr>
<td>Drive abilitato ed in smagnetizzazione per un tempo</td>
<td>Par 3376 Ritardo abil ripr Vf</td>
</tr>
</tbody>
</table>

Questo parametro deve essere impostato ad una frequenza maggiore delle frequenza a cui ruota il motore all’inizio della procedura di aggancio. Se le condizioni non sono sempre identiche si deve impostare la massima frequenza o pochi Hz in meno. Il segno del riferimento impostato deve essere lo stesso del segno della frequenza a cui ruota il motore.

Se si imposta un valore di frequenza vicino alla frequenza reale il tempo di aggancio sarà corto. Se si imposta un valore di frequenza lontano dalla frequenza reale il tempo di aggancio sarà maggiore.

E’ consigliato impostare questo parametro al valore 0 se si abilita la funzione per essere sfruttata in aggancio ad un motore in rotazione a causa di una momentanea disabilitazione del drive oppure aggancio ad un motore in rotazione in casi di restart automatico dopo intervento di un allarme; o, infine, in caso di abilitazione dopo un power-on oppure dopo lunghe fasi di disabilitazione la velocità del motore è sicuramente 0.

Con questo parametro si configura la velocità di variazione della frequenza d’uscita per la sincronizzazione con il motore in rotazione. Rappresenta il tempo in cui avverrebbe la variazione di frequenza da 50 Hz a zero se la corrente di uscita fosse pari a quella continuativa del drive.

<table>
<thead>
<tr>
<th>Menu</th>
<th>PAR</th>
<th>Descrizione</th>
<th>UM</th>
<th>Tipo</th>
<th>FB</th>
<th>BIT</th>
<th>Def</th>
<th>Min</th>
<th>Max</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>22.8.5</td>
<td>3370</td>
<td>Guad P ripresa Vf</td>
<td>perc</td>
<td>FLOAT</td>
<td>10.0</td>
<td>0.0</td>
<td>100.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Con questo parametro è possibile impostare il guadagno proporzionale del regolatore di corrente utilizzato dalla procedura di aggancio ad un motore in rotazione. Valori troppo bassi possono provocare intervento delle protezioni di Sovracorrente. E' consigliabile non modificare questo valore.

<table>
<thead>
<tr>
<th>Menu</th>
<th>PAR</th>
<th>Descrizione</th>
<th>UM</th>
<th>Tipo</th>
<th>FB</th>
<th>BIT</th>
<th>Def</th>
<th>Min</th>
<th>Max</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>22.8.6</td>
<td>3372</td>
<td>Tempo I ripresa Vf</td>
<td>ms</td>
<td>UINT16</td>
<td>200</td>
<td>200</td>
<td>1000</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Con questo parametro è possibile impostare il tempo integrale del regolatore di corrente utilizzato dalla procedura di aggancio ad un motore in rotazione. E' consigliabile non modificare questo valore.

<table>
<thead>
<tr>
<th>Menu</th>
<th>PAR</th>
<th>Descrizione</th>
<th>UM</th>
<th>Tipo</th>
<th>FB</th>
<th>BIT</th>
<th>Def</th>
<th>Min</th>
<th>Max</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>22.8.7</td>
<td>3376</td>
<td>Ritardo ulrif rip Vf</td>
<td>ms</td>
<td>UINT16</td>
<td>0</td>
<td>0</td>
<td>30000</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Con questo parametro è possibile impostare il tempo entro il quale deve essere abilitato il drive per poter iniziare la procedura di aggancio alla frequenza d'uscita presente prima della disabilitazione del drive stesso. Se dall'istantee della disabilitazione del drive trascorre un tempo maggiore del tempo impostato in questo parametro, la procedura di aggancio inizia dalla frequenza configurata con parametro 3364 Freq iniz ripresa Vf.

22.9 - FUNZIONI/POWER LOSS

Questa funzione permette di controllare una mancanza di alimentazione o una momentanea interruzione della tensione di rete.

Quando la funzione è abilitata il drive comanderà uno stop in rampa controllata; attraverso l’energia rigenerata dal carico si sostiene l’alimentazione del Dc Link e quindi è possibile controllare la velocità del motore. Finché sarà possibile recuperare energia (velocità del motore vicino a zero ma non zero), si controllerà la velocità del motore, dopodiché interverrà l’allarme Sottotensione ed il motore si arresterà per inerzia in modo non controllato.

La funzione è efficace solo con carichi che accumulano sufficiente energia (tipicamente carichi con un elevato momento d’inerzia e che nell’istante della mancanza rete abbiano una velocità di rotazione non vicina a zero). La funzione non può essere usata per carichi passivi.
La funzione può essere usata esclusivamente con Modalità regolazione = Vett Flusso CL e Modalità regolazione = Controllo V/f.

La funzione Power loss si attiva quando la tensione di Dc Link scende sotto una soglia configurata internamente in funzione della tensione di rete ad un valore superiore alla soglia di Sottotensione. All’attivazione della funzione il drive comanda uno stop con una rampa di decelerazione configurabile dall’utente. In questa fase il limite di corrente è controllato da un regolatore sulla tensione Dc Link che ha come setpoint una soglia configurata internamente in funzione della tensione di rete ad un valore inferiore alla soglia di Sovratensione.

Il regolatore prevede due parametri di taratura (proporzionale ed integrale) che vengono pre calcolati dal drive in funzione della taglia e dei dati di targa del motore. Se il regolatore agisce sul limite di corrente si avrà come conseguenza che la velocità del motore non seguirà la rampa di decelerazione impostata. La funzione procede finché è possibile recuperare energia dopodiché viene generato un allarme di Sottotensione. Nel caso in cui la rete viene ripristinata durante la fase di rampa di decelerazione, l’utente può configurare il comportamento del drive. Le possibilità sono: procedere in ogni caso fino a velocità zero oppure sospendere la rampa di decelerazione e portarsi al riferimento impostato.

Il drive non è in grado di riconoscere autonomamente il ritorno della tensione di rete, perciò questa informazione deve essere fornita dall’esterno tramite l’ingresso digitale Sorg sens Powerloss.

La presenza della unità di frenatura garantisce che non intervenga l’allarme di Sovratensione e la funzione ha il vantaggio di poter eseguire lo stop del motore garantendo il tempo impostato.

Il regolatore della funzione Power loss ha un setpoint superiore alla soglia di attivazione della frenatura quindi non si attiverà e non modificerà il limite di corrente permettendo il rispetto del tempo della rampa di decelerazione impostato. L’intervento della unità di frenatura dissipa l’energia del motore nella resistenza quindi l’energia disponibile per sostenere il Dc Link diminuisce, riducendo il tempo disponibile per controllare l’arresto del motore. La presenza della unità di frenatura potrebbe comportare che la velocità del motore a cui non si riesce a recuperare energia risulti più elevata rispetto a quello senza unità di frenatura.

La funzione può essere usata sia su macchine composte da un singolo drive, sia su macchine composte da più drives, le cui velocità devono rimanere sincronizzate.

Per macchine composte da un singolo drive è sufficiente abilitare la funzione Power loss.

Per macchine composte da più drive si devono mettere in comune i Dc Link: la funzione Power loss deve essere abilitata solo sul drive identificato come master e non sugli slave. Tipicamente il drive master è quello che comanda il carico con inerzia maggiore. Il drive master, attraverso il segnale Rapporto Powerloss, fornisce il rapporto tra la velocità del motore e il riferimento di velocità. Collegando l’uscita Rapporto Powerloss del master all’ingresso Sorg rapp velocità (lista di selezione L_VREF) dei drive slave è possibile ottenere la sincronizzazione della linea. Il collegamento master => slave può essere realizzato tramite segnali analogici o mediante il bus di campo.

Per il corretto funzionamento della funzione Power loss è necessario configurare i seguenti allarmi nella maniera sotto descritta:

Il riferimento di velocità ed il limite di corrente vengono controllati internamente dalla funzione Power loss, quindi potrebbe nascere una differenza tra riferimento di velocità e velocità del motore con conseguente attivazione dell’allarme Perd Riferim: per evitare questa situazione impostare il Par 4552 Azione perd rif vel = Ignora

Durante la mancanza rete il rilevamento della perdita di una fase di alimentazione potrebbe non funzionare correttamente con conseguente attivazione dell’allarme Mancanza fase: per evitare questa situazione impostare il Par 4660 Azione mancanza fase = Ignora.
Menu PAR Descrizione UM Tipo FB BIT Def Min Max Acc Mod
22.9.1 3400 Funzione Powerloss ENUM Disabilita 0 1 ERWZ F_

Con questo parametro è possibile abilitare la funzione di power loss.

- **0** Disabilita
- **1** Abilita

Impostando 0 la funzione Power loss è disabilitata. In caso di mancanza rete interverrà l’allarme Sottotensione.

Impostando 1 la funzione Power loss è abilitata. In caso di mancanza rete la funzione si attiverà cercando di controllare la velocità del motore ed impedire intervento dell’allarme Sottotensione.

Menu PAR Descrizione UM Tipo FB BIT Def Min Max Acc Mod
22.9.2 3402 Tempo acc Powerloss s FLOAT 10.0 0.01 100.0 ERW F_

Impostazione del tempo di accelerazione utilizzato durante il funzionamento in Power loss. Il tempo di rampa di accelerazione viene utilizzato quando è selezionata la modalità Modalità Powerloss = Riavvio e deve essere regolato secondo i requisiti della macchina.

Menu PAR Descrizione UM Tipo FB BIT Def Min Max Acc Mod
22.9.3 3404 Tempo dec Powerloss s FLOAT 0.5 0.01 100.0 ERW F_

Impostazione del tempo di decelerazione utilizzato durante il funzionamento in Power loss.

Il tempo di rampa di decelerazione deve essere sufficientemente corto (in caso di basse velocità) da permettere al drive di entrare velocemente in modalità rigenerazione, in caso contrario interverrà allarme Sottotensio-
Se il tempo di rampa di decelerazione viene impostato troppo corto il drive, quando entra in rigenerazione, potrebbe non riuscire a controllare la tensione di Dc Link e come conseguenza si avrebbe intervento di allarme Sovratensione.

Un tempo di decelerazione più lungo è necessario alle alte velocità del motore per evitare l’intervento dell’allarme Sovratensione.

La regolazione di questo parametro deve essere un compromesso tra la condizione di funzionamento a bassa velocità e ad alta velocità del motore del motore.

<table>
<thead>
<tr>
<th>Menu</th>
<th>PAR</th>
<th>Descrizione</th>
<th>UM</th>
<th>Tipo</th>
<th>FB</th>
<th>BIT</th>
<th>Def</th>
<th>Min</th>
<th>Max</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>22.9.4</td>
<td>3410</td>
<td>Powerloss Vdcref</td>
<td>V</td>
<td>FLOAT</td>
<td>CALCF</td>
<td>0.0</td>
<td>CALCF</td>
<td>ERWZSFV</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Impostazione della soglia di controllo della tensione sul DCLink durante l’arresto controllato in mancanza della tensione di alimentazione. Il valore massimo impostabile è il limite di sovratensione del drive.

<table>
<thead>
<tr>
<th>Menu</th>
<th>PAR</th>
<th>Descrizione</th>
<th>UM</th>
<th>Tipo</th>
<th>FB</th>
<th>BIT</th>
<th>Def</th>
<th>Min</th>
<th>Max</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>22.9.5</td>
<td>3420</td>
<td>Guadagno P Powerloss</td>
<td>A/V</td>
<td>FLOAT</td>
<td>CALCF</td>
<td>0</td>
<td>100000</td>
<td>ERWS</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Impostazione del guadagno proporzionale durante la funzione di Power loss.
Aumentare nel caso di errore Sovratensione; l’allarme di Sovratensione può essere prevenuto anche incrementando il valore del tempo di decelerazione.
Aumentare nel caso in cui la tensione di Dc Link è regolata ad un valore differente dal setpoint.

<table>
<thead>
<tr>
<th>Menu</th>
<th>PAR</th>
<th>Descrizione</th>
<th>UM</th>
<th>Tipo</th>
<th>FB</th>
<th>BIT</th>
<th>Def</th>
<th>Min</th>
<th>Max</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>22.9.6</td>
<td>3422</td>
<td>Guadagno I Powerloss</td>
<td>ms</td>
<td>FLOAT</td>
<td>CALCF</td>
<td>1.0</td>
<td>1000.0</td>
<td>ERWS</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Impostazione del guadagno integrale durante la funzione di Power loss.
Diminuire nel caso in cui la tensione di Dc Link è regolata ad un valore differente dal setpoint.

<table>
<thead>
<tr>
<th>Menu</th>
<th>PAR</th>
<th>Descrizione</th>
<th>UM</th>
<th>Tipo</th>
<th>FB</th>
<th>BIT</th>
<th>Def</th>
<th>Min</th>
<th>Max</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>22.9.7</td>
<td>3438</td>
<td>Modalità Powerloss</td>
<td>ENUM</td>
<td>Ramp down</td>
<td>0</td>
<td>1</td>
<td>ERWZ</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Con questo parametro è possibile configurare il comportamento della funzione power loss quando si ripristina la tensione di rete.
E’ possibile impostare se al ritorno della tensione di rete il drive deve rimanere a velocità zero oppure riportarsi al setpoint impostato. Il drive non è in grado di riconoscere autonomamente il ritorno della tensione di rete, perciò questa informazione deve essere fornita dall’esterno tramite l’ingresso digitale Sorg sens Powerloss.

0 Fine rampa
1 Riavvio
Caso 1) Fine rampa e tensione di rete non ripristinata
Il drive comanda una decelerazione con rampa impostata con il parametro **Tempo decel Powerloss**. Il drive controllerà automaticamente la tensione del Dc Link ed impedirà l’allarme di **Sovratensione**. Se la tensione di rete non viene ripristinata in prossimità di velocità zero, quando l’energia rigenerata non è sufficiente, il drive andrà in allarme **Sottotensione** ed eventualmente si spegnerà.

Ramp down e tensione di rete non ripristinata
Caso 2) Fine rampa e tensione di rete ripristinata

Il drive comanda una decelerazione con rampa impostata con il parametro *Tempo decel Powerloss*. Il drive controllerà automaticamente la tensione del Dc Link ed impedirà l’allarme di *Sovratensione*. Se la tensione di rete viene ripristinata e viene applicato il segnale *Tensione di rete OK*, il drive si porterà a velocità zero e rimarrà abilitato a velocità zero. Per ripartire disabilitare ed abilitare il drive.

![Diagramma Ramp down e tensione di rete ripristinata](PowerLoss_03.vsd)
Caso 3) Riavvio e tensione di rete non ripristinata
Il drive comanda una decelerazione con rampa impostata con il parametro *Tempo decel Powerloss*. Il drive controllerà automaticamente la tensione del Dc Link ed impedirà l’allarme di *Sovratensione*. Se la tensione di rete non viene ripristinata in prossimità di velocità zero, quando l’energia rigenerata non è sufficiente, il drive andrà in allarme *Sottotensione* ed eventualmente si spegnerà.

![Diagramma Restart e tensione di rete non ripristinata](PowerLoss_04.vsd)
Caso 4) Riavvio e tensione di rete ripristinata
Il drive comanda una decelerazione con rampa impostata con il parametro **Tempo decel Powerloss**.
Il drive controllerà automaticamente la tensione del Dc Link ed impedirà l’allarme di **Sovratensione**.
Se la tensione di rete viene ripristinata e viene applicato il segnale **Tensione di rete OK**, il drive sospenderà istantaneamente la rampa di decelerazione ed eseguirà la rampa di accelerazione impostata con il parametro **Tempo accel Powerloss** per portarsi al riferimento impostato.

Restart e tensione di rete ripristinata

![Diagram of drive behavior](PowerLoss_05.vsd)

Con questo parametro è possibile selezionare l’origine (sorgente) del segnale **Tensione di rete OK**. Il segnale da associare a questa funzione può essere selezionato dalla lista di selezione “L_DIGSEL2”.
Se il segnale non è attivo significa che non è presente l'alimentazione (Tensione di rete non OK), mentre se il segnale è attivo significa che l'alimentazione è presente (Tensione di rete OK).

Nelle condizioni di default l’origine del segnale Sorg sens Powerloss è Zero. Utente deve collegare un sensore esterno che informi il drive sullo stato della tensione di rete. Se la funzione è configurata in Modalità Powerloss = Riavvio, quando il segnale di presenza dell’alimentazione si attiva (Tensione di rete OK) il drive sospende la rampa di decelerazione e si porta al riferimento impostato. Nel caso di macchina con più drive il segnale del sensore esterno deve essere collegato solo sul drive master.

22.10 - FUNZIONI/COMPARAZIONE

Questa funzione permette la comparazione tra due segnali o grandezze.

Menu PAR Descrizione UM Tipo FB BIT Def Min Max Acc Mod
22.10.1 3650 Ing compar digitale1 perc FLOAT 32 0.0 -100.0 100.0 ERW FVS
Impostazione del valore digitale del primo elementodela comparazione.

Menu PAR Descrizione UM Tipo FB BIT Def Min Max Acc Mod
22.10.2 3652 Ing compar digitale2 perc FLOAT 32 0.0 -100.0 100.0 ERW FVS
Impostazione del valore digitale del secondo elementodela comparazione.

Menu PAR Descrizione UM Tipo FB BIT Def Min Max Acc Mod
22.10.3 3660 Sorg ing compar 1 LINK 32 3650 0 16384 ERW FVS
Selezione dell’origine (sorgente) del segnale da utilizzare come primo termine della comparazione. Le grandezze selezionabili nella funzione di comparazione sono nella lista di selezione “L_CMP”.

Menu PAR Descrizione UM Tipo FB BIT Def Min Max Acc Mod
22.10.4 3662 Sorg ing compar 2 LINK 32 3652 0 16384 ERW FVS
Selezione dell’origine (sorgente) del segnale da utilizzare come secondo termine della comparazione. Le grandezze selezionabili nella funzione di comparazione sono nella lista di selezione “L_CMP”.

Menu PAR Descrizione UM Tipo FB BIT Def Min Max Acc Mod
22.10.5 3670 Funzione comparatore ENUM Nessuna 0 8 ERW FVS
Impostazione della funzione di comparazione da eseguire tra Ing compar digitale2 e Ing compar digitale1 che attiva l’uscita Cmp output.
0 Nessuna
1 Ingr1=Ingr2
2 Ingr1=Ingr2
3 Ingr1<Ingr2
4 Ingr1>Ingr2
5 |Ingr1|=|Ingr2|
6 |Ingr1|!=|Ingr2|
7 |Ingr1|<|Ingr2|
8 |Ingr1|>|Ingr2|

Impostando 0 il comparatore non è abilitato

Impostando 1 l’uscita del comparatore si attiva quando il valore di \texttt{Ingr digitale1} è compreso nella finestra risultante dal valore dell’\texttt{Ingr digitale2} ± la tolleranza impostata dalla Finestra comparatore.

Impostando 2 l’uscita del comparatore si attiva quando il valore di \texttt{Ingr digitale1} non è compreso nella finestra risultante dal valore dell’\texttt{Ingr digitale2} ± la tolleranza impostata dalla Finestra comparatore.

Impostando 3 l’uscita del comparatore si attiva quando \texttt{Ingr compar digitale1} è minore di \texttt{Ingr compar digitale2}.

Impostando 4 l’uscita del comparatore si attiva quando \texttt{Ingr compar digitale1} è maggiore di \texttt{Ingr compar digitale2}.

Impostando 5 l’uscita del comparatore si attiva quando il valore assoluto di \texttt{Ingr compar digitale1} è compreso nella finestra risultante dal valore assoluto dell’\texttt{Ingr compar digitale2} ± la tolleranza impostata dalla Finestra comparatore.

Impostando 6 l’uscita del comparatore si attiva quando il valore assoluto di \texttt{Ingr compar digitale1} non è compreso nella finestra risultante dal valore assoluto dell’\texttt{Ingr compar digitale2} ± la tolleranza impostata dalla Finestra comparatore.

Impostando 7 l’uscita del comparatore si attiva quando il valore assoluto di \texttt{Ingr compar digitale1} è inferiore al valore assoluto di \texttt{Ingr compar digitale2}.

Impostando 8 l’uscita del comparatore si attiva quando il valore assoluto di \texttt{Ingr compar digitale1} è superiore al valore assoluto di \texttt{Ingr compar digitale2}.

Menu PAR Descrizione UM Tipo FB BIT Def Min Max Acc Mod
22.10.6 3672 Finestra comparatore perc FLOAT BIT 0.0 0.0 100.0 ERW FVS

Impostazione della finestra di tolleranza per la comparazione dei segnali \texttt{Ingr compar digitale1} e \texttt{Ingr compar digitale2}.

Menu PAR Descrizione UM Tipo FB BIT Def Min Max Acc Mod
22.10.7 3674 Ritardo comparatore s FLOAT BIT 0.0 0.0 30.0 ERW FVS

Impostazione del tempo di ritardo della segnalazione del risultato della comparazione.

Menu PAR Descrizione UM Tipo FB BIT Def Min Max Acc Mod
22.10.8 3676 Uscita comparatore BIT 16 0 0 1 ER FVS

Visualizzazione dello stato dell’uscita del comparatore:

0 Il risultato della comparazione impostata è negativo
1 Il risultato della comparazione impostata è positivo

22.11 - FUNZIONI/PADS

Le variabili di uso generale vengono utilizzate per lo scambio dei dati tra i vari componenti di un sistema Bus. Si possono paragonare alle variabili di un PLC. La figura seguente mostra la struttura principale del sistema. Con l’aiuto dei Pads è possibile ad esempio inviare informazioni da un Bus di campo ad una scheda opzionale. Tutti i Pads si possono sia scrivere che leggere.

I Pads possono essere utilizzati anche per scambiare informazioni con un applicativo MDPlc caricato nel drive, per ulteriori informazioni vedere manuale MDPlc.
Impostazione di Variabili di uso generale, 32 Bit. I parametri PAD possono essere utilizzati come parametri d’appoggio per portare su uscite analogiche o digitali grandezze scritte da bus di campo, linea seriale etc.

22.12 - FUNZIONI/CONTROLLO VDC

Con questa funzione è possibile controllare la tensione e la potenza recuperata nel DC link durante la fase di rigenerazione (es. rampa di frenatura). Quando viene abilitata questa funzione, se l’energia rigenerata dal carico durante la fase di frenatura fa aumentare la tensione sul DC link, il drive eviterà l’intervento dell’allarme **Sovratensione** limitando la corrente rigenerata.

La funzione **Controllo Vdc** si attiva in maniera automatica (se il parametro 3450 Funz controllo Vdc è impostato a 1) quando la tensione sul DC link supera una soglia preimpostata, dipendente dalla tensione di rete ed inferiore alla
soglia di **Sovratensione**.
Questa soglia viene utilizzata anche per il regolatore che controlla il limite di corrente rigenerata.
La velocità del motore, nel caso in cui la funzione **Funz controllo Vdc** sia abilitata, potrebbe non seguire la rampa impostata.
Nel caso in cui il regolatore non riesca a limitare l’energia rigenerata durante la rampa di decelerazione ed evitare l’allarme di Sovratensione, è possibile bloccare momentaneamente la rampa stessa impostando sul parametro **754 Ramp freeze src** l’informazione **Cong rampa contr Vdc**.
La funzione rimarrà attiva fintanto che l’energia rigenerata dal carico si annulla e la tensione del DC link scende al di sotto della soglia di disattivazione (inferiore alla soglia di attivazione).

Menu PAR Descrizione UM Tipo FB BIT Def Min Max Acc Mod

<table>
<thead>
<tr>
<th></th>
<th>PAR</th>
<th>Descrizione</th>
<th>UM</th>
<th>Tipo</th>
<th>FB</th>
<th>BIT</th>
<th>Def</th>
<th>Min</th>
<th>Max</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>22.12.1</td>
<td>3450</td>
<td>Funz controllo Vdc</td>
<td>ENUM</td>
<td>Disabilita</td>
<td>0</td>
<td>1</td>
<td>ERWZ</td>
<td>FVS</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Con questo parametro è possibile abilitare la funzione Controllo Vdc.

0 Disabilita
1 Abilita

Impostando 0 la funzione è disabilitata: in caso di recupero di energia interverrà l’allarme di **Sovratensione**.
Impostando 1 la funzione è abilitata: in caso di recupero di energia la funzione si attiverà cercando di controllare la corrente rigenerata dal motore ed impedire l’intervento dell’allarme di **Sovratensione**.

Menu PAR Descrizione UM Tipo FB BIT Def Min Max Acc Mod

<table>
<thead>
<tr>
<th></th>
<th>PAR</th>
<th>Descrizione</th>
<th>UM</th>
<th>Tipo</th>
<th>FB</th>
<th>BIT</th>
<th>Def</th>
<th>Min</th>
<th>Max</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>22.12.2</td>
<td>3470</td>
<td>Guad P controllo Vdc</td>
<td>A/V</td>
<td>FLOAT</td>
<td>CALCF</td>
<td>0.0</td>
<td>100.000</td>
<td>ERWS</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Impostazione del guadagno proporzionale utilizzato durante la funzione **Funz controllo Vdc**. Il valore impostato deve essere aumentato nel caso in cui intervenga l’allarme di **Sovratensione**. È possibile prevenire l’allarme di **Sovratensione** anche allungando la rampa di decelerazione. Il valore di questo parametro deve essere aumentato anche nel caso in cui la tensione del DC link sia stata regolata ad un valore differente dal setpoint.

Menu PAR Descrizione UM Tipo FB BIT Def Min Max Acc Mod

<table>
<thead>
<tr>
<th></th>
<th>PAR</th>
<th>Descrizione</th>
<th>UM</th>
<th>Tipo</th>
<th>FB</th>
<th>BIT</th>
<th>Def</th>
<th>Min</th>
<th>Max</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>22.12.3</td>
<td>3472</td>
<td>Temp I controllo Vdc</td>
<td>ms</td>
<td>FLOAT</td>
<td>CALCF</td>
<td>1.0</td>
<td>1000.0</td>
<td>ERWS</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Impostazione del tempo integrale utilizzato durante la funzione Funz controllo Vdc. Il valore impostato deve essere diminuito nel caso in cui la tensione del DC link sia stata regolata ad un valore differente dal setpoint.

22.13 - FUNZIONI/CONTROLLO FRENO

Con questa funzione è possibile comandare il freno di stazionamento del motore. Quando il drive riceve il comando di **Start** apre immediatamente il freno e per accertarsi che questo si sia effettivamente aperto mantiene inibiti i riferimenti per un tempo programmabile con il parametro **3172 Ritardo apert freno**.

Quando il drive riceve un comando di stop e la segnalazione **Riferimento = 0**, dopo un tempo programmabile sul parametro **3174 Rit chiusura freno** chiude il freno di stazionamento; Impostare nel parametro **3174 Rit chiusura freno** un valore sufficientemente lungo per essere sicuri che il motore sia effettivamente fermo prima di attivare il freno.

Se la funzione è abilitata, l’intervento di uno o più allarmi o la disabilitazione del drive provocano l’immediata chiusura del freno chiusura del freno. Non utilizzare contemporaneamente la funzione la funzione **Controllo freno** e la funzione **Aggancio velocc**, in quanto quest’ultima, se abilitata prima del comando di Start, tenta di eseguire la fase di sincronizzazione con la velocità del motore con il freno chiuso.
Con questo parametro è possibile abilitare la funzione Controllo Freno.

0 Disabilita
1 Abilita

Impostando 0 la funzione è disabilitata
Impostando 1 la funzione è abilitata.

Impostazione del tempo di attesa per l’apertura meccanica del freno

Impostazione del tempo di attesa per il raggiungimento della velocità zero del motore prima della chiusura del freno.

Il fattore funzione consente di esprimere la velocità del drive in una unità di misura diversa dagli rpm, comunemente chiamata unità utente. Per convertire il valore da rpm a unità utente viene applicato un fattore di conversione che si può impostare come numero frazionario tramite due parametri:

PAR 3900 Num fattore dim e PAR 3902 Den fattore dim.

La formula di conversione è \(rpm = \frac{Num\ fattore\ dim}{Den\ fattore\ dim} \times unità\ utente. \)

L’unità di misura visualizzata per i parametri espressi in unità utente può essere modificata dall’utente, solo attraverso il configuratore GF-eXpress. Il testo dell’unità di misura si programma nel PAR 3904 Testo fatt dim, che essendo un UINT32 può contenere al massimo 4 caratteri.

I valori di default dei parametri che definiscono il fattore funzione sono:
PAR 3900 Num fattore dim = 1; **PAR 3902 Den fattore dim** = 1; **PAR 3904 Testo fatt dim** = “rpm”

I parametri che di default sono espressi in rpm che possono essere visualizzati in unità utente sono i seguenti:

<table>
<thead>
<tr>
<th>PAR</th>
<th>Descrizione</th>
<th>UM</th>
<th>UU</th>
</tr>
</thead>
<tbody>
<tr>
<td>628</td>
<td>Imposta valore rampa</td>
<td>rpm</td>
<td>X</td>
</tr>
<tr>
<td>664</td>
<td>Setpoint velocità</td>
<td>rpm</td>
<td>X</td>
</tr>
<tr>
<td>600</td>
<td>Velocità motore</td>
<td>rpm</td>
<td>X</td>
</tr>
<tr>
<td>602</td>
<td>Rif digitale rampa 1</td>
<td>rpm</td>
<td>X</td>
</tr>
<tr>
<td>604</td>
<td>Rif digitale rampa 2</td>
<td>rpm</td>
<td>X</td>
</tr>
<tr>
<td>620</td>
<td>Monitor rif rampa 1</td>
<td>rpm</td>
<td>X</td>
</tr>
<tr>
<td>622</td>
<td>Monitor rif rampa 2</td>
<td>rpm</td>
<td>X</td>
</tr>
<tr>
<td>624</td>
<td>Monitor rif rampa 3</td>
<td>rpm</td>
<td>X</td>
</tr>
<tr>
<td>626</td>
<td>Monitor rif rampa</td>
<td>rpm</td>
<td>X</td>
</tr>
<tr>
<td>634</td>
<td>Lim sup rif rampa</td>
<td>rpm</td>
<td>X</td>
</tr>
<tr>
<td>636</td>
<td>Lim inf rif rampa</td>
<td>rpm</td>
<td>X</td>
</tr>
<tr>
<td>630</td>
<td>Imposta salto freq</td>
<td>rpm</td>
<td></td>
</tr>
<tr>
<td>632</td>
<td>Banda salto freq</td>
<td>rpm</td>
<td></td>
</tr>
<tr>
<td>640</td>
<td>Rif dig velocità 1</td>
<td>rpm</td>
<td>X</td>
</tr>
<tr>
<td>642</td>
<td>Rif dig velocità 2</td>
<td>rpm</td>
<td>X</td>
</tr>
<tr>
<td>660</td>
<td>Mon rif velocità 1</td>
<td>rpm</td>
<td>X</td>
</tr>
<tr>
<td>662</td>
<td>Mon rif velocità 2</td>
<td>rpm</td>
<td>X</td>
</tr>
<tr>
<td>670</td>
<td>Limite sup rif vel</td>
<td>rpm</td>
<td></td>
</tr>
<tr>
<td>672</td>
<td>Limite inf rif vel</td>
<td>rpm</td>
<td></td>
</tr>
<tr>
<td>680</td>
<td>Fondo scala velocità</td>
<td>rpm</td>
<td></td>
</tr>
<tr>
<td>760</td>
<td>Monitor uscita rampa</td>
<td>rpm</td>
<td>X</td>
</tr>
<tr>
<td>800</td>
<td>Multiriferimento 0</td>
<td>rpm</td>
<td>X</td>
</tr>
<tr>
<td>802</td>
<td>Multiriferimento 1</td>
<td>rpm</td>
<td>X</td>
</tr>
<tr>
<td>804</td>
<td>Multiriferimento 2</td>
<td>rpm</td>
<td>X</td>
</tr>
<tr>
<td>806</td>
<td>Multiriferimento 3</td>
<td>rpm</td>
<td>X</td>
</tr>
<tr>
<td>808</td>
<td>Multiriferimento 4</td>
<td>rpm</td>
<td>X</td>
</tr>
<tr>
<td>810</td>
<td>Multiriferimento 5</td>
<td>rpm</td>
<td>X</td>
</tr>
<tr>
<td>812</td>
<td>Multiriferimento 6</td>
<td>rpm</td>
<td>X</td>
</tr>
<tr>
<td>814</td>
<td>Multiriferimento 7</td>
<td>rpm</td>
<td>X</td>
</tr>
<tr>
<td>816</td>
<td>Multiriferimento 8</td>
<td>rpm</td>
<td>X</td>
</tr>
<tr>
<td>818</td>
<td>Multiriferimento 9</td>
<td>rpm</td>
<td>X</td>
</tr>
<tr>
<td>820</td>
<td>Multiriferimento 10</td>
<td>rpm</td>
<td>X</td>
</tr>
<tr>
<td>822</td>
<td>Multiriferimento 11</td>
<td>rpm</td>
<td>X</td>
</tr>
<tr>
<td>824</td>
<td>Multiriferimento 12</td>
<td>rpm</td>
<td>X</td>
</tr>
<tr>
<td>826</td>
<td>Multiriferimento 13</td>
<td>rpm</td>
<td>X</td>
</tr>
<tr>
<td>828</td>
<td>Multiriferimento 14</td>
<td>rpm</td>
<td>X</td>
</tr>
<tr>
<td>830</td>
<td>Multiriferimento 15</td>
<td>rpm</td>
<td>X</td>
</tr>
<tr>
<td>852</td>
<td>Mon uscita multi rif</td>
<td>rpm</td>
<td>X</td>
</tr>
<tr>
<td>870</td>
<td>Setpoint valore Mpot</td>
<td>rpm</td>
<td></td>
</tr>
<tr>
<td>876</td>
<td>Lim superiore Mpot</td>
<td>rpm</td>
<td></td>
</tr>
<tr>
<td>878</td>
<td>Lim inferiore Mpot</td>
<td>rpm</td>
<td></td>
</tr>
<tr>
<td>894</td>
<td>Monitor uscita Mpot</td>
<td>rpm</td>
<td></td>
</tr>
<tr>
<td>910</td>
<td>Setpoint valore jog</td>
<td>rpm</td>
<td></td>
</tr>
<tr>
<td>920</td>
<td>Monitor uscita jog</td>
<td>rpm</td>
<td></td>
</tr>
<tr>
<td>930</td>
<td>Soglia riferimento 0</td>
<td>rpm</td>
<td></td>
</tr>
<tr>
<td>940</td>
<td>Soglia velocità 0</td>
<td>rpm</td>
<td></td>
</tr>
<tr>
<td>950</td>
<td>Soglia velocità 1</td>
<td>rpm</td>
<td></td>
</tr>
<tr>
<td>952</td>
<td>Soglia velocità 2</td>
<td>rpm</td>
<td></td>
</tr>
<tr>
<td>962</td>
<td>Imp banda errore vel</td>
<td>rpm</td>
<td></td>
</tr>
<tr>
<td>968</td>
<td>Imp rif dig vel</td>
<td>rpm</td>
<td></td>
</tr>
<tr>
<td>970</td>
<td>Soglia 3 velocità</td>
<td>rpm</td>
<td></td>
</tr>
<tr>
<td>972</td>
<td>Interes soglia vel</td>
<td>rpm</td>
<td></td>
</tr>
</tbody>
</table>

Se viene impostato un fattore funzione, tutti i parametri della precedente tabella vengono convertiti in unità utente.

Calcolo dei minimi e massimi dei parametri “Num fattore dim” e “Den fattore dim”

Nella programmazione dei valori **PAR 3900 Num fattore dim** e **PAR 3902 Den fattore dim** bisogna introdurre delle limitazioni per evitare mandare fuori range le variabili interne al drive.

Non si possono stabilire dei limiti fissi per ciascuno dei due parametri in quanto è il rapporto tra i due che deve essere limitato perché quello bisogna limitare è il rapporto tra i due e inoltre questo limite dipende anche dal parametro 680 Fondo scala velocità.

E’ possibile che si verifichi un overflow dipendente dall’ordine di programmazione dei due parametri **PAR 3900 Num fattore dim** e **PAR 3902 Den fattore dim** e dal loro valore di iniziale.
Nella tabella seguente sono illustrate le condizioni nelle quali si può verificare un overflow.

<table>
<thead>
<tr>
<th>Valore di partenza</th>
<th>Valori da programmare</th>
<th>Ordine</th>
<th>Overflow</th>
</tr>
</thead>
<tbody>
<tr>
<td>Den = 1 Num = 1</td>
<td>Den 30 – Num 10</td>
<td>Num – Den</td>
<td>No</td>
</tr>
<tr>
<td>Den = 1 Num = 1</td>
<td>Den 30 – Num 10</td>
<td>Den – Num</td>
<td>Si</td>
</tr>
<tr>
<td>Den = 30 Num = 10</td>
<td>Den 1 – Num 1</td>
<td>Num – Den</td>
<td>Si</td>
</tr>
<tr>
<td>Den = 30 Num = 10</td>
<td>Den 1 – Num 1</td>
<td>Den – Num</td>
<td>No</td>
</tr>
</tbody>
</table>

Se quando si programma uno dei due parametri si verifica un overflow, l’altro parametro viene automaticamente impostato con lo stesso valore, facendo in modo che il valore della conversione risultante sia uguale a 1.

Invio da configuratore

Se si inviano i parametri dal configuratore GF-eXpress, l’ordine in cui vengono scritti è predefinito per cui potrebbe capitare che durante la programmazione di valori validi, si verifichi comunque un overflow intermedio.

Se il valore del primo parametro inviato dal configuratore è tale da generare un overflow, si imposta il valore del secondo parametro uguale al primo (questo forza temporaneamente il fattore di dimensione a 1); la successiva scrittura del secondo parametro, riporterà comunque il fattore di dimensione al valore corretto.

Modifica del Fondo scala velocità

Quando si modifica il PAR 680 Fondo scala velocità, per evitare un overflow si forzano ad 1 i parametri PAR 3900 Num fattore dim e PAR 3902 Den fattore dim.

<table>
<thead>
<tr>
<th>Menu</th>
<th>PAR</th>
<th>Descrizione</th>
<th>UM</th>
<th>Tipo</th>
<th>FB</th>
<th>Bit</th>
<th>Def</th>
<th>Min</th>
<th>Max</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>22.14.1</td>
<td>3900</td>
<td>Num fattore dim</td>
<td>UINT16</td>
<td>1</td>
<td>1</td>
<td></td>
<td>65535</td>
<td></td>
<td></td>
<td>ERW</td>
<td>FVS</td>
</tr>
</tbody>
</table>

Fattore di dimensione a numeratore.

<table>
<thead>
<tr>
<th>Menu</th>
<th>PAR</th>
<th>Descrizione</th>
<th>UM</th>
<th>Tipo</th>
<th>FB</th>
<th>Bit</th>
<th>Def</th>
<th>Min</th>
<th>Max</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>22.14.2</td>
<td>3902</td>
<td>Den fattore dim</td>
<td>UINT16</td>
<td>1</td>
<td>1</td>
<td></td>
<td>65535</td>
<td></td>
<td></td>
<td>ERW</td>
<td>FVS</td>
</tr>
</tbody>
</table>

Fattore di dimensione a denominatore.

<table>
<thead>
<tr>
<th>Menu</th>
<th>PAR</th>
<th>Descrizione</th>
<th>UM</th>
<th>Tipo</th>
<th>FB</th>
<th>Bit</th>
<th>Def</th>
<th>Min</th>
<th>Max</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>22.14.3</td>
<td>3904</td>
<td>Testo fatt dim</td>
<td>UINT32</td>
<td>7172210</td>
<td>0</td>
<td></td>
<td>0</td>
<td></td>
<td></td>
<td>ERW</td>
<td>FVS</td>
</tr>
</tbody>
</table>

Unità di misura visualizzata per i parametri espressi in user unit, può essere modificata dall’utente solo attraverso il configuratore. Il testo dell’unità di misura può contenere al massimo 4 caratteri.
23 – COMUNICAZIONE

23.1 - COMUNICAZIONE/RS485

Il drive ADV200 è provvisto di serie di una porta (connettore a vaschetta 9 poli D-SUB: XS) per il collegamento della linea seriale RS485 utilizzata per la comunicazione punto-punto drive-PC (tramite il software di configurazione GF-eXpress) oppure per il collegamento multidrop.

Il formato della linea seriale RS485 è: 8 bits dati, nessuna parità ed un bit di stop.

<table>
<thead>
<tr>
<th>Menu</th>
<th>PAR</th>
<th>Descrizione</th>
<th>UM</th>
<th>Tipo</th>
<th>FB</th>
<th>BIT</th>
<th>Def</th>
<th>Min</th>
<th>Max</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>23.1.1</td>
<td>3800</td>
<td>Indirizzo drive</td>
<td>UINT16</td>
<td>1</td>
<td>1</td>
<td>255</td>
<td>ERW</td>
<td>FVS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Impostazione dell’indirizzo al quale risponde il drive quando è connesso alla linea seriale RS485.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Menu</th>
<th>PAR</th>
<th>Descrizione</th>
<th>UM</th>
<th>Tipo</th>
<th>FB</th>
<th>BIT</th>
<th>Def</th>
<th>Min</th>
<th>Max</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>23.1.2</td>
<td>3802</td>
<td>Baud rate seriale</td>
<td>ENUM</td>
<td>38400</td>
<td>0</td>
<td>2</td>
<td>ERW</td>
<td>FVS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Impostazione della velocità della comunicazione seriale RS485 (Baud Rate).</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>0</td>
<td>9600</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1</td>
<td>19200</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>38400</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Menu</th>
<th>PAR</th>
<th>Descrizione</th>
<th>UM</th>
<th>Tipo</th>
<th>FB</th>
<th>BIT</th>
<th>Def</th>
<th>Min</th>
<th>Max</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>23.1.3</td>
<td>3810</td>
<td>Parametri seriale</td>
<td>ENUM</td>
<td>None,8,1</td>
<td>0</td>
<td>3</td>
<td>ERW</td>
<td>FVS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Impostazione del formato dei dati nella comunicazione seriale RS485.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>0</td>
<td>None,8,1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1</td>
<td>None,8,2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>Even,8,1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>Odd,8,1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Menu</th>
<th>PAR</th>
<th>Descrizione</th>
<th>UM</th>
<th>Tipo</th>
<th>FB</th>
<th>BIT</th>
<th>Def</th>
<th>Min</th>
<th>Max</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>23.1.4</td>
<td>3804</td>
<td>Protocollo seriale</td>
<td>ENUM</td>
<td>Modbus</td>
<td>0</td>
<td>1</td>
<td>ERW</td>
<td>FVS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Impostazione del protocollo di comunicazione seriale:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>0</td>
<td>Modbus</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1</td>
<td>Jbus</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Impostando 0 si seleziona il protocollo di comunicazione seriale Modbus RTU (Remote Terminal Unit).</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Impostando 1 si seleziona il protocollo di comunicazione seriale Jbus. Il protocollo Jbus è funzionalmente identico al Modbus e se ne differenzia per la diversa numerazione degli indirizzi: nel Modbus questi partono da zero (0000 = 1° indirizzo) mentre nel JBUS partono da uno (0001 = 1° indirizzo) mantenendo questo scostamento per tutta la numerazione.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Menu</th>
<th>PAR</th>
<th>Descrizione</th>
<th>UM</th>
<th>Tipo</th>
<th>FB</th>
<th>BIT</th>
<th>Def</th>
<th>Min</th>
<th>Max</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>23.1.5</td>
<td>3806</td>
<td>Ritardo seriale</td>
<td>ms</td>
<td>UINT16</td>
<td>0</td>
<td>0</td>
<td>1000</td>
<td>ERW</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Impostazione del ritardo minimo tra la ricezione da parte del drive dell’ultimo byte e l’inizio della sua risposta.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Tale ritardo evita conflitti sulla linea seriale quando l’interfaccia RS485 utilizzata non è preimpostata per una commutazione automatica Tx/Rx. Il parametro riguarda esclusivamente l’utilizzo della linea seriale standard RS485.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Esempio: se il ritardo della commutazione Tx/Rx sul master è al massimo di 20ms, l’impostazione del parametro Ritardo seriale deve essere superiore di 20ms: 22ms</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Menu</th>
<th>PAR</th>
<th>Descrizione</th>
<th>UM</th>
<th>Tipo</th>
<th>FB</th>
<th>BIT</th>
<th>Def</th>
<th>Min</th>
<th>Max</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>23.1.6</td>
<td>3808</td>
<td>Dati scambio seriale</td>
<td>BIT</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>ERW</td>
<td>FVS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Questo parametro abilita lo scambio della lettura delle parti Alta e Bassa delle words per i parametri di tipo FLOAT, UINT32, INT32 quando si utilizza il protocollo Modbus.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
23.2 - COMUNICAZIONE/CONF BUS CAMPO

Menu	PAR	Descrizione	UM	Tipo	FB	BIT	Def	Min	Max	Acc	Mod
23.2.1 | 4000 | Tipo bus di campo | ENUM | Spento | 0 | 40 | RW | FVS

Impostazione del tipo di Bus di campo da utilizzare.

0 Spento
1 CanOpen
2 DeviceNet
3 Profibus
10 Profilo DS402
30 Pr Profidrive
40 Rte

Impostando 0 nessun bus di campo è selezionato.
Impostando 1 si seleziona il Bus di campo CanOpen.
Impostando 2 si seleziona il Bus di campo DeviceNet.
Impostando 3 si seleziona il Bus di campo Profibus.
Impostando 10 si seleziona il Profilo DS402.
Impostando 30 si seleziona il Profilo Profidrive.
Impostando 40 si seleziona la scheda Real Time Ethernet.

Menu	PAR	Descrizione	UM	Tipo	FB	BIT	Def	Min	Max	Acc	Mod
23.2.2 | 4004 | Baud rate bus campo | ENUM | 500k | 0 | 12 | RW | FVS

Impostazione della velocità della rete di comunicazione (Baud Rate)

0 Automatico
1 125k
2 250k
3 500k
4 1M
5 9600
6 19200
7 93750
8 187.5k
9 1.5M
10 3M
11 6M
12 12M

Menu	PAR	Descrizione	UM	Tipo	FB	BIT	Def	Min	Max	Acc	Mod
23.2.3 | 4006 | Indirizzo bus campo | INT16 | 3 | 0 | 255 | RW | FVS

Impostazione dell’indirizzo del nodo del drive quando è connesso alla rete.

Menu	PAR	Descrizione	UM	Tipo	FB	BIT	Def	Min	Max	Acc	Mod
23.2.4 | 4010 | Abilit bus campoM->S | ENUM | Abilita | 0 | 1 | ERWZ | FVS

Impostazione dell’aggiornamento dei dati dal bus di campo.

0 Disabilita
1 Abilita

Impostando 0 si disabilita la possibilità di poter inviare comandi e riferimenti dal Plc del drive attraverso il Bus di campo.
Impostando 1 è possibile inviare comandi e riferimenti dal Plc del drive attraverso il Bus di campo.
Menu PAR Descrizione UM Tipo FB BIT Def Min Max Acc Mod

23.2.5 4012 Modal all campo

<table>
<thead>
<tr>
<th>Menu</th>
<th>PAR</th>
<th>Descrizione</th>
<th>UM</th>
<th>Tipo</th>
<th>FB BIT</th>
<th>Def</th>
<th>Min</th>
<th>Max</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>23.2.5</td>
<td>4012</td>
<td>Modal all campo</td>
<td>INT32</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>ERWZ</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Impostazione della modalità di generazione dell’allarme **Guasto opz Bus**.

- **0** Spento
- **1** On

Impostando **0** l’allarme viene generato solo nel caso in cui il drive sia abilitato.

Impostando **1** l’allarme viene generato anche se il drive è disabilitato.

23.2.6 4014 Stato bus di campo

<table>
<thead>
<tr>
<th>Menu</th>
<th>PAR</th>
<th>Descrizione</th>
<th>UM</th>
<th>Tipo</th>
<th>FB BIT</th>
<th>Def</th>
<th>Min</th>
<th>Max</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>23.2.6</td>
<td>4014</td>
<td>Stato bus di campo</td>
<td>ENUM</td>
<td>Arresto</td>
<td>0</td>
<td>7</td>
<td>R</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Visualizzazione dello stato logico della connessione del bus di campo. Il valore dipende dal tipo di bus utilizzato.

I seguenti stati logici vengono visualizzati se il bus di campo selezionato è CANopen o Rte:

- **0** Arresto
- **1** Pre operativo
- **2** Operativo

I seguenti stati logici logici vengono visualizzati se il bus di campo selezionato è Profibus:

- **3** Errore
- **4** AttesaPRM
- **5** AttesaCFG
- **6** Scambio dati
- **7** Errore DP

I seguenti stati logici logici vengono visualizzati se il bus di campo selezionato è Rte:

- **8** SafeOp
- **9** Init

23.2.7 4398 Protocollo RTE

<table>
<thead>
<tr>
<th>Menu</th>
<th>PAR</th>
<th>Descrizione</th>
<th>UM</th>
<th>Tipo</th>
<th>FB BIT</th>
<th>Def</th>
<th>Min</th>
<th>Max</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>23.2.7</td>
<td>4398</td>
<td>Protocollo RTE</td>
<td>ENUM</td>
<td>Nessuna</td>
<td>0</td>
<td>6</td>
<td>ER</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Visualizzazione del protocollo Real Time Ethernet implementato sulla scheda di espansione.

- **0** Nessuna
- **1** Ethercat
- **2** EthernetIP
- **3** GdNet
- **4** Profinet
- **5** ModbusTCP
- **6** Powerlink

23.3 - COMUNICAZIONE/BUS CAMPO M2S

23.3.1 4020 Ipa M->S1 bus campo

<table>
<thead>
<tr>
<th>Menu</th>
<th>PAR</th>
<th>Descrizione</th>
<th>UM</th>
<th>Tipo</th>
<th>FB BIT</th>
<th>Def</th>
<th>Min</th>
<th>Max</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>23.3.1</td>
<td>4020</td>
<td>Ipa M->S1 bus campo</td>
<td>FBM2SIPA</td>
<td>0</td>
<td>0</td>
<td>20000</td>
<td>RW</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

23.3.5 4030 Ipa M->S2 bus campo

<table>
<thead>
<tr>
<th>Menu</th>
<th>PAR</th>
<th>Descrizione</th>
<th>UM</th>
<th>Tipo</th>
<th>FB BIT</th>
<th>Def</th>
<th>Min</th>
<th>Max</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>23.3.5</td>
<td>4030</td>
<td>Ipa M->S2 bus campo</td>
<td>FBM2SIPA</td>
<td>0</td>
<td>0</td>
<td>20000</td>
<td>RW</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

23.3.9 4040 Ipa M->S3 bus campo

<table>
<thead>
<tr>
<th>Menu</th>
<th>PAR</th>
<th>Descrizione</th>
<th>UM</th>
<th>Tipo</th>
<th>FB BIT</th>
<th>Def</th>
<th>Min</th>
<th>Max</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>23.3.9</td>
<td>4040</td>
<td>Ipa M->S3 bus campo</td>
<td>FBM2SIPA</td>
<td>0</td>
<td>0</td>
<td>20000</td>
<td>RW</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

23.3.13 4050 Ipa M->S4 bus campo

<table>
<thead>
<tr>
<th>Menu</th>
<th>PAR</th>
<th>Descrizione</th>
<th>UM</th>
<th>Tipo</th>
<th>FB BIT</th>
<th>Def</th>
<th>Min</th>
<th>Max</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>23.3.13</td>
<td>4050</td>
<td>Ipa M->S4 bus campo</td>
<td>FBM2SIPA</td>
<td>0</td>
<td>0</td>
<td>20000</td>
<td>RW</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

23.3.17 4060 Ipa M->S5 bus campo

<table>
<thead>
<tr>
<th>Menu</th>
<th>PAR</th>
<th>Descrizione</th>
<th>UM</th>
<th>Tipo</th>
<th>FB BIT</th>
<th>Def</th>
<th>Min</th>
<th>Max</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>23.3.17</td>
<td>4060</td>
<td>Ipa M->S5 bus campo</td>
<td>FBM2SIPA</td>
<td>0</td>
<td>0</td>
<td>20000</td>
<td>RW</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

23.3.21 4070 Ipa M->S6 bus campo

<table>
<thead>
<tr>
<th>Menu</th>
<th>PAR</th>
<th>Descrizione</th>
<th>UM</th>
<th>Tipo</th>
<th>FB BIT</th>
<th>Def</th>
<th>Min</th>
<th>Max</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>23.3.21</td>
<td>4070</td>
<td>Ipa M->S6 bus campo</td>
<td>FBM2SIPA</td>
<td>0</td>
<td>0</td>
<td>20000</td>
<td>RW</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

23.3.25 4080 Ipa M->S7 bus campo

<table>
<thead>
<tr>
<th>Menu</th>
<th>PAR</th>
<th>Descrizione</th>
<th>UM</th>
<th>Tipo</th>
<th>FB BIT</th>
<th>Def</th>
<th>Min</th>
<th>Max</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>23.3.25</td>
<td>4080</td>
<td>Ipa M->S7 bus campo</td>
<td>FBM2SIPA</td>
<td>0</td>
<td>0</td>
<td>20000</td>
<td>RW</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

23.3.29 4090 Ipa M->S8 bus campo

<table>
<thead>
<tr>
<th>Menu</th>
<th>PAR</th>
<th>Descrizione</th>
<th>UM</th>
<th>Tipo</th>
<th>FB BIT</th>
<th>Def</th>
<th>Min</th>
<th>Max</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>23.3.29</td>
<td>4090</td>
<td>Ipa M->S8 bus campo</td>
<td>FBM2SIPA</td>
<td>0</td>
<td>0</td>
<td>20000</td>
<td>RW</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

23.3.33 4100 Ipa M->S9 bus campo

<table>
<thead>
<tr>
<th>Menu</th>
<th>PAR</th>
<th>Descrizione</th>
<th>UM</th>
<th>Tipo</th>
<th>FB BIT</th>
<th>Def</th>
<th>Min</th>
<th>Max</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>23.3.33</td>
<td>4100</td>
<td>Ipa M->S9 bus campo</td>
<td>FBM2SIPA</td>
<td>0</td>
<td>0</td>
<td>20000</td>
<td>RW</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Impostazione del parametro da collegare al canale del bus. Di default è impostato su 0, corrispondente a canale inattivo.

Se il parametro da collegare è di tipo **sorg** (sorgente), l’associazione tra canale e parametro si può fare anche modificando il parametro **sorg** nel suo menù.

Quando si imposta un parametro, automaticamente viene impostato anche il formato nel parametro sys.

Impostazione del formato del dato ricevuto sul canale

Quando si programma il parametro **src** il formato viene automaticamente programmato sul sys relativo. Se il parametro **src** viene rimesso a null, il formato del dato non cambia. Il valore del formato può essere selezionato nella seguente lista, in funzione del parametro selezionato come sorgente:

- **0** Non assegnato
- **1** Count 16
- **2** Count 32
- **3** Fill 16
- **4** Fill 32
- **5** Mdplc 16
- **6** Mdplc 32
- **7** EU
- **8** Eu float
- **9** Par 16
- **10** Par 32

Impostando **0** il canale non viene assegnato.

Impostando **1** al dato viene assegnato come formato count a 16 bit.

Impostando **2** al dato viene assegnato come formato count a 32 bit.

Impostando **3** al dato vengono riservati 16 bit sul canale, non utilizzati.
Impostando 4 al dato vengono riservati 32 bit sul canale, non utilizzati.
Impostando 5 al dato viene assegnato come formato count a 16 bit utilizzato da Mdplc.
Impostando 6 al dato viene assegnato come formato count a 32 bit utilizzato da Mdplc.
Impostando 7 al dato viene assegnato come formato unità ingegneristica su intero a 16 bit.
Impostando 8 al dato viene assegnato come formato unità ingegneristica su intero a 32 bit.
Impostando 9 al dato viene assegnato come formato unità ingegneristica su intero a 16 bit non in tempo reale (5-10ms)
Impostando 10 al dato viene assegnato come formato unità ingegneristica su intero a 32 bit oppure su float se il parametro collegato è di tipo float non in tempo reale (5-10ms)

NOTA!
Se il parametro sys è **Non assegnato**, tutti i successivi canali del fieldbus non verranno letti, anche se programmati.

<table>
<thead>
<tr>
<th>Menu</th>
<th>PAR</th>
<th>Descrizione</th>
<th>UM</th>
<th>Tipo</th>
<th>FB BIT</th>
<th>Def</th>
<th>Min</th>
<th>Max</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>23.3.3</td>
<td>4024</td>
<td>Mon M->S1 bus campo</td>
<td>INT32</td>
<td>32</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>ER</td>
<td>FVS</td>
<td></td>
</tr>
<tr>
<td>23.3.7</td>
<td>4034</td>
<td>Mon M->S2 bus campo</td>
<td>INT32</td>
<td>32</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>ER</td>
<td>FVS</td>
<td></td>
</tr>
<tr>
<td>23.3.11</td>
<td>4044</td>
<td>Mon M->S3 bus campo</td>
<td>INT32</td>
<td>32</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>ER</td>
<td>FVS</td>
<td></td>
</tr>
<tr>
<td>23.3.15</td>
<td>4054</td>
<td>Mon M->S4 bus campo</td>
<td>INT32</td>
<td>32</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>ER</td>
<td>FVS</td>
<td></td>
</tr>
<tr>
<td>23.3.19</td>
<td>4064</td>
<td>Mon M->S5 bus campo</td>
<td>INT32</td>
<td>32</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>ER</td>
<td>FVS</td>
<td></td>
</tr>
<tr>
<td>23.3.23</td>
<td>4074</td>
<td>Mon M->S6 bus campo</td>
<td>INT32</td>
<td>32</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>ER</td>
<td>FVS</td>
<td></td>
</tr>
<tr>
<td>23.3.27</td>
<td>4084</td>
<td>Mon M->S7 bus campo</td>
<td>INT32</td>
<td>32</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>ER</td>
<td>FVS</td>
<td></td>
</tr>
<tr>
<td>23.3.31</td>
<td>4094</td>
<td>Mon M->S8 bus campo</td>
<td>INT32</td>
<td>32</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>ER</td>
<td>FVS</td>
<td></td>
</tr>
<tr>
<td>23.3.35</td>
<td>4104</td>
<td>Mon M->S9 bus campo</td>
<td>INT32</td>
<td>32</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>ER</td>
<td>FVS</td>
<td></td>
</tr>
<tr>
<td>23.3.39</td>
<td>4114</td>
<td>Mon M->S10 bus campo</td>
<td>INT32</td>
<td>32</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>ER</td>
<td>FVS</td>
<td></td>
</tr>
<tr>
<td>23.3.43</td>
<td>4124</td>
<td>Mon M->S11 bus campo</td>
<td>INT32</td>
<td>32</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>ER</td>
<td>FVS</td>
<td></td>
</tr>
<tr>
<td>23.3.47</td>
<td>4134</td>
<td>Mon M->S12 bus campo</td>
<td>INT32</td>
<td>32</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>ER</td>
<td>FVS</td>
<td></td>
</tr>
<tr>
<td>23.3.51</td>
<td>4144</td>
<td>Mon M->S13 bus campo</td>
<td>INT32</td>
<td>32</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>ER</td>
<td>FVS</td>
<td></td>
</tr>
<tr>
<td>23.3.55</td>
<td>4154</td>
<td>Mon M->S14 bus campo</td>
<td>INT32</td>
<td>32</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>ER</td>
<td>FVS</td>
<td></td>
</tr>
<tr>
<td>23.3.59</td>
<td>4164</td>
<td>Mon M->S15 bus campo</td>
<td>INT32</td>
<td>32</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>ER</td>
<td>FVS</td>
<td></td>
</tr>
<tr>
<td>23.3.63</td>
<td>4174</td>
<td>Mon M->S16 bus campo</td>
<td>INT32</td>
<td>32</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>ER</td>
<td>FVS</td>
<td></td>
</tr>
</tbody>
</table>

Visualizzazione del valore ricevuto dal bus. Questo parametro deve essere associato al parametro src per attivare il canale **M->S**.

L'utente può modificare i parametri sys sia di **M->S** che di **S->M**. Viene fatto un controllo sulla coerenza del sys con il parametro assegnato al canale.

Un parametro Fieldbus M>S X Mon potrà venire assegnato ad un solo “src”. L’assegnazione a più src verrà segnalata con un errore durante l’inizializzazione del fieldbus.

<table>
<thead>
<tr>
<th>Menu</th>
<th>PAR</th>
<th>Descrizione</th>
<th>UM</th>
<th>Tipo</th>
<th>FB BIT</th>
<th>Def</th>
<th>Min</th>
<th>Max</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>23.3.4</td>
<td>4026</td>
<td>Div M->S1 bus campo</td>
<td>FLOAT</td>
<td>1</td>
<td>1.0</td>
<td>1.0</td>
<td>1000.0</td>
<td>ERW</td>
<td>FVS</td>
<td></td>
</tr>
<tr>
<td>23.3.8</td>
<td>4036</td>
<td>Div M->S2 bus campo</td>
<td>FLOAT</td>
<td>1</td>
<td>1.0</td>
<td>1.0</td>
<td>1000.0</td>
<td>ERW</td>
<td>FVS</td>
<td></td>
</tr>
<tr>
<td>23.3.12</td>
<td>4046</td>
<td>Div M->S3 bus campo</td>
<td>FLOAT</td>
<td>1</td>
<td>1.0</td>
<td>1.0</td>
<td>1000.0</td>
<td>ERW</td>
<td>FVS</td>
<td></td>
</tr>
<tr>
<td>23.3.16</td>
<td>4056</td>
<td>Div M->S4 bus campo</td>
<td>FLOAT</td>
<td>1</td>
<td>1.0</td>
<td>1.0</td>
<td>1000.0</td>
<td>ERW</td>
<td>FVS</td>
<td></td>
</tr>
<tr>
<td>23.3.20</td>
<td>4066</td>
<td>Div M->S5 bus campo</td>
<td>FLOAT</td>
<td>1</td>
<td>1.0</td>
<td>1.0</td>
<td>1000.0</td>
<td>ERW</td>
<td>FVS</td>
<td></td>
</tr>
<tr>
<td>23.3.24</td>
<td>4076</td>
<td>Div M->S6 bus campo</td>
<td>FLOAT</td>
<td>1</td>
<td>1.0</td>
<td>1.0</td>
<td>1000.0</td>
<td>ERW</td>
<td>FVS</td>
<td></td>
</tr>
<tr>
<td>23.3.28</td>
<td>4086</td>
<td>Div M->S7 bus campo</td>
<td>FLOAT</td>
<td>1</td>
<td>1.0</td>
<td>1.0</td>
<td>1000.0</td>
<td>ERW</td>
<td>FVS</td>
<td></td>
</tr>
<tr>
<td>23.3.32</td>
<td>4096</td>
<td>Div M->S8 bus campo</td>
<td>FLOAT</td>
<td>1</td>
<td>1.0</td>
<td>1.0</td>
<td>1000.0</td>
<td>ERW</td>
<td>FVS</td>
<td></td>
</tr>
<tr>
<td>23.3.36</td>
<td>4106</td>
<td>Div M->S9 bus campo</td>
<td>FLOAT</td>
<td>1</td>
<td>1.0</td>
<td>1.0</td>
<td>1000.0</td>
<td>ERW</td>
<td>FVS</td>
<td></td>
</tr>
<tr>
<td>23.3.40</td>
<td>4116</td>
<td>Div M->S10 bus campo</td>
<td>FLOAT</td>
<td>1</td>
<td>1.0</td>
<td>1.0</td>
<td>1000.0</td>
<td>ERW</td>
<td>FVS</td>
<td></td>
</tr>
<tr>
<td>23.3.44</td>
<td>4126</td>
<td>Div M->S11 bus campo</td>
<td>FLOAT</td>
<td>1</td>
<td>1.0</td>
<td>1.0</td>
<td>1000.0</td>
<td>ERW</td>
<td>FVS</td>
<td></td>
</tr>
<tr>
<td>23.3.48</td>
<td>4136</td>
<td>Div M->S12 bus campo</td>
<td>FLOAT</td>
<td>1</td>
<td>1.0</td>
<td>1.0</td>
<td>1000.0</td>
<td>ERW</td>
<td>FVS</td>
<td></td>
</tr>
</tbody>
</table>
23.3.52 4146 Div M->S13 bus campo
FLOAT 1.0 1.0 1000.0 ERW FVS

23.3.56 4156 Div M->S14 bus campo
FLOAT 1.0 1.0 1000.0 ERW FVS

23.3.60 4166 Div M->S15 bus campo
FLOAT 1.0 1.0 1000.0 ERW FVS

23.3.64 4176 Div M->S16 bus campo
FLOAT 1.0 1.0 1000.0 ERW FVS

I parametri Div M->Sx bus campo possono essere utilizzati per aumentare la risoluzione del dato inviato sul bus al drive nel corrispondente canale in modalità di scambio EU ed EU_float. Il valore del parametro viene utilizzato dal drive come divisore del dato in arrivo, permettendo quindi di trasferire un numero con cifre decimali.

N.B.: L’utente deve verificare la dimensione in bit del dato inviato per accertarsi che il valore massimo in bit sia contenuto in un intero a 16 bit. Per esempio specificando come divisore “Fieldbus M->Sn div” = 1000, il valore massimo utilizzabile per il dato scambiato è 32,768 (32768/1000).

Esempio: Div M->Sx bus campo = 10, M->S1 par bus campo = Sorgente rif rampa 1, Sys M->S1 bus campo = EU. Se il PLC invia il valore decimale 1000 sulla prima word il valore di rif rampa 1 sul drive diventa 1000/10 = 100.

23.4 - COMUNICAZIONE/BUS CAMPO S2M

<table>
<thead>
<tr>
<th>Menu</th>
<th>PAR</th>
<th>Descrizione</th>
<th>UM</th>
<th>Tipo</th>
<th>FB BIT</th>
<th>Def</th>
<th>Min</th>
<th>Max</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>23.4.1 4180 Ipa S->M1 bus campo</td>
<td>FBM2SIPA</td>
<td>0</td>
<td>0</td>
<td>20000</td>
<td>RW</td>
<td>FVS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>23.4.5 4190 Ipa S->M2 bus campo</td>
<td>FBM2SIPA</td>
<td>0</td>
<td>0</td>
<td>20000</td>
<td>RW</td>
<td>FVS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>23.4.9 4200 Ipa S->M3 bus campo</td>
<td>FBM2SIPA</td>
<td>0</td>
<td>0</td>
<td>20000</td>
<td>RW</td>
<td>FVS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>23.4.13 4210 Ipa S->M4 bus campo</td>
<td>FBM2SIPA</td>
<td>0</td>
<td>0</td>
<td>20000</td>
<td>RW</td>
<td>FVS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>23.4.17 4220 Ipa S->M5 bus campo</td>
<td>FBM2SIPA</td>
<td>0</td>
<td>0</td>
<td>20000</td>
<td>RW</td>
<td>FVS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>23.4.21 4230 Ipa S->M6 bus campo</td>
<td>FBM2SIPA</td>
<td>0</td>
<td>0</td>
<td>20000</td>
<td>RW</td>
<td>FVS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>23.4.25 4240 Ipa S->M7 bus campo</td>
<td>FBM2SIPA</td>
<td>0</td>
<td>0</td>
<td>20000</td>
<td>RW</td>
<td>FVS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>23.4.29 4250 Ipa S->M8 bus campo</td>
<td>FBM2SIPA</td>
<td>0</td>
<td>0</td>
<td>20000</td>
<td>RW</td>
<td>FVS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>23.4.33 4260 Ipa S->M9 bus campo</td>
<td>FBM2SIPA</td>
<td>0</td>
<td>0</td>
<td>20000</td>
<td>RW</td>
<td>FVS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>23.4.37 4270 Ipa S->M10bus campo</td>
<td>FBM2SIPA</td>
<td>0</td>
<td>0</td>
<td>20000</td>
<td>RW</td>
<td>FVS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>23.4.41 4280 Ipa S->M11bus campo</td>
<td>FBM2SIPA</td>
<td>0</td>
<td>0</td>
<td>20000</td>
<td>RW</td>
<td>FVS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>23.4.45 4290 Ipa S->M12bus campo</td>
<td>FBM2SIPA</td>
<td>0</td>
<td>0</td>
<td>20000</td>
<td>RW</td>
<td>FVS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>23.4.49 4300 Ipa S->M13bus campo</td>
<td>FBM2SIPA</td>
<td>0</td>
<td>0</td>
<td>20000</td>
<td>RW</td>
<td>FVS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>23.4.53 4310 Ipa S->M14bus campo</td>
<td>FBM2SIPA</td>
<td>0</td>
<td>0</td>
<td>20000</td>
<td>RW</td>
<td>FVS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>23.4.57 4320 Ipa S->M15bus campo</td>
<td>FBM2SIPA</td>
<td>0</td>
<td>0</td>
<td>20000</td>
<td>RW</td>
<td>FVS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>23.4.61 4330 Ipa S->M16bus campo</td>
<td>FBM2SIPA</td>
<td>0</td>
<td>0</td>
<td>20000</td>
<td>RW</td>
<td>FVS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Impostazione del parametro da collegare al canale del bus. Di default è impostato su 0, corrispondente a canale inattivo.

Quando si imposta un parametro, automaticamente viene impostato anche il formato nel parametro sys.

<table>
<thead>
<tr>
<th>Menu</th>
<th>PAR</th>
<th>Descrizione</th>
<th>UM</th>
<th>Tipo</th>
<th>FB BIT</th>
<th>Def</th>
<th>Min</th>
<th>Max</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>23.4.2 4182 Sys S->M1 bus campo</td>
<td>ENUM</td>
<td>Non assegnato</td>
<td>0</td>
<td>10</td>
<td>RW</td>
<td>FVS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>23.4.6 4192 Sys S->M2 bus campo</td>
<td>ENUM</td>
<td>Non assegnato</td>
<td>0</td>
<td>10</td>
<td>RW</td>
<td>FVS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>23.4.10 4202 Sys S->M3 bus campo</td>
<td>ENUM</td>
<td>Non assegnato</td>
<td>0</td>
<td>10</td>
<td>RW</td>
<td>FVS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>23.4.14 4212 Sys S->M4 bus campo</td>
<td>ENUM</td>
<td>Non assegnato</td>
<td>0</td>
<td>10</td>
<td>RW</td>
<td>FVS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>23.4.18 4222 Sys S->M5 bus campo</td>
<td>ENUM</td>
<td>Non assegnato</td>
<td>0</td>
<td>10</td>
<td>RW</td>
<td>FVS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>23.4.22 4232 Sys S->M6 bus campo</td>
<td>ENUM</td>
<td>Non assegnato</td>
<td>0</td>
<td>10</td>
<td>RW</td>
<td>FVS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>23.4.26 4242 Sys S->M7 bus campo</td>
<td>ENUM</td>
<td>Non assegnato</td>
<td>0</td>
<td>10</td>
<td>RW</td>
<td>FVS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>23.4.30 4252 Sys S->M8 bus campo</td>
<td>ENUM</td>
<td>Non assegnato</td>
<td>0</td>
<td>10</td>
<td>RW</td>
<td>FVS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>23.4.34 4262 Sys S->M9 bus campo</td>
<td>ENUM</td>
<td>Non assegnato</td>
<td>0</td>
<td>10</td>
<td>RW</td>
<td>FVS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Impostazione del formato del dato inviato sul canale. Quando si programma il parametro sorg il formato viene automaticamente programmatato sul sys relativo. Se il parametro sorg viene rimesso a null, il formato del dato non cambia. Il valore del formato può essere selezionato nella seguente lista, in funzione del parametro selezionato come sorgente:

- 0 Non assegnato
- 1 Count 16
- 2 Count 32
- 3 Fill 16
- 4 Fill 32
- 5 Mdplc 16
- 6 Mdplc 32
- 7 EU
- 8 Eu float
- 9 Par 16
- 10 Par 32

Impostando 0 il canale non viene assegnato.
Impostando 1 al dato viene assegnato come formato count a 16 bit.
Impostando 2 al dato viene assegnato come formato count a 32 bit.
Impostando 3 al dato vengono riservati 16 bit sul canale, non utilizzati.
Impostando 4 al dato vengono riservati 32 bit sul canale, non utilizzati.
Impostando 5 al dato viene assegnato come formato count a 16 bit utilizzato da Mdplc.
Impostando 6 al dato viene assegnato come formato count a 32 bit utilizzato da Mdplc.
Impostando 7 al dato viene assegnato come formato unità ingegneristica su intero a 16 bit.
Impostando 8 al dato viene assegnato come formato unità ingegneristica su intero a 32 bit.
Impostando 9 al dato viene assegnato come formato unità ingegneristica su intero a 16 bit non in tempo reale (5-10ms)
Impostando 10 al dato viene assegnato come formato unità ingegneristica su intero a 32 bit oppure su float se il parametro collegato è di tipo float non in tempo reale (5-10ms)

NOTA! Se il parametro sys è *Non assegnato*, tutti i successivi canali non saranno trasferiti sul fieldbus, anche se programmati.
Se è associato al relativo sorg., il valore di questo parametro viene inviato sul bus.

L’utente può modificare i parametri sys sia di M->S che di S->M. Viene fatto un controllo sulla coerenza del sys con il parametro assegnato al canale.

I parametri "Mol S->Mx bus campo" sono dei moltiplicatori che il drive applica al dato prima di inviarlo sul bus. In questo modo è possibile aumentare la risoluzione di alcuni valori letti in modalità EU e EU_float, utilizzando anche cifre decimali.

N.B.: Il drive non verifica che la rappresentazione in bit del parametro moltiplicato sia contenuta in un intero a 16 bit. L’utente deve accertarsi che il moltiplicatore sia compatibile con il valore massimo del parametro scambiato e non ecceda la dimensione massima di 32768.

Esempio: Mol S->Mx bus campo = 10, S->M1 par bus campo = Velocità motore, Sys S->M1 bus campo = Eu. Se il motore è a 100 giri, il PLC legge sulla prima word scambiata il valore 100 * 10 = 1000.
Selezione dell’origine (sorgente) del segnale da utilizzare per la codifica nella **Comp word**. Questa funzione permette all’utilizzatore di comporre in un’unica word 16 segnali, ciascuno dei quali può essere selezionato tra quelli disponibili nella lista di selezione “**L_DIGSEL1**.”

I valori delle grandezze sezionate vengono convertiti in un’unica word.

Visualizzazione del valore esadecimale dell’uscita della **Comp word**.

23.6 - COMUNICAZIONE/DECOMP WORD

Impostazione dell’ingresso digitale che viene decodificato dal blocco “**Decomp word**”.

Selezione dell’origine (sorgente) della word da decodificare dal blocco “**Decomp word**”. Ogni bit facente parte della word da decodificare viene associato ad un canale d’uscita del blocco “**Decomp word**”. Le variabili utilizzabili per questa funzione possono essere impostate tra quelle disponibili nella lista di selezione “**L_WDE-COMP**”.
<table>
<thead>
<tr>
<th>Menu</th>
<th>PAR</th>
<th>Descrizione</th>
<th>UM</th>
<th>Tipo</th>
<th>FB BIT</th>
<th>Def</th>
<th>Min</th>
<th>Max</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>23.6.3</td>
<td>4454</td>
<td>Monitor Bit0 decompression</td>
<td>BIT</td>
<td>16</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>ER</td>
<td>FVS</td>
</tr>
<tr>
<td>23.6.4</td>
<td>4456</td>
<td>Monitor Bit1 decompression</td>
<td>BIT</td>
<td>16</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>ER</td>
<td>FVS</td>
</tr>
<tr>
<td>23.6.5</td>
<td>4458</td>
<td>Monitor Bit2 decompression</td>
<td>BIT</td>
<td>16</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>ER</td>
<td>FVS</td>
</tr>
<tr>
<td>23.6.6</td>
<td>4460</td>
<td>Monitor Bit3 decompression</td>
<td>BIT</td>
<td>16</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>ER</td>
<td>FVS</td>
</tr>
<tr>
<td>23.6.7</td>
<td>4462</td>
<td>Monitor Bit4 decompression</td>
<td>BIT</td>
<td>16</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>ER</td>
<td>FVS</td>
</tr>
<tr>
<td>23.6.8</td>
<td>4464</td>
<td>Monitor Bit5 decompression</td>
<td>BIT</td>
<td>16</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>ER</td>
<td>FVS</td>
</tr>
<tr>
<td>23.6.9</td>
<td>4466</td>
<td>Monitor Bit6 decompression</td>
<td>BIT</td>
<td>16</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>ER</td>
<td>FVS</td>
</tr>
<tr>
<td>23.6.10</td>
<td>4468</td>
<td>Monitor Bit7 decompression</td>
<td>BIT</td>
<td>16</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>ER</td>
<td>FVS</td>
</tr>
<tr>
<td>23.6.11</td>
<td>4470</td>
<td>Monitor Bit8 decompression</td>
<td>BIT</td>
<td>16</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>ER</td>
<td>FVS</td>
</tr>
<tr>
<td>23.6.12</td>
<td>4472</td>
<td>Monitor Bit9 decompression</td>
<td>BIT</td>
<td>16</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>ER</td>
<td>FVS</td>
</tr>
<tr>
<td>23.6.13</td>
<td>4474</td>
<td>Monitor Bit10 decompression</td>
<td>BIT</td>
<td>16</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>ER</td>
<td>FVS</td>
</tr>
<tr>
<td>23.6.14</td>
<td>4476</td>
<td>Monitor Bit11 decompression</td>
<td>BIT</td>
<td>16</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>ER</td>
<td>FVS</td>
</tr>
<tr>
<td>23.6.15</td>
<td>4478</td>
<td>Monitor Bit12 decompression</td>
<td>BIT</td>
<td>16</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>ER</td>
<td>FVS</td>
</tr>
<tr>
<td>23.6.16</td>
<td>4480</td>
<td>Monitor Bit13 decompression</td>
<td>BIT</td>
<td>16</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>ER</td>
<td>FVS</td>
</tr>
<tr>
<td>23.6.17</td>
<td>4482</td>
<td>Monitor Bit14 decompression</td>
<td>BIT</td>
<td>16</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>ER</td>
<td>FVS</td>
</tr>
<tr>
<td>23.6.18</td>
<td>4484</td>
<td>Monitor Bit15 decompression</td>
<td>BIT</td>
<td>16</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>ER</td>
<td>FVS</td>
</tr>
</tbody>
</table>

Visualizzazione dei singoli bit che compongono la word selezionata da decodificare.
Nel menu **CONFIG ALLARMI** si determina quale tipo di effetto hanno sull’azionamento le eventuali segnalazioni di allarme:

- Memorizzazione dello stato di allarme
- Come deve reagire l’azionamento alla segnalazione d’allarme?
- Ripartenza automatica
- Reset dell’allarme

Per alcuni allarmi il comportamento può essere configurato singolarmente per ogni segnalazione, mentre per i rimanenti viene eseguito il comando Disabilitatò. Inoltre le singole segnalazioni possono essere riportate ad una uscita digitale programmabile.

<table>
<thead>
<tr>
<th>Azione</th>
<th>Ignora</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>L’allarme non viene inserito nella lista allarmi, non viene inserito nello storico allarmi, non viene segnalato sulle uscite digitali, non vengono modificati i comandi al drive</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Avvisa</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Disabilita</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Arresto</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Arresto rapido</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

Possono essere attivi contemporaneamente n allarmi che hanno come Azione = Ignora o Avvisa.

Se è attivo un allarme con Azione = Arresto o Arresto Rapido e se ne attiva un altro con Azione diversa da Ignora o Avvisa viene eseguito un arresto con disabilitazione del drive.
Non tutti gli allarmi consentono di fermare l’azionamento in modo controllato. Dalla seguente tabella si possono rilevare le possibilità di impostare l’azione per le singole segnalazioni d’allarme.

<table>
<thead>
<tr>
<th>Allarme</th>
<th>Ignora</th>
<th>Avvisa</th>
<th>Disabilita</th>
<th>Arresto</th>
<th>Arresto rapido</th>
</tr>
</thead>
<tbody>
<tr>
<td>Guasto Esterno</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Sovratemp Mot</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Sovravelocità</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Perd Riferim</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Perd retroaz</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Sovracc Drive</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Sovracc motore</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Sovracc res fr</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Sensore HT</td>
<td>-</td>
<td>-</td>
<td>✓</td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>Sovratemp aria</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Desaturazione</td>
<td>-</td>
<td>-</td>
<td>✓</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Sovracorrente</td>
<td>-</td>
<td>-</td>
<td>✓</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Sovratensione</td>
<td>-</td>
<td>-</td>
<td>✓</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Sottotensione</td>
<td>-</td>
<td>-</td>
<td>✓</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Mancanza fase</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Soglia guasto terra</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Menu PAR Descrizione UM Tipo FB BIT Def Min Max Acc Mod

24.1 4500 Sorg reset guasti

Selezione dell’origine (sorgente) del segnale da utilizzare per il comando di ripristino del drive dopo un allarme. Il morsetto utilizzabile per questa funzione può essere impostato tra quelli disponibili nella lista di selezione “L_DIGSEL2”.

24.2 4502 Sorg Guasto Esterno

Selezione dell’origine (sorgente) del segnale da utilizzare come ingresso per l’allarme di guasto esterno del drive ExtFlt. Il morsetto utilizzabile per questa funzione può essere impostato tra quelli disponibili nella lista di selezione “L_DIGSEL2”.

24.3 4504 Azione GuastoEsterno

Impostazione del comportamento del drive nel caso si presenti l’allarme Guasto Esterno. Questo allarme indica l’intervento di una protezione esterna al drive.

0 Ignora
1 Avvisa
2 Disabilita
3 Arresto
4 Arresto rapido

24.4 4506 Riavvio Guasto Est

Abilitazione del riavvio automatico dopo l’allarme Guasto Esterno [21]

0 Disabilita
1 Abilita
Impostazione del tempo entro il quale l’allarme **Guasto Esterno [21]** deve rientrare per poter eseguire il riavvio automatico.

Impostazione del ritardo tra la segnalazione dell’allarme **Guasto Esterno [21]** e l’attivazione dell’allarme stesso. Se si verifica una condizione d’allarme, il drive attenderà che il tempo impostato sia trascorso prima di attivare il blocco. Se l’allarme dovesse rientrare entro il tempo impostato, il drive non indicherà nessuna condizione di allarme.

Impostazione dell’origine (sorgente) del segnale da utilizzare per l’allarme **Sovratemp Mot [12]**. Il morsetto utilizzabile per questa funzione può essere impostato tra quelli disponibili nella lista di selezione “**L_DIGSEL2**”.

Impostazione del comportamento del drive nel caso si presenti l’allarme **Sovratemp Mot [12]**. Questo allarme indica una eccessiva temperatura del motore.

<table>
<thead>
<tr>
<th>Menu</th>
<th>PAR</th>
<th>Descrizione</th>
<th>UM</th>
<th>Tipo</th>
<th>FB</th>
<th>BIT</th>
<th>Def</th>
<th>Min</th>
<th>Max</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>24.4</td>
<td>4508</td>
<td>Tempo riavv GuastEst</td>
<td>ms</td>
<td>UINT16</td>
<td>1000</td>
<td>120</td>
<td>30000</td>
<td>RW</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>24.5</td>
<td>4510</td>
<td>Filtro Guasto Est</td>
<td>ms</td>
<td>UINT16</td>
<td>0</td>
<td>0</td>
<td>10000</td>
<td>RW</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>24.6</td>
<td>4520</td>
<td>Sorgente OT motore</td>
<td>LINK</td>
<td>16</td>
<td>6000</td>
<td>0</td>
<td>16384</td>
<td>RW</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>24.7</td>
<td>4522</td>
<td>Azione OT motore</td>
<td>ENUM</td>
<td>Avvisa</td>
<td>0</td>
<td>4</td>
<td>RW</td>
<td>FVS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>24.8</td>
<td>4524</td>
<td>Riavvio OT motore</td>
<td>ENUM</td>
<td>Disabilita</td>
<td>0</td>
<td>1</td>
<td>RW</td>
<td>FVS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>24.9</td>
<td>4526</td>
<td>Tempo riavv OT mot</td>
<td>ms</td>
<td>UINT16</td>
<td>1000</td>
<td>120</td>
<td>30000</td>
<td>RW</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>24.10</td>
<td>4528</td>
<td>Filtro OT motore</td>
<td>ms</td>
<td>UINT16</td>
<td>1000</td>
<td>0</td>
<td>30000</td>
<td>RW</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>24.11</td>
<td>4540</td>
<td>Soglia sovravelocità</td>
<td>rpm</td>
<td>INT32</td>
<td>CALCI</td>
<td>0</td>
<td>CALCI</td>
<td>RW</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Selezione dell’origine del segnale da utilizzare per l’allarme **Sovratemp Mot [12]**. Il morsetto utilizzabile per questa funzione può essere impostato tra quelli disponibili nella lista di selezione “**L_DIGSEL2**”.

Abilitazione del riavvio automatico dopo l’allarme **Sovratemp Mot [12]**.

<table>
<thead>
<tr>
<th>Menu</th>
<th>PAR</th>
<th>Descrizione</th>
<th>UM</th>
<th>Tipo</th>
<th>FB</th>
<th>BIT</th>
<th>Def</th>
<th>Min</th>
<th>Max</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>24.12</td>
<td>4540</td>
<td>Soglia sovravelocità</td>
<td>rpm</td>
<td>INT32</td>
<td>CALCI</td>
<td>0</td>
<td>CALCI</td>
<td>RW</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Menu</td>
<td>PAR</td>
<td>Descrizione</td>
<td>UM</td>
<td>Tipo</td>
<td>FB BIT</td>
<td>Def</td>
<td>Min</td>
<td>Max</td>
<td>Acc</td>
<td>Mod</td>
<td></td>
</tr>
<tr>
<td>------</td>
<td>-----</td>
<td>-------------</td>
<td>----</td>
<td>------</td>
<td>--------</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td></td>
</tr>
<tr>
<td>24.13</td>
<td>4542</td>
<td>Azione sovravelocità</td>
<td>ENUM</td>
<td>Disabilita</td>
<td>0</td>
<td>4</td>
<td>RW</td>
<td>FVS</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Impostazione del comportamento del drive nel caso si presenti l’allarme **Sovravelocità [23]**. Questo allarme indica che la velocità del motore ha superato la soglia nel parametro **Soglia sovravelocità, PAR 4540**.

<table>
<thead>
<tr>
<th>Menu</th>
<th>PAR</th>
<th>Descrizione</th>
<th>UM</th>
<th>Tipo</th>
<th>FB BIT</th>
<th>Def</th>
<th>Min</th>
<th>Max</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>24.14</td>
<td>4544</td>
<td>Filtro sovravelocità</td>
<td>ms UINT16</td>
<td>0</td>
<td>0</td>
<td>5000</td>
<td>RW</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Impostazione del ritardo tra la segnalazione dell’allarme **Sovravelocità [23]** e l’attivazione dell’allarme stesso. Se si verifica una condizione d’allarme, il drive attenderà che il tempo impostato sia trascorso prima di attivare l’allarme. Se l’allarme dovesse rientrare entro il tempo impostato, il drive non indicherà nessuna condizione di allarme.

<table>
<thead>
<tr>
<th>Menu</th>
<th>PAR</th>
<th>Descrizione</th>
<th>UM</th>
<th>Tipo</th>
<th>FB BIT</th>
<th>Def</th>
<th>Min</th>
<th>Max</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>24.15</td>
<td>4550</td>
<td>Soglia perd rif vel</td>
<td>rpm INT16</td>
<td>100</td>
<td>0</td>
<td>CALCI</td>
<td>RW</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Impostazione della soglia sotto la quale interviene l’allarme **Perd Riferim [24]**.

<table>
<thead>
<tr>
<th>Menu</th>
<th>PAR</th>
<th>Descrizione</th>
<th>UM</th>
<th>Tipo</th>
<th>FB BIT</th>
<th>Def</th>
<th>Min</th>
<th>Max</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>24.16</td>
<td>4552</td>
<td>Azione perd rif vel</td>
<td>ENUM</td>
<td>Ignora</td>
<td>0</td>
<td>4</td>
<td>RW</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Impostazione del comportamento del drive nel caso si presenti l’allarme **Perd Riferim [24]**. Questo allarme indica che la differenza tra il riferimento del regolatore di velocità e velocità attuale del motore è superiore a 100 rpm.

Verificare che questo allarme sia disabilitato (= 0 Ignora) quando il parametro **556 Modalità controllo** è impostato su **Coppia (0)** oppure quando il parametro 2354 è impostato diverso da zero.

<table>
<thead>
<tr>
<th>Menu</th>
<th>PAR</th>
<th>Descrizione</th>
<th>UM</th>
<th>Tipo</th>
<th>FB BIT</th>
<th>Def</th>
<th>Min</th>
<th>Max</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>24.17</td>
<td>4554</td>
<td>Filtro perd rif vel</td>
<td>ms UINT16</td>
<td>1000</td>
<td>0</td>
<td>10000</td>
<td>RW</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Impostazione del ritardo tra la segnalazione della situazione dell’allarme **Perd Riferim [24]** e l’attivazione dell’allarme stesso. Se si verifica una condizione d’allarme, il drive attenderà che il tempo impostato sia trascorso prima di attivare l’allarme. Se l’allarme dovesse rientrare entro il tempo impostato, il drive non indicherà nessuna condizione di allarme.

<table>
<thead>
<tr>
<th>Menu</th>
<th>PAR</th>
<th>Descrizione</th>
<th>UM</th>
<th>Tipo</th>
<th>FB BIT</th>
<th>Def</th>
<th>Min</th>
<th>Max</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>24.18</td>
<td>4560</td>
<td>Azione perd retr vel</td>
<td>ENUM</td>
<td>Disabilita</td>
<td>0</td>
<td>4</td>
<td>RW</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Impostazione del comportamento del drive nel caso si presenti l’allarme **Perd retroaz [22]**. Questo allarme indica la perdita dei segnali della retroazione dell’encoder.

<table>
<thead>
<tr>
<th>Menu</th>
<th>PAR</th>
<th>Descrizione</th>
<th>UM</th>
<th>Tipo</th>
<th>FB BIT</th>
<th>Def</th>
<th>Min</th>
<th>Max</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>24.19</td>
<td>4561</td>
<td>Filtro perd retr vel</td>
<td>ms UINT16</td>
<td>1000</td>
<td>0</td>
<td>10000</td>
<td>RW</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Impostazione del ritardo tra la segnalazione della situazione dell’allarme **Perd retroaz [22]** e l’attivazione dell’allarme stesso. Se si verifica una condizione d’allarme, il drive attenderà che il tempo impostato sia trascorso prima di attivare l’allarme. Se l’allarme dovesse rientrare entro il tempo impostato, il drive non indicherà nessuna condizione di allarme.
Menu PAR Descrizione UM Tipo FB BIT Def Min Max Acc Mod

<table>
<thead>
<tr>
<th>Numero</th>
<th>PAR</th>
<th>Descrizione</th>
<th>UM</th>
<th>Tipo</th>
<th>FB BIT</th>
<th>Def</th>
<th>Min</th>
<th>Max</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
</table>

24.19 4562 Filtro retr vel
- **ms UINT16 200 0 10000 RW FVS**

Impostazione del ritardo tra la segnalazione dell’allarme **Perd retroaz [22]** e l’attivazione dell’allarme stesso. Se si verifica una condizione d’allarme, il drive attenderà che il tempo impostato sia trascorso prima di attivare l’allarme. Se l’allarme dovesse rientrare entro il tempo impostato, il drive non indicherà nessuna condizione di allarme.

24.20 4564 Soglia SpdFbkLoss
- **rpm INT16 100 5 CALCI RW FVS**

Per encoder SE (Single ended) e con i parametri 2110 o 5110 = (3) Controll A-B-SE.

Il controllo dell’allarme **Perd Retroaz [22]** è abilitato quando il riferimento di velocità è superiore al valore impostato in questo parametro.

In caso di utilizzo di encoder digitali incrementali in modalità single-ended, con questo parametro viene impostata la soglia oltre la quale il drive esegue l’attività impostata sul parametro 4560 **Azione retr vel**.

24.21 4570 Azione sovracc drive
- **ENUM Ignora 0 4 ERW FVS**

Impostazione del comportamento del drive nel caso si presenti l’allarme di sovraccarico drive **Sovracc Drive [13]**. Questo allarme indica il raggiungimento della soglia di sovraccarico del drive.

- 0 Ignora
- 1 Avvisa
- 2 Disabilita
- 3 Arresto
- 4 Arresto rapido

24.22 4572 Azione sovracc mot
- **ENUM Avvisa 0 4 ERW FVS**

Impostazione del comportamento del drive nel caso si presenti l’allarme **Sovracc motore [14]**. Questo allarme indica il raggiungimento della soglia di sovraccarico del motore.

- 0 Ignora
- 1 Avvisa
- 2 Disabilita
- 3 Arresto
- 4 Arresto rapido

24.23 4574 Az sovracc res fren
- **ENUM Disabilita 0 4 ERW FVS**

Impostazione del comportamento del drive nel caso si presenti l’allarme **Sovracc res fr [15]**. Questo allarme indica il raggiungimento della soglia di sovraccarico della resistenza di frenatura.

- 0 Ignora
- 1 Avvisa
- 2 Disabilita
- 3 Arresto
- 4 Arresto rapido

24.24 4582 Riavvio sensore HT
- **ENUM Disabilita 0 1 ERW FVS**

Abilitazione del riavvio automatico dopo l’allarme di **Sovrat lin dis [10]**.

- 0 Disabilita
- 1 Abilita
Menu PAR Descrizione UM Tipo FB BIT Def Min Max Acc Mod

24.25 4584 Tempo riavvio sensHT ms UINT16 20000 120 60000 ERW FVS

Impostazione del tempo entro il quale l’allarme Sovrat lin dis [10] deve rientrare per poter eseguire il riavvio automatico.

<table>
<thead>
<tr>
<th>Menu</th>
<th>PAR</th>
<th>Descrizione</th>
<th>UM</th>
<th>Tipo</th>
<th>FB BIT</th>
<th>Def</th>
<th>Min</th>
<th>Max</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>24.26</td>
<td>4600</td>
<td>Azione ingresso aria</td>
<td>ENUM</td>
<td>Arresto</td>
<td>0</td>
<td>4</td>
<td>ERW</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Impostazione del comportamento del drive nel caso si presenti l’allarme Sovratemp aria [11]. Questo allarme indica una temperatura dell’aria di raffreddamento in ingresso troppo elevata.

- 0 Ignora
- 1 Avvisa
- 2 Disabilita
- 3 Arresto
- 4 Arresto rapido

24.27 4602 Riavvio ing aria ENUM Disabilita 0 1 ERW FVS

Abilitazione del riavvio automatico dopo l’allarme di sovratemperatura dell’aria in ingresso Sovratemp aria [11].

- 0 Disabilita
- 1 Abilita

24.28 4604 Tempo riavv ing aria ms UINT16 1000 120 30000 ERW FVS

24.29 4606 Filtro ingresso aria ms UINT16 10000 0 30000 ERW FVS

24.30 4610 Riavvio desat ENUM Disabilita 0 1 ERW FVS

Abilitazione del riavvio automatico dopo l’allarme Desaturazione [5]. Questo allarme indica un corto circuito tra le fasi del motore o del ponte di potenza.

- 0 Disabilita
- 1 Abilita

24.31 4612 Tempo riavvio desat ms UINT16 2000 1000 10000 ERW FVS

Impostazione del tempo entro il quale l’allarme Desaturazione [5] deve rientrare per poter eseguire il riavvio automatico. (Tempo con segnale di allarme attivo + 1000 msec).

24.32 4620 Riavvio OC ist ENUM Disabilita 0 1 ERW FVS

Abilitazione del riavvio automatico dopo l’allarme Sovragerente [4]. Questo allarme indica una sovracorrente (o un cortocircuito tra le fasi o verso terra).

- 0 Disabilita
- 1 Abilita
Menu PAR Descrizione UM Tipo FB BIT Def Min Max Acc Mod
24.33 4622 Tempo riavvio OC ist ms UINT16 2000 1000 10000 ERW FVS

Impostazione del tempo entro il quale l’allarme Sovracorrente [4] deve rientrare per poter eseguire il riavvio automatico. (Tempo con segnale di allarme attivo + 1000 msec).

Menu PAR Descrizione UM Tipo FB BIT Def Min Max Acc Mod
24.34 4630 Riavvio OV ENUM Disabilita 0 1 ERW FVS

Abilitazione del riavvio automatico dopo l’allarme Sovratensione [1]. Questo allarme indica una sovratensione del circuito intermedio (DC link).

0 Disabilita
1 Abilita

Menu PAR Descrizione UM Tipo FB BIT Def Min Max Acc Mod
24.35 4632 Tempo riavvio OV ms UINT16 2000 1000 10000 ERW FVS

Impostazione del tempo entro il quale l’allarme Sovratensione [1] deve rientrare per poter eseguire il riavvio automatico. (Tempo con segnale di allarme attivo + 1000 msec).

Menu PAR Descrizione UM Tipo FB BIT Def Min Max Acc Mod
24.36 4640 Riavvio UV ENUM Abilita 0 1 ERW FVS

Abilitazione del riavvio automatico dopo l’allarme Sottotensione [2]. Questo allarme indica una sottotensione nel circuito intermedio (DC link).

0 Disabilita
1 Abilita

Menu PAR Descrizione UM Tipo FB BIT Def Min Max Acc Mod
24.37 4642 Tempo riavvio UV ms UINT16 1000 120 10000 ERW FVS

Impostazione del tempo entro il quale l’allarme Sottotensione [2] deve rientrare per poter eseguire il riavvio automatico. (Tempo con segnale di allarme attivo + 100 msec).

Menu PAR Descrizione UM Tipo FB BIT Def Min Max Acc Mod
24.38 4650 Tentativi riavvio UV UINT16 5 0 1000 ERW FVS

Menu PAR Descrizione UM Tipo FB BIT Def Min Max Acc Mod
24.39 4652 Ritardo tentativi UV s UINT16 240 0 300 ERW FVS

Impostazione del tempo entro il quale, se non vengono eseguiti riavvii automatici dopo l’allarme Sottotensione [2], viene azzerato il conteggio dei tentativi già eseguiti; in questo modo si hanno ancora a disposizione un numero di tentativi impostato in Tentativi riavvio UV.

Menu PAR Descrizione UM Tipo FB BIT Def Min Max Acc Mod
24.40 4660 Azione mancanza fase ENUM Disabilita 0 4 ERW FVS

Impostazione del comportamento del drive nel caso si presenti l’allarme Mancanza fase [16]. Questo allarme indica la mancanza di una fase di alimentazione del drive.

0 Ignora
1 Avvisa
2 Disabilita
3 Arresto
4 Arresto rapido
<table>
<thead>
<tr>
<th>Menu</th>
<th>PAR</th>
<th>Descrizione</th>
<th>UM</th>
<th>Tipo</th>
<th>FB BIT</th>
<th>Def</th>
<th>Min</th>
<th>Max</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>24.41</td>
<td>4662</td>
<td>Riavv mancanza fase</td>
<td>ENUM</td>
<td>Disabilita</td>
<td>0</td>
<td>1</td>
<td>ERW</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Abilitazione del riavvio automatico dopo l’allarme Mancanza fase [16].</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>0 Disabilita</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1 Abilita</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>24.42</td>
<td>4664</td>
<td>Tempo riav manc fase</td>
<td>ms</td>
<td>UINT16</td>
<td>1000</td>
<td>120</td>
<td>10000</td>
<td>ERW</td>
<td>FVS</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Impostazione del tempo entro il quale l’allarme Mancanza fase [16] deve rientrare per poter eseguire il riavvio automatico. (Tempo con segnale di allarme attivo + 100 msec).</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>24.43</td>
<td>4670</td>
<td>Azione opzione bus</td>
<td>ENUM</td>
<td>Disabilita</td>
<td>0</td>
<td>4</td>
<td>ERW</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Impostazione del comportamento del drive nel caso si presenti l’allarme Guasto opz Bus [17].</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>0 Ignora</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1 Avvisa</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>2 Disabilita</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3 Arresto</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>4 Arresto rapido</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>24.44</td>
<td>4680</td>
<td>Soglia guasto terra</td>
<td>perc</td>
<td>FLOAT</td>
<td>10.0</td>
<td>0</td>
<td>150.0</td>
<td>ERWS</td>
<td>FVS</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Impostazione della soglia per l’allarme Guasto terra [3].</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>24.45</td>
<td>4700</td>
<td>Sel allarme dig 1</td>
<td>ENUM</td>
<td>Nessun allarme</td>
<td>0</td>
<td>40</td>
<td>ERW</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>24.46</td>
<td>4702</td>
<td>Sel allarme dig 2</td>
<td>ENUM</td>
<td>Nessun allarme</td>
<td>0</td>
<td>40</td>
<td>ERW</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>24.47</td>
<td>4704</td>
<td>Sel allarme dig 3</td>
<td>ENUM</td>
<td>Nessun allarme</td>
<td>0</td>
<td>40</td>
<td>ERW</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>24.48</td>
<td>4706</td>
<td>Sel allarme dig 4</td>
<td>ENUM</td>
<td>Nessun allarme</td>
<td>0</td>
<td>40</td>
<td>ERW</td>
<td>FVS</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Impostazione della segnalazione d’allarme da attivare su un’uscita digitale. La selezione dell’uscita digitale avviene per mezzo dei parametri Mon usc dig all 1+4, attivabili nella lista di selezione L_DIGSEL1.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>0 Nessun allarme</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1 Sovratensione</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>2 Sottotensione</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3 Guasto terra</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>4 Sovraccorrente</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>5 Desaturazione</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>6 Sottotens Mult</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>7 Sovracc Mult</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>8 Desatur Mult</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>9 Sovrat dissip</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>10 Sovrat lin dis</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>11 Sovrtemp aria</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>12 Sovrtemp Mot</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>13 Sovracc Drive</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>14 Sovracc motore</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>15 Sovracc res fr</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>16 Mancanza fase</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>17 Guasto opz Bus</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>18 Guast opz I/O1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>19 Guast opz I/O2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>20 Guasto opz enc</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>21 Guasto esterno</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
22 Perd Retroaz
23 Sovravelocità
24 Perd Riferim
25 All stop Emerg
26 Disalimentaz
27 Non usato 1
28 Non usato 2
29 Non usato 3
30 Non usato 4
31 Non usato 5
32 Non usato 6
33 Guasto Plc 1
34 Guasto Plc 2
35 Guasto Plc 3
36 Guasto Plc 4
37 Guasto Plc 5
38 Guasto Plc 6
39 Guasto Plc 7
40 Guasto Plc 8

Menu PAR Descrizione UM Tipo FB BIT Def Min Max Acc Mod
24.49 4720 Tempo autoreset all s FLOAT 0 0 60.0 ERW FVS

Impostazione dell’ intervallo di tempo che deve trascorrere prima di eseguire un reset automatico.
Se non ci sono allarmi attivi il drive si predispone a ripartire.
Se ci sono ancora allarmi attivi il drive si predispone per eseguire un nuovo tentativo di reset automatico.
Ad ogni tentativo di reset eseguito si incrementa un contatore. Se si raggiunge la soglia impostata con parametro Numero autoreset all il drive si predispone per non eseguire più tentativi di reset e rimane in attesa del reset da utente.
Il contatore viene portato a zero quando si esegue un reset automatico o un reset da utente e non ci sono allarmi attivi.
Se il parametro è 0 la funzione è disabilitata.

Menu PAR Descrizione UM Tipo FB BIT Def Min Max Acc Mod
24.50 4722 Numero autoreset all UINT16 20 0 100 ERW FVS

Impostazione del numero massimo di tentativi di reset automatici eseguiti.
25 – STORICO ALLARMI

In questo menu viene memorizzato lo storico degli allarmi intervenuti, con l’indicazione dell’ora in cui l’allarme si è presentato (rispetto al parametro Tempo drv alimentato). Gli allarmi sono visualizzati a partire dal più recente (n. 1) fino a quello più lontano nel tempo (n. 30). Possono essere visualizzate fino a 30 segnalazioni di allarme. Il sottocodice serve all servizio di assistenza tecnica per identificare più specificatamente il tipo di allarme intervenuto. Premendo le frecce ▲ e ▼ è possibile scorrere tra le videate dello storico allarmi. Non è possibile cancellare lo storico allarmi.

<table>
<thead>
<tr>
<th>Numero allarme</th>
<th>Descrizione allarme</th>
<th>Sotto codice</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Mancanza fase</td>
<td>110:32 0000H</td>
</tr>
<tr>
<td>2</td>
<td>Sottotensione</td>
<td>110:25 0000H</td>
</tr>
<tr>
<td>3</td>
<td>Perdita retroaz</td>
<td>110:20 0000H</td>
</tr>
<tr>
<td>4</td>
<td>Overspeed</td>
<td>109:25 0000H</td>
</tr>
</tbody>
</table>

26 - APPLICAZIONI

Questo menu è stato predisposto per ospitare due applicazioni (es. controllo PID) realizzate con il programma MDPlc, attualmente in fase di sviluppo. Non sarà possibile utilizzare contemporaneamente entrambe le applicazioni. La selezione tra le due possibili applicazioni deve avvenire con il parametro 558 Sel applicazione, nel menu CONFIG DRIVE.
PARAMETRI INSERITI NELLE LISTE DI SELEZIONE NON VISIBILI SUL TASTIERINO

<table>
<thead>
<tr>
<th>Menu</th>
<th>PAR</th>
<th>Descrizione</th>
<th>UM</th>
<th>Tipo</th>
<th>FB</th>
<th>BIT</th>
<th>Def</th>
<th>Min</th>
<th>Max</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>262</td>
<td>Vel mot non filtrata</td>
<td>FF</td>
<td>INT16</td>
<td>16</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>ER</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Questo parametro indica la velocità del motore non filtrata.

<table>
<thead>
<tr>
<th>Menu</th>
<th>PAR</th>
<th>Descrizione</th>
<th>UM</th>
<th>Tipo</th>
<th>FB</th>
<th>BIT</th>
<th>Def</th>
<th>Min</th>
<th>Max</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>362</td>
<td>All sov raccarico drv</td>
<td>BIT</td>
<td>16</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>ER</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Questo segnale indica che il drive è in sovverriscarico. Nella condizione di default l’allarme non scatta in quanto l’attività relativa è impostata su Ignora.

<table>
<thead>
<tr>
<th>Menu</th>
<th>PAR</th>
<th>Descrizione</th>
<th>UM</th>
<th>Tipo</th>
<th>FB</th>
<th>BIT</th>
<th>Def</th>
<th>Min</th>
<th>Max</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>366</td>
<td>Sovraccar drive 80%</td>
<td>BIT</td>
<td>16</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>ER</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Questo segnale indica il drive ha raggiunto l’80% dell’accumulatore dell’immagine termica (sovverriscarico drive).

<table>
<thead>
<tr>
<th>Menu</th>
<th>PAR</th>
<th>Descrizione</th>
<th>UM</th>
<th>Tipo</th>
<th>FB</th>
<th>BIT</th>
<th>Def</th>
<th>Min</th>
<th>Max</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>626</td>
<td>Monitor rif rampa</td>
<td>FF</td>
<td>INT16</td>
<td>16</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>ER</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Questo parametro visualizza il valore del riferimento in uscita dal blocco funzione del riferimento di rampa.

<table>
<thead>
<tr>
<th>Menu</th>
<th>PAR</th>
<th>Descrizione</th>
<th>UM</th>
<th>Tipo</th>
<th>FB</th>
<th>BIT</th>
<th>Def</th>
<th>Min</th>
<th>Max</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>760</td>
<td>Monitor uscita rampa</td>
<td>FF</td>
<td>INT16</td>
<td>16</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>ER</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Questo parametro visualizza il valore del riferimento in uscita dal blocco funzione delle rampe.

<table>
<thead>
<tr>
<th>Menu</th>
<th>PAR</th>
<th>Descrizione</th>
<th>UM</th>
<th>Tipo</th>
<th>FB</th>
<th>BIT</th>
<th>Def</th>
<th>Min</th>
<th>Max</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>764</td>
<td>Stato rampa accel</td>
<td>BIT</td>
<td>16</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>ER</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Questo segnale indica se è in corso la rampa di accelerazione.

<table>
<thead>
<tr>
<th>Menu</th>
<th>PAR</th>
<th>Descrizione</th>
<th>UM</th>
<th>Tipo</th>
<th>FB</th>
<th>BIT</th>
<th>Def</th>
<th>Min</th>
<th>Max</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>766</td>
<td>Stato rampa decel</td>
<td>BIT</td>
<td>16</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>ER</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Questo segnale indica se è in corso la rampa di decelerazione.

<table>
<thead>
<tr>
<th>Menu</th>
<th>PAR</th>
<th>Descrizione</th>
<th>UM</th>
<th>Tipo</th>
<th>FB</th>
<th>BIT</th>
<th>Def</th>
<th>Min</th>
<th>Max</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>934</td>
<td>Riferimento = 0</td>
<td>BIT</td>
<td>16</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>ER</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Questo segnale si attiva quando il riferimento è inferiore alla soglia impostata con il parametro 930 Soglia riferimento 0.

<table>
<thead>
<tr>
<th>Menu</th>
<th>PAR</th>
<th>Descrizione</th>
<th>UM</th>
<th>Tipo</th>
<th>FB</th>
<th>BIT</th>
<th>Def</th>
<th>Min</th>
<th>Max</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>936</td>
<td>Ritardo rif = 0</td>
<td>BIT</td>
<td>16</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>ER</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Questo parametro si attiva quando il riferimento è inferiore alla soglia impostata con il parametro 930 Soglia riferimento 0. La segnalazione si attiva con il ritardo impostato con il parametro 932 Ritardo riferimento 0.

<table>
<thead>
<tr>
<th>Menu</th>
<th>PAR</th>
<th>Descrizione</th>
<th>UM</th>
<th>Tipo</th>
<th>FB</th>
<th>BIT</th>
<th>Def</th>
<th>Min</th>
<th>Max</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>944</td>
<td>Velocità = 0</td>
<td>BIT</td>
<td>16</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>ER</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Questo parametro si attiva quando la velocità è inferiore alla soglia impostata con il parametro 940 Soglia velocità 0.

<table>
<thead>
<tr>
<th>Menu</th>
<th>PAR</th>
<th>Descrizione</th>
<th>UM</th>
<th>Tipo</th>
<th>FB</th>
<th>BIT</th>
<th>Def</th>
<th>Min</th>
<th>Max</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>946</td>
<td>Ritardo velocità = 0</td>
<td>BIT</td>
<td>16</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>ER</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Questo segnale si attiva quando il riferimento è inferiore alla soglia impostata con il parametro 940 Soglia velocità 0. La segnalazione si attiva con il ritardo impostato con il parametro 942 Ritardo velocità 0.
Visualizzazione dello stato della soglia di velocità: se la velocità del motore è superiore al valore impostato nel parametro 950 Soglia velocità 1 o inferiore al valore impostato nel parametro 952 Soglia velocità 2 questo parametro assume il valore 0.

Se la velocità del motore è compresa tra il valore di 950 Soglia velocità 1 ed il valore di 952 Soglia velocità 2, questo parametro assume il valore 1.

Con il parametro 954 Rit soglia velocità è possibile impostare un tempo di ritardo sulla transizione da 0 a 1 del parametro 956 Mon soglia _2 vel; la transizione da 1 a 0 è sempre immediata.

Nel caso in cui venga impostata 950 Soglia velocità 1 superiore a 952 Soglia velocità 2, se la velocità del motore è compresa tra le soglie questo parametro assume il valore 1.

Nel caso in cui venga impostata 950 Soglia velocità 1 inferiore a 952 Soglia velocità 2, lo stato della soglia non è significativo.

Questo segnale si attiva quando l’errore tra riferimento di velocità e velocità attuale del motore è maggiore alla tolleranza impostata con il parametro 962 Errore vel impostata.

Visualizzazione dello stato del blocco che rileva il superamento della soglia di velocità 3.

 0 Velocità attuale inferiore alla soglia
 1 Velocità attuale superiore alla soglia.

Visualizzazione dello stato del blocco che rileva il superamento della soglia di corrente.

 0 Corrente d’uscita attuale inferiore alla soglia
 1 Corrente d’uscita attuale superiore alla soglia.

Questo segnale si attiva quando il drive è in modalità di funzionamento Remoto.

 0 Locale
 1 Remoto

Questo segnale indica lo stato della "macchina a stati" che controlla il funzionamento del drive.

 STS_INIT 0
 STS_MAGN 1
 STS_STOP 2
 STS_START 3
 STS_FS_STOP 4
 STS_FS_START 5
 STS_QSTOP 6
 STS_FS_MAGN 7
 STS_W_QSTOP 8
 STS_READY 9
 STS_MAGN_START 10
 STS_ALM_DISABLED 11
 STS_ALM_END_ACTION 12
STS_ALM_STOP 13
STS_ALM_FSTOP 14
STS_ALM_R_TO_NORMAL 15
STS_READY_START 16
STS_READY_FSTOP 17
STS_ALM_NO_RESTART 18
STS_FS_MAGN_START 19

<table>
<thead>
<tr>
<th>Menu</th>
<th>PAR</th>
<th>Descrizione</th>
<th>UM</th>
<th>Tipo</th>
<th>FB BIT</th>
<th>Def</th>
<th>Min</th>
<th>Max</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>1062</td>
<td>Azionamento OK BIT 16</td>
<td>0</td>
<td>0</td>
<td>1 ER</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Questo segnale si attiva quando il drive è nella condizione “OK” e non sono presenti allarmi.

<table>
<thead>
<tr>
<th>Menu</th>
<th>PAR</th>
<th>Descrizione</th>
<th>UM</th>
<th>Tipo</th>
<th>FB BIT</th>
<th>Def</th>
<th>Min</th>
<th>Max</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>1064</td>
<td>Azionamento pronto BIT 16</td>
<td>0</td>
<td>0</td>
<td>1 ER</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Questo segnale si attiva quando il riferimento drive è nella condizione “Pronto” per il funzionamento.

<table>
<thead>
<tr>
<th>Menu</th>
<th>PAR</th>
<th>Descrizione</th>
<th>UM</th>
<th>Tipo</th>
<th>FB BIT</th>
<th>Def</th>
<th>Min</th>
<th>Max</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>1110</td>
<td>Mon ing digitale E BIT 16</td>
<td>0</td>
<td>0</td>
<td>1 ER</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1112</td>
<td>Mon ing digitale 1 BIT 16</td>
<td>0</td>
<td>0</td>
<td>1 ER</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1114</td>
<td>Mon ing digitale 2 BIT 16</td>
<td>0</td>
<td>0</td>
<td>1 ER</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1116</td>
<td>Mon ing digitale 3 BIT 16</td>
<td>0</td>
<td>0</td>
<td>1 ER</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1118</td>
<td>Mon ing digitale 4 BIT 16</td>
<td>0</td>
<td>0</td>
<td>1 ER</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1120</td>
<td>Mon ing digitale 5 BIT 16</td>
<td>0</td>
<td>0</td>
<td>1 ER</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Questi segnali rappresentano lo stato dell’ingresso digitale corrispondente.

<table>
<thead>
<tr>
<th>Menu</th>
<th>PAR</th>
<th>Descrizione</th>
<th>UM</th>
<th>Tipo</th>
<th>FB BIT</th>
<th>Def</th>
<th>Min</th>
<th>Max</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>1210</td>
<td>Mon ing digitale 1X BIT 16</td>
<td>0</td>
<td>0</td>
<td>1 ER</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1212</td>
<td>Mon ing digitale 2X BIT 16</td>
<td>0</td>
<td>0</td>
<td>1 ER</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1214</td>
<td>Mon ing digitale 3X BIT 16</td>
<td>0</td>
<td>0</td>
<td>1 ER</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1216</td>
<td>Mon ing digitale 4X BIT 16</td>
<td>0</td>
<td>0</td>
<td>1 ER</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1218</td>
<td>Mon ing digitale 5X BIT 16</td>
<td>0</td>
<td>0</td>
<td>1 ER</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1220</td>
<td>Mon ing digitale 6X BIT 16</td>
<td>0</td>
<td>0</td>
<td>1 ER</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1222</td>
<td>Mon ing digitale 7X BIT 16</td>
<td>0</td>
<td>0</td>
<td>1 ER</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1224</td>
<td>Mon ing digitale 8X BIT 16</td>
<td>0</td>
<td>0</td>
<td>1 ER</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Questi segnali rappresentano lo stato dell’ingresso digitale corrispondente della scheda di espansione.

<table>
<thead>
<tr>
<th>Menu</th>
<th>PAR</th>
<th>Descrizione</th>
<th>UM</th>
<th>Tipo</th>
<th>FB BIT</th>
<th>Def</th>
<th>Min</th>
<th>Max</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>1530</td>
<td>Ingresso an 1 BIT 16</td>
<td>0</td>
<td>0</td>
<td>1 ER</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Questo segnale si attiva quando il valore dell’ingresso analogico è inferiore alla soglia impostata con il parametro 1520 Soglia inegresso an 1.

<table>
<thead>
<tr>
<th>Menu</th>
<th>PAR</th>
<th>Descrizione</th>
<th>UM</th>
<th>Tipo</th>
<th>FB BIT</th>
<th>Def</th>
<th>Min</th>
<th>Max</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>1580</td>
<td>Ingresso an 2 BIT 16</td>
<td>0</td>
<td>0</td>
<td>1 ER</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Questo segnale si attiva quando il valore dell’ingresso analogico è inferiore alla soglia impostata con il parametro 1570 Soglia inegresso an 2.

<table>
<thead>
<tr>
<th>Menu</th>
<th>PAR</th>
<th>Descrizione</th>
<th>UM</th>
<th>Tipo</th>
<th>FB BIT</th>
<th>Def</th>
<th>Min</th>
<th>Max</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>2388</td>
<td>Rif coppia no filtro perc FLOAT 16</td>
<td>0</td>
<td>0</td>
<td>0 ER</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Visualizzazione senza filtro del riferimento di corrente utilizzato nel controllo di coppia (in modalità vettoriale sensorless e vettoriale orientamento di campo).
Menu PAR Descrizione UM Tipo FB BIT Def Min Max Acc Mod

3006 Uscita rapp velocità

| rpm | INT16 | 16 | 0 | 0 | 0 | ER |

Questo parametro visualizza il valore del rapporto di velocità utilizzato dalla funzione “Speed draw” (rapporto di velocità).

3180 Mon controllo freno

| rpm | INT16 | 16 | 0 | 0 | 1 | ER |

Questo parametro visualizza lo stato del comando del freno.

0 Freno chiuso
1 Freno aperto

3214 All sovracc motore

| BIT | 16 | 0 | 0 | 1 | ER |

Questo segnale si attiva quando il drive è in allarme per sovraccarico nel motore.

3262 All sovr res fren

| BIT | 16 | 0 | 0 | 1 | ER |

Questo segnale si attiva quando il drive è in allarme per sovraccarico della resistenza di frenatura.

3374 Uscita ripresa Vf

| INT32 | 16 | 0 | 0 | 0 | ER |

Visualizzazione della tensione applicata durante la ripresa al volo del motore in modalità Vf.

3442 Fine rampa Powerloss

| BIT | 16 | 0 | 0 | 1 | ER |

Questo parametro indica lo stato della rampa di decelerazione della funzione Powerloss

0 Rampa di decelerazione della funzione Powerloss non terminata
1 Rampa di decelerazione della funzione Powerloss terminata

La segnalazione si attiva al termine della Rampa di decelerazione della funzione Powerloss.
La segnalazione si disattiva in istanti differenti a seconda della Modalità Powerloss configurata.

3446 Rapporto Powerloss

| INT32 | 32 | 0 | 0 | 0 | ER |

Questo parametro fornisce il rapporto tra la velocità del motore e il riferimento di velocità.

Nel caso di macchine con più drive, collegando l’uscita Rapporto Powerloss del master all’ingresso Sorg rapp velocità dei drive slave è possibile ottenere la sincronizzazione della linea. Il collegamento master => slave può essere realizzato tramite segnali analogici o mediante il bus di campo.
Il valore 2^30 corrisponde a rapporto 1.

3448 Ploss slave attivo

| BIT | 16 | 0 | 0 | 1 | ER |

Questo parametro indica lo stato della funzione Powerloss

0 Powerloss non attiva
1 Powerloss attiva

La funzione si attiva quando viene a mancare la tensione di rete.
La funzione si disattiva in istanti differenti a seconda della Modalità Powerloss configurata.
Menu PAR Descrizione UM Tipo FB BIT Def Min Max Acc Mod

3480 Cong rampa contr Vdc

| BIT | 16 | 0 | 0 | 1 | ER |

Questo parametro visualizza quando è richiesto il blocco della rampa di decelerazione durante la funzione **Controllo Vdc**.

0 Funzione VdcCtrl non attiva
1 Funzione VdcCtrl attiva

Menu PAR Descrizione UM Tipo FB BIT Def Min Max Acc Mod

4372 Word di stato DS402

| UINT16 | 16 | 0 | 0 | 65535 | ER |

Questo parametro visualizza la status word in accordo al profilo DS402. Per ulteriori informazioni vedere manuale bus di campo.

Menu PAR Descrizione UM Tipo FB BIT Def Min Max Acc Mod

4394 PFdrv word di stato1

| UINT16 | 16 | 0 | 0 | 65535 | ER |

Questo parametro visualizza la status word 1 in accordo al profilo Profidrives. Per ulteriori informazioni vedere manuale bus di campo.

Menu PAR Descrizione UM Tipo FB BIT Def Min Max Acc Mod

4396 PFdrv word di stato2

| UINT16 | 16 | 0 | 0 | 65535 | ER |

Questo parametro visualizza la status word 2 in accordo al profilo Profidrives. Per ulteriori informazioni vedere manuale bus di campo.

Menu PAR Descrizione UM Tipo FB BIT Def Min Max Acc Mod

4708 Mon usc dig all 1

| BIT | 16 | 0 | 0 | 1 | ER |

Questo segnale si attiva quando è attivo l’allarme configurato su parametro **4700 sel allarme dig 1**.

Menu PAR Descrizione UM Tipo FB BIT Def Min Max Acc Mod

4710 Mon usc dig all 2

| BIT | 16 | 0 | 0 | 1 | ER |

Questo segnale si attiva quando è attivo l’allarme configurato su parametro **4702 sel allarme dig 2**.

Menu PAR Descrizione UM Tipo FB BIT Def Min Max Acc Mod

4712 Mon usc dig all 3

| BIT | 16 | 0 | 0 | 1 | ER |

Questo segnale si attiva quando è attivo l’allarme configurato su parametro **4704 sel allarme dig 3**.

Menu PAR Descrizione UM Tipo FB BIT Def Min Max Acc Mod

4714 Mon usc dig all 4

| BIT | 16 | 0 | 0 | 1 | ER |

Questo segnale si attiva quando è attivo l’allarme configurato su parametro **4706 sel allarme dig 4**.

Menu PAR Descrizione UM Tipo FB BIT Def Min Max Acc Mod

4770 Primo allarme

| UINT32 | 16 | 0 | 0 | 0 | ERW |

Questo parametro mostra il primo allarme che si è attivato.

0 Nessun allarme
1 Sovratensione
2 Sottotensione
3 Guasto terra
4 Sovracorrente
5 Desaturazione
6 Sottotens Mult
7 Sovracc Mult
8 Desatur Mult
9 Sovrat dissip
10 Sovrat lin dis
11 Sovratemp aria
12 Sovratemp Mot
13 Sovracc Drive
14 Sovracc motore
15 Sovracc res fr
16 Mancanza fase
17 Guasto opz Bus
18 Guast opz I/O1
19 Guast opz I/O2
20 Guasto opz enc
21 Guasto esterno
22 Perd Retroaz
23 Sovravelocità
24 Perd Riferim
25 All stop Emerg
26 Disalimentaz
27 Non usato 1
28 Non usato 2
29 Non usato 3
30 Non usato 4
31 Non usato 5
32 Non usato 6
33 Guasto Plc 1
34 Guasto Plc 2
35 Guasto Plc 3
36 Guasto Plc 4
37 Guasto Plc 5
38 Guasto Plc 6
39 Guasto Plc 7
40 Guasto Plc 8

Menu PAR Descrizione UM Tipo FB BIT Def Min Max Acc Mod

4780 Allarme PLC
UM UINT16 **Tipo** 0 **Def** 0 **Min** 0 **Max** 0 **Acc** ER

Questo parametro mostra lo stato degli allarmi generati da applicazione scritta con PLC interno.

<table>
<thead>
<tr>
<th>Bit</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1 = Guasto Plc 1 attivo</td>
</tr>
<tr>
<td>1</td>
<td>1 = Guasto Plc 2 attivo</td>
</tr>
<tr>
<td>2</td>
<td>1 = Guasto Plc 3 attivo</td>
</tr>
<tr>
<td>3</td>
<td>1 = Guasto Plc 4 attivo</td>
</tr>
<tr>
<td>4</td>
<td>1 = Guasto Plc 5 attivo</td>
</tr>
<tr>
<td>5</td>
<td>1 = Guasto Plc 6 attivo</td>
</tr>
<tr>
<td>6</td>
<td>1 = Guasto Plc 7 attivo</td>
</tr>
<tr>
<td>7</td>
<td>1 = Guasto Plc 8 attivo</td>
</tr>
</tbody>
</table>

Menu PAR Descrizione UM Tipo FB BIT Def Min Max Acc Mod

4840 Stato allarme basso
UM UINT32 **Tipo** 32 **Def** 0 **Min** 0 **Max** 0 **Acc** ER

Questo parametro mostra lo stato degli allarmi 1..32 del drive.

<table>
<thead>
<tr>
<th>Bit</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1 = Sovratensione attivo</td>
</tr>
<tr>
<td>1</td>
<td>1 = Sottotensione attivo</td>
</tr>
<tr>
<td>2</td>
<td>1 = Guasto terra attivo</td>
</tr>
<tr>
<td>3</td>
<td>1 = Sovracorrente attivo</td>
</tr>
<tr>
<td>4</td>
<td>1 = Desaturazione attivo</td>
</tr>
<tr>
<td>5</td>
<td>1 = Sottotens mult attivo</td>
</tr>
<tr>
<td>6</td>
<td>1 = Sovrac mul attivo</td>
</tr>
<tr>
<td>7</td>
<td>1 = Desatur mult attivo</td>
</tr>
<tr>
<td>8</td>
<td>1 = Sovrat dissip attivo</td>
</tr>
</tbody>
</table>
9 1 = Sovrat lì ndis attivo
10 1 = Sovratemp aria attivo
11 1 = Sovrat motore attivo
12 1 = Sovracc driva attivo
13 1 = Sovracc motore attivo
14 1 = sovra res bu attivo
15 1 = mancana fase attivo
16 1 = Guasto opz bus attivo
17 1 = Guasto opz i/o1 attivo
18 1 = Guasto opz i/o2 attivo
19 1 =Guasto pz encoder attivo
20 1 =Guasto esterno attivo
21 1 =perd retroaz attivo
22 1 =sovraloc attivo
23 1 =perdita riferiemento attivo
24 1 = all stop emg attivo
25 1 = disalimentazion attivo
26 1 =non usato
27 1 = non usato
28 1 = non usato
29 1 = non usato
30 1 = non usato
31 1 = non usato

<table>
<thead>
<tr>
<th>Menu</th>
<th>PAR</th>
<th>Descrizione</th>
<th>UM</th>
<th>Tipo</th>
<th>FB</th>
<th>BIT</th>
<th>Def</th>
<th>Min</th>
<th>Max</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>4842</td>
<td>Stato allarme alto</td>
<td>UINT32 32</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>ER</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Questo parametro mostra lo stato degli allarmi 33..64 del drive.

<table>
<thead>
<tr>
<th>Bit</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1 = Guasto Plc 1 attivo</td>
</tr>
<tr>
<td>1</td>
<td>1 = Guasto Plc 2 attivo</td>
</tr>
<tr>
<td>2</td>
<td>1 = Guasto Plc 3 attivo</td>
</tr>
<tr>
<td>3</td>
<td>1 = Guasto Plc 4 attivo</td>
</tr>
<tr>
<td>4</td>
<td>1 = Guasto Plc 5 attivo</td>
</tr>
<tr>
<td>5</td>
<td>1 = Guasto Plc 6 attivo</td>
</tr>
<tr>
<td>6</td>
<td>1 = Guasto Plc 7 attivo</td>
</tr>
<tr>
<td>7</td>
<td>1 = Guasto Plc 8 attivo</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Menu</th>
<th>PAR</th>
<th>Descrizione</th>
<th>UM</th>
<th>Tipo</th>
<th>FB</th>
<th>BIT</th>
<th>Def</th>
<th>Min</th>
<th>Max</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>6000</td>
<td>Zero</td>
<td>UINT32 32</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>ER</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Questo segnale forza la variabile a livello zero (sempre disattiva).

<table>
<thead>
<tr>
<th>Menu</th>
<th>PAR</th>
<th>Descrizione</th>
<th>UM</th>
<th>Tipo</th>
<th>FB</th>
<th>BIT</th>
<th>Def</th>
<th>Min</th>
<th>Max</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>6002</td>
<td>Uno</td>
<td>UINT32 32</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>ER</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Questo segnale forza la variabile a livello uno (sempre attiva).

<table>
<thead>
<tr>
<th>Menu</th>
<th>PAR</th>
<th>Descrizione</th>
<th>UM</th>
<th>Tipo</th>
<th>FB</th>
<th>BIT</th>
<th>Def</th>
<th>Min</th>
<th>Max</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>6004</td>
<td>Stato lim velocità</td>
<td>BIT 16</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>ER</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Questo segnale si attiva quando il drive è in condizione di limite di velocità.

<table>
<thead>
<tr>
<th>Menu</th>
<th>PAR</th>
<th>Descrizione</th>
<th>UM</th>
<th>Tipo</th>
<th>FB</th>
<th>BIT</th>
<th>Def</th>
<th>Min</th>
<th>Max</th>
<th>Acc</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>6006</td>
<td>Stato lim corrente</td>
<td>BIT 16</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>ER</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Questo segnale si attiva quando il drive è in condizione di limite di corrente.
C - LISTE DI SELEZIONE

L_ANOUT

<table>
<thead>
<tr>
<th>PAR</th>
<th>Descrizione</th>
<th>Menu</th>
</tr>
</thead>
<tbody>
<tr>
<td>6000</td>
<td>Zero</td>
<td>0.0 (*)</td>
</tr>
<tr>
<td>626</td>
<td>Monitor rif rampa</td>
<td>0.0 (*)</td>
</tr>
<tr>
<td>628</td>
<td>Imposta valore rampa</td>
<td>1.5</td>
</tr>
<tr>
<td>760</td>
<td>Monitor uscita rampa</td>
<td>0.0 (*)</td>
</tr>
<tr>
<td>664</td>
<td>Setpoint velocità</td>
<td>1.6</td>
</tr>
<tr>
<td>260</td>
<td>Velocità motore</td>
<td>1.7</td>
</tr>
<tr>
<td>262</td>
<td>Vel mot non filtrata</td>
<td>0.0 (*)</td>
</tr>
<tr>
<td>2150</td>
<td>Velocità encoder 1</td>
<td>17.11</td>
</tr>
<tr>
<td>5150</td>
<td>Velocità encoder 2</td>
<td>17.21</td>
</tr>
<tr>
<td>250</td>
<td>Corrente di uscita</td>
<td>1.1</td>
</tr>
<tr>
<td>252</td>
<td>Tensione di uscita</td>
<td>1.2</td>
</tr>
<tr>
<td>254</td>
<td>Frequenza di uscita</td>
<td>1.3</td>
</tr>
<tr>
<td>256</td>
<td>Potenza di uscita</td>
<td>1.4</td>
</tr>
<tr>
<td>280</td>
<td>Rif corr di coppia</td>
<td>1.1</td>
</tr>
<tr>
<td>282</td>
<td>Rif corr magnetiz</td>
<td>1.1</td>
</tr>
<tr>
<td>284</td>
<td>Corrente di coppia</td>
<td>1.1</td>
</tr>
<tr>
<td>286</td>
<td>Corregg. magnetizzante</td>
<td>1.1</td>
</tr>
<tr>
<td>3006</td>
<td>Uscita rapp velocità</td>
<td>0.0 (*)</td>
</tr>
<tr>
<td>3070</td>
<td>Monitor uscita Droop</td>
<td>22.2.5</td>
</tr>
<tr>
<td>852</td>
<td>Mon uscita multi rif</td>
<td>7.24</td>
</tr>
<tr>
<td>870</td>
<td>Setpoint valore Mpot</td>
<td>8.1</td>
</tr>
<tr>
<td>894</td>
<td>Monitor uscita Mpot</td>
<td>8.13</td>
</tr>
<tr>
<td>920</td>
<td>Monitor uscita jog</td>
<td>9.6</td>
</tr>
<tr>
<td>3104</td>
<td>Monitor comp inerzia</td>
<td>22.3.3</td>
</tr>
<tr>
<td>1500</td>
<td>Mon ing analogico 1</td>
<td>14.1</td>
</tr>
<tr>
<td>1550</td>
<td>Mon ing analogico 2</td>
<td>14.17</td>
</tr>
<tr>
<td>1600</td>
<td>Mon ing analogico 1X</td>
<td>14.33</td>
</tr>
<tr>
<td>1650</td>
<td>Mon ing analogico 2X</td>
<td>14.44</td>
</tr>
<tr>
<td>368</td>
<td>Accum sovracc drive</td>
<td>1.15</td>
</tr>
<tr>
<td>3212</td>
<td>Accum sovracc motore</td>
<td>1.14</td>
</tr>
<tr>
<td>3260</td>
<td>Accum sovr res fren</td>
<td>1.16</td>
</tr>
<tr>
<td>2232</td>
<td>Guad P att reg vel</td>
<td>18.11</td>
</tr>
<tr>
<td>2234</td>
<td>Guad I att reg vel</td>
<td>18.12</td>
</tr>
<tr>
<td>3446</td>
<td>Rapporto Powerloss</td>
<td>0.0 (*)</td>
</tr>
<tr>
<td>4024</td>
<td>Mon M->S1 bus campo</td>
<td>23.3.3</td>
</tr>
<tr>
<td>4034</td>
<td>Mon M->S2 bus campo</td>
<td>23.3.11</td>
</tr>
<tr>
<td>4044</td>
<td>Mon M->S3 bus campo</td>
<td>23.3.15</td>
</tr>
<tr>
<td>4054</td>
<td>Mon M->S4 bus campo</td>
<td>23.3.19</td>
</tr>
<tr>
<td>4064</td>
<td>Mon M->S5 bus campo</td>
<td>23.3.23</td>
</tr>
<tr>
<td>4074</td>
<td>Mon M->S6 bus campo</td>
<td>23.3.27</td>
</tr>
<tr>
<td>4084</td>
<td>Mon M->S7 bus campo</td>
<td>23.3.31</td>
</tr>
<tr>
<td>4094</td>
<td>Mon M->S8 bus campo</td>
<td>23.3.35</td>
</tr>
<tr>
<td>4104</td>
<td>Mon M->S9 bus campo</td>
<td>23.3.39</td>
</tr>
<tr>
<td>4114</td>
<td>Mon M->S10 bus campo</td>
<td>23.3.43</td>
</tr>
<tr>
<td>4124</td>
<td>Mon M->S11 bus campo</td>
<td>23.3.47</td>
</tr>
<tr>
<td>4134</td>
<td>Mon M->S12 bus campo</td>
<td>23.3.51</td>
</tr>
<tr>
<td>4144</td>
<td>Mon M->S13 bus campo</td>
<td>23.3.55</td>
</tr>
<tr>
<td>4154</td>
<td>Mon M->S14 bus campo</td>
<td>23.3.59</td>
</tr>
<tr>
<td>4164</td>
<td>Mon M->S15 bus campo</td>
<td>23.3.63</td>
</tr>
</tbody>
</table>

L_CMP

<table>
<thead>
<tr>
<th>XXXX (1)</th>
<th>PAR</th>
<th>Descrizione</th>
<th>Menu</th>
</tr>
</thead>
<tbody>
<tr>
<td>626</td>
<td>Monitor rif rampa</td>
<td>0.0 (*)</td>
<td></td>
</tr>
<tr>
<td>628</td>
<td>Imposta valore rampa</td>
<td>1.5</td>
<td></td>
</tr>
<tr>
<td>760</td>
<td>Monitor uscita rampa</td>
<td>0.0 (*)</td>
<td></td>
</tr>
<tr>
<td>664</td>
<td>Setpoint velocità</td>
<td>1.6</td>
<td></td>
</tr>
<tr>
<td>260</td>
<td>Velocità motore</td>
<td>1.7</td>
<td></td>
</tr>
<tr>
<td>262</td>
<td>Vel mot non filtrata</td>
<td>0.0 (*)</td>
<td></td>
</tr>
<tr>
<td>2150</td>
<td>Velocità encoder 1</td>
<td>17.11</td>
<td></td>
</tr>
<tr>
<td>5150</td>
<td>Velocità encoder 2</td>
<td>17.21</td>
<td></td>
</tr>
<tr>
<td>250</td>
<td>Corrente di uscita</td>
<td>1.1</td>
<td></td>
</tr>
<tr>
<td>252</td>
<td>Tensione di uscita</td>
<td>1.2</td>
<td></td>
</tr>
<tr>
<td>254</td>
<td>Frequenza di uscita</td>
<td>1.3</td>
<td></td>
</tr>
<tr>
<td>256</td>
<td>Potenza di uscita</td>
<td>1.4</td>
<td></td>
</tr>
<tr>
<td>280</td>
<td>Rif corr di coppia</td>
<td>1.1</td>
<td></td>
</tr>
<tr>
<td>282</td>
<td>Rif corr magnetiz</td>
<td>1.1</td>
<td></td>
</tr>
<tr>
<td>284</td>
<td>Corrente di coppia</td>
<td>1.1</td>
<td></td>
</tr>
<tr>
<td>286</td>
<td>Corregg. magnetizzante</td>
<td>1.1</td>
<td></td>
</tr>
<tr>
<td>2386</td>
<td>Riferimento coppia %</td>
<td>20.11</td>
<td></td>
</tr>
<tr>
<td>2388</td>
<td>Rif corr no filtro</td>
<td>0.0 (*)</td>
<td></td>
</tr>
<tr>
<td>270</td>
<td>Tensione DC link</td>
<td>1.8</td>
<td></td>
</tr>
<tr>
<td>3006</td>
<td>Uscita rapp velocità</td>
<td>0.0 (*)</td>
<td></td>
</tr>
<tr>
<td>3070</td>
<td>Monitor uscita Droop</td>
<td>22.2.5</td>
<td></td>
</tr>
<tr>
<td>852</td>
<td>Mon uscita multi rif</td>
<td>7.24</td>
<td></td>
</tr>
<tr>
<td>870</td>
<td>Setpoint valore Mpot</td>
<td>8.1</td>
<td></td>
</tr>
<tr>
<td>894</td>
<td>Monitor uscita Mpot</td>
<td>8.13</td>
<td></td>
</tr>
<tr>
<td>920</td>
<td>Monitor uscita jog</td>
<td>9.6</td>
<td></td>
</tr>
<tr>
<td>3104</td>
<td>Monitor comp inerzia</td>
<td>22.3.3</td>
<td></td>
</tr>
<tr>
<td>1500</td>
<td>Mon ing analogico 1</td>
<td>14.1</td>
<td></td>
</tr>
<tr>
<td>1550</td>
<td>Mon ing analogico 2</td>
<td>14.17</td>
<td></td>
</tr>
<tr>
<td>1600</td>
<td>Mon ing analogico 1X</td>
<td>14.33</td>
<td></td>
</tr>
<tr>
<td>1650</td>
<td>Mon ing analogico 2X</td>
<td>14.44</td>
<td></td>
</tr>
<tr>
<td>368</td>
<td>Accum sovracc drive</td>
<td>1.15</td>
<td></td>
</tr>
<tr>
<td>3212</td>
<td>Accum sovracc motore</td>
<td>1.14</td>
<td></td>
</tr>
<tr>
<td>3260</td>
<td>Accum sovr res fren</td>
<td>1.16</td>
<td></td>
</tr>
<tr>
<td>2232</td>
<td>Guad P att reg vel</td>
<td>18.11</td>
<td></td>
</tr>
<tr>
<td>2234</td>
<td>Guad I att reg vel</td>
<td>18.12</td>
<td></td>
</tr>
<tr>
<td>3446</td>
<td>Rapporto Powerloss</td>
<td>0.0 (*)</td>
<td></td>
</tr>
<tr>
<td>4024</td>
<td>Mon M->S1 bus campo</td>
<td>23.3.3</td>
<td></td>
</tr>
<tr>
<td>4034</td>
<td>Mon M->S2 bus campo</td>
<td>23.3.7</td>
<td></td>
</tr>
<tr>
<td>4044</td>
<td>Mon M->S3 bus campo</td>
<td>23.3.11</td>
<td></td>
</tr>
<tr>
<td>4054</td>
<td>Mon M->S4 bus campo</td>
<td>23.3.15</td>
<td></td>
</tr>
<tr>
<td>4064</td>
<td>Mon M->S5 bus campo</td>
<td>23.3.19</td>
<td></td>
</tr>
<tr>
<td>4074</td>
<td>Mon M->S6 bus campo</td>
<td>23.3.23</td>
<td></td>
</tr>
<tr>
<td>4084</td>
<td>Mon M->S7 bus campo</td>
<td>23.3.27</td>
<td></td>
</tr>
<tr>
<td>4094</td>
<td>Mon M->S8 bus campo</td>
<td>23.3.31</td>
<td></td>
</tr>
<tr>
<td>4104</td>
<td>Mon M->S9 bus campo</td>
<td>23.3.35</td>
<td></td>
</tr>
<tr>
<td>4114</td>
<td>Mon M->S10 bus campo</td>
<td>23.3.39</td>
<td></td>
</tr>
<tr>
<td>4124</td>
<td>Mon M->S11 bus campo</td>
<td>23.3.43</td>
<td></td>
</tr>
<tr>
<td>4134</td>
<td>Mon M->S12 bus campo</td>
<td>23.3.47</td>
<td></td>
</tr>
<tr>
<td>4144</td>
<td>Mon M->S13 bus campo</td>
<td>23.3.51</td>
<td></td>
</tr>
<tr>
<td>4154</td>
<td>Mon M->S14 bus campo</td>
<td>23.3.55</td>
<td></td>
</tr>
<tr>
<td>4164</td>
<td>Mon M->S15 bus campo</td>
<td>23.3.59</td>
<td></td>
</tr>
</tbody>
</table>

L_DIGSEL1

<table>
<thead>
<tr>
<th>PAR</th>
<th>Descrizione</th>
<th>Menu</th>
</tr>
</thead>
<tbody>
<tr>
<td>6000</td>
<td>Zero</td>
<td>0.0 (*)</td>
</tr>
<tr>
<td>6002</td>
<td>Uno</td>
<td>0.0 (*)</td>
</tr>
<tr>
<td>1110</td>
<td>Mon ing digitale E</td>
<td>0.0 (*)</td>
</tr>
<tr>
<td>1112</td>
<td>Mon ing digitale 1</td>
<td>0.0 (*)</td>
</tr>
<tr>
<td>1114</td>
<td>Mon ing digitale 2</td>
<td>0.0 (*)</td>
</tr>
<tr>
<td>1116</td>
<td>Mon ing digitale 3</td>
<td>0.0 (*)</td>
</tr>
<tr>
<td>1118</td>
<td>Mon ing digitale 4</td>
<td>0.0 (*)</td>
</tr>
<tr>
<td>1120</td>
<td>Mon ing digitale 5</td>
<td>0.0 (*)</td>
</tr>
<tr>
<td>1210</td>
<td>Mon ing digitale 1X</td>
<td>0.0 (*)</td>
</tr>
<tr>
<td>1212</td>
<td>Mon ing digitale 2X</td>
<td>0.0 (*)</td>
</tr>
<tr>
<td>1214</td>
<td>Mon ing digitale 3X</td>
<td>0.0 (*)</td>
</tr>
<tr>
<td>1216</td>
<td>Mon ing digitale 4X</td>
<td>0.0 (*)</td>
</tr>
<tr>
<td>1218</td>
<td>Mon ing digitale 5X</td>
<td>0.0 (*)</td>
</tr>
<tr>
<td>1220</td>
<td>Mon ing digitale 6X</td>
<td>0.0 (*)</td>
</tr>
<tr>
<td>1222</td>
<td>Mon ing digitale 7X</td>
<td>0.0 (*)</td>
</tr>
<tr>
<td>1224</td>
<td>Mon ing digitale 8X</td>
<td>0.0 (*)</td>
</tr>
<tr>
<td>1062</td>
<td>Azionamento OK</td>
<td>0.0 (*)</td>
</tr>
<tr>
<td>1064</td>
<td>Azionamento pronto</td>
<td>0.0 (*)</td>
</tr>
</tbody>
</table>

(1) Il parametro XXXX cambia in funzione del parametro "Sorg" che la utilizza: 960 Sorg rif velocità

(1) = 968 Imp rif dig vel

3660 Sorg ing compar 1

(1) = 3650 Imp compar digitale1

3662 Sorg ing compar 2

(1) = 3652 Imp compar digitale2

149
<table>
<thead>
<tr>
<th>PAR</th>
<th>Descrizione</th>
<th>Menu</th>
<th>PAR</th>
<th>Descrizione</th>
<th>Menu</th>
</tr>
</thead>
<tbody>
<tr>
<td>1024</td>
<td>Mon comando Enable</td>
<td>11.13</td>
<td>1110</td>
<td>Mon ing digitale E</td>
<td>0.0 (*)</td>
</tr>
<tr>
<td>1026</td>
<td>Mon comando Start</td>
<td>11.14</td>
<td>1112</td>
<td>Mon ing digitale 1</td>
<td>0.0 (*)</td>
</tr>
<tr>
<td>1028</td>
<td>Mon com Fast Stop</td>
<td>11.15</td>
<td>1114</td>
<td>Mon ing digitale 2</td>
<td>0.0 (*)</td>
</tr>
<tr>
<td>4708</td>
<td>Mon usc dig all 1</td>
<td>0.0 (*)</td>
<td>1116</td>
<td>Mon ing digitale 3</td>
<td>0.0 (*)</td>
</tr>
<tr>
<td>4710</td>
<td>Mon usc dig all 2</td>
<td>0.0 (*)</td>
<td>1120</td>
<td>Mon ing digitale 5</td>
<td>0.0 (*)</td>
</tr>
<tr>
<td>4712</td>
<td>Mon usc dig all 3</td>
<td>0.0 (*)</td>
<td>1210</td>
<td>Mon ing digitale 1X</td>
<td>0.0 (*)</td>
</tr>
<tr>
<td>4714</td>
<td>Mon usc dig all 4</td>
<td>0.0 (*)</td>
<td>1212</td>
<td>Mon ing digitale 2X</td>
<td>0.0 (*)</td>
</tr>
<tr>
<td>1530</td>
<td>Ingresso an 1<soglia</td>
<td>0.0 (*)</td>
<td>1214</td>
<td>Mon ing digitale 3X</td>
<td>0.0 (*)</td>
</tr>
<tr>
<td>1580</td>
<td>Ingresso an 2<soglia</td>
<td>0.0 (*)</td>
<td>1216</td>
<td>Mon ing digitale 4X</td>
<td>0.0 (*)</td>
</tr>
<tr>
<td>3214</td>
<td>All sovraccarico drv</td>
<td>0.0 (*)</td>
<td>1218</td>
<td>Mon ing digitale 5X</td>
<td>0.0 (*)</td>
</tr>
<tr>
<td>3262</td>
<td>All sovr res fren</td>
<td>0.0 (*)</td>
<td>1220</td>
<td>Mon ing digitale 6X</td>
<td>0.0 (*)</td>
</tr>
<tr>
<td>366</td>
<td>Sovraccar drive 80%</td>
<td>0.0 (*)</td>
<td>1222</td>
<td>Mon ing digitale 7X</td>
<td>0.0 (*)</td>
</tr>
<tr>
<td>1048</td>
<td>Monitor Start FR</td>
<td>11.20</td>
<td>4454</td>
<td>Monitor Bit0 decomp</td>
<td>23.6.3</td>
</tr>
<tr>
<td>1050</td>
<td>Monitor Indietro FR</td>
<td>11.21</td>
<td>4456</td>
<td>Monitor Bit1 decomp</td>
<td>23.6.4</td>
</tr>
<tr>
<td>4454</td>
<td>Monitor Bit0 decomp</td>
<td>23.6.3</td>
<td>4456</td>
<td>Monitor Bit1 decomp</td>
<td>23.6.4</td>
</tr>
<tr>
<td>4456</td>
<td>Monitor Bit1 decomp</td>
<td>23.6.4</td>
<td>4456</td>
<td>Monitor Bit2 decomp</td>
<td>23.6.5</td>
</tr>
<tr>
<td>4458</td>
<td>Monitor Bit2 decomp</td>
<td>23.6.5</td>
<td>4460</td>
<td>Monitor Bit3 decomp</td>
<td>23.6.6</td>
</tr>
<tr>
<td>4460</td>
<td>Monitor Bit3 decomp</td>
<td>23.6.6</td>
<td>4462</td>
<td>Monitor Bit4 decomp</td>
<td>23.6.7</td>
</tr>
<tr>
<td>4462</td>
<td>Monitor Bit4 decomp</td>
<td>23.6.7</td>
<td>4464</td>
<td>Monitor Bit5 decomp</td>
<td>23.6.8</td>
</tr>
<tr>
<td>4464</td>
<td>Monitor Bit5 decomp</td>
<td>23.6.8</td>
<td>4466</td>
<td>Monitor Bit6 decomp</td>
<td>23.6.9</td>
</tr>
<tr>
<td>4466</td>
<td>Monitor Bit6 decomp</td>
<td>23.6.9</td>
<td>4468</td>
<td>Monitor Bit7 decomp</td>
<td>23.6.10</td>
</tr>
<tr>
<td>4468</td>
<td>Monitor Bit7 decomp</td>
<td>23.6.10</td>
<td>3700</td>
<td>Pad 1</td>
<td>22.11.1</td>
</tr>
<tr>
<td>4470</td>
<td>Monitor Bit8 decomp</td>
<td>23.6.11</td>
<td>3702</td>
<td>Pad 2</td>
<td>22.11.2</td>
</tr>
<tr>
<td>4472</td>
<td>Monitor Bit9 decomp</td>
<td>23.6.12</td>
<td>3704</td>
<td>Pad 3</td>
<td>22.11.3</td>
</tr>
<tr>
<td>4474</td>
<td>Monitor Bit10 decomp</td>
<td>23.6.13</td>
<td>3706</td>
<td>Pad 4</td>
<td>22.11.4</td>
</tr>
<tr>
<td>4476</td>
<td>Monitor Bit11 decomp</td>
<td>23.6.14</td>
<td>3708</td>
<td>Pad 5</td>
<td>22.11.5</td>
</tr>
<tr>
<td>4478</td>
<td>Monitor Bit12 decomp</td>
<td>23.6.15</td>
<td>3710</td>
<td>Pad 6</td>
<td>22.11.6</td>
</tr>
<tr>
<td>4480</td>
<td>Monitor Bit13 decomp</td>
<td>23.6.16</td>
<td>3712</td>
<td>Pad 7</td>
<td>22.11.7</td>
</tr>
<tr>
<td>4482</td>
<td>Monitor Bit14 decomp</td>
<td>23.6.17</td>
<td>3714</td>
<td>Pad 8</td>
<td>22.11.8</td>
</tr>
<tr>
<td>4484</td>
<td>Monitor Bit15 decomp</td>
<td>23.6.18</td>
<td>3716</td>
<td>Pad 9</td>
<td>22.11.9</td>
</tr>
<tr>
<td>4486</td>
<td>Monitor Bit16 decomp</td>
<td>23.6.19</td>
<td>3718</td>
<td>Pad 10</td>
<td>22.11.10</td>
</tr>
<tr>
<td>3700</td>
<td>Pad 1</td>
<td>22.11.1</td>
<td>3702</td>
<td>Pad 2</td>
<td>22.11.2</td>
</tr>
<tr>
<td>3702</td>
<td>Pad 2</td>
<td>22.11.2</td>
<td>3704</td>
<td>Pad 3</td>
<td>22.11.3</td>
</tr>
<tr>
<td>3704</td>
<td>Pad 3</td>
<td>22.11.3</td>
<td>3706</td>
<td>Pad 4</td>
<td>22.11.4</td>
</tr>
<tr>
<td>3706</td>
<td>Pad 4</td>
<td>22.11.4</td>
<td>3708</td>
<td>Pad 5</td>
<td>22.11.5</td>
</tr>
<tr>
<td>3708</td>
<td>Pad 5</td>
<td>22.11.5</td>
<td>3710</td>
<td>Pad 6</td>
<td>22.11.6</td>
</tr>
<tr>
<td>3710</td>
<td>Pad 6</td>
<td>22.11.6</td>
<td>3712</td>
<td>Pad 7</td>
<td>22.11.7</td>
</tr>
<tr>
<td>3712</td>
<td>Pad 7</td>
<td>22.11.7</td>
<td>3714</td>
<td>Pad 8</td>
<td>22.11.8</td>
</tr>
<tr>
<td>3714</td>
<td>Pad 8</td>
<td>22.11.8</td>
<td>3716</td>
<td>Pad 9</td>
<td>22.11.9</td>
</tr>
<tr>
<td>3716</td>
<td>Pad 9</td>
<td>22.11.9</td>
<td>3718</td>
<td>Pad 10</td>
<td>22.11.10</td>
</tr>
<tr>
<td>3718</td>
<td>Pad 10</td>
<td>22.11.10</td>
<td>3720</td>
<td>Pad 11</td>
<td>22.11.11</td>
</tr>
<tr>
<td>3720</td>
<td>Pad 11</td>
<td>22.11.11</td>
<td>3722</td>
<td>Pad 12</td>
<td>22.11.12</td>
</tr>
<tr>
<td>3722</td>
<td>Pad 12</td>
<td>22.11.12</td>
<td>3724</td>
<td>Pad 13</td>
<td>22.11.13</td>
</tr>
<tr>
<td>3724</td>
<td>Pad 13</td>
<td>22.11.13</td>
<td>3726</td>
<td>Pad 14</td>
<td>22.11.14</td>
</tr>
<tr>
<td>3726</td>
<td>Pad 14</td>
<td>22.11.14</td>
<td>3728</td>
<td>Pad 15</td>
<td>22.11.15</td>
</tr>
<tr>
<td>3728</td>
<td>Pad 15</td>
<td>22.11.15</td>
<td>3730</td>
<td>Pad 16</td>
<td>22.11.16</td>
</tr>
<tr>
<td>6004</td>
<td>Stato lim velocità</td>
<td>0.0 (*)</td>
<td>1530</td>
<td>Ingresso an 1<soglia</td>
<td>0.0 (*)</td>
</tr>
<tr>
<td>6006</td>
<td>Stato lim corrente</td>
<td>0.0 (*)</td>
<td>1580</td>
<td>Ingresso an 2<soglia</td>
<td>0.0 (*)</td>
</tr>
<tr>
<td>764</td>
<td>Stato rampa decel</td>
<td>0.0 (*)</td>
<td>1048</td>
<td>Monitor Start FR</td>
<td>11.20</td>
</tr>
<tr>
<td>766</td>
<td>Stato rampa decel</td>
<td>0.0 (*)</td>
<td>1050</td>
<td>Monitor Indietro FR</td>
<td>11.21</td>
</tr>
<tr>
<td>1030</td>
<td>Mon Local/Remoto</td>
<td>0.0 (*)</td>
<td>4367</td>
<td>Uscita comparatore</td>
<td>22.10.8</td>
</tr>
<tr>
<td>4780</td>
<td>Allarme PLC</td>
<td>0.0 (*)</td>
<td>3480</td>
<td>Cong rampa contr Vdc</td>
<td>0.0 (*)</td>
</tr>
<tr>
<td>3676</td>
<td>Uscita comparatore</td>
<td>22.10.8</td>
<td>6000</td>
<td>Zero</td>
<td>0.0 (*)</td>
</tr>
<tr>
<td>3442</td>
<td>Fine rampa Powerloss</td>
<td>0.0 (*)</td>
<td>6002</td>
<td>Uno</td>
<td>0.0 (*)</td>
</tr>
<tr>
<td>3448</td>
<td>Ploss slave attivo</td>
<td>0.0 (*)</td>
<td>3180</td>
<td>Mon controllo freno</td>
<td>0.0 (*)</td>
</tr>
<tr>
<td>3304</td>
<td>Mon sel set param</td>
<td>22.7.3</td>
<td>3304</td>
<td>Mon sel set param</td>
<td>22.7.3</td>
</tr>
</tbody>
</table>

L_DIGSEL3

<table>
<thead>
<tr>
<th>XXXX</th>
<th>(2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>6000</td>
<td>Zero</td>
</tr>
<tr>
<td>6002</td>
<td>Uno</td>
</tr>
<tr>
<td>1110</td>
<td>Mon ing digitale E</td>
</tr>
<tr>
<td>1112</td>
<td>Mon ing digitale 1</td>
</tr>
<tr>
<td>1114</td>
<td>Mon ing digitale 2</td>
</tr>
<tr>
<td>1116</td>
<td>Mon ing digitale 3</td>
</tr>
<tr>
<td>1118</td>
<td>Mon ing digitale 4</td>
</tr>
</tbody>
</table>
L_FBS2M

<table>
<thead>
<tr>
<th>PAR</th>
<th>Descrizione</th>
<th>Menu</th>
</tr>
</thead>
<tbody>
<tr>
<td>3720</td>
<td>Pad 11</td>
<td>22.11.11</td>
</tr>
<tr>
<td>3722</td>
<td>Pad 12</td>
<td>22.11.12</td>
</tr>
<tr>
<td>3724</td>
<td>Pad 13</td>
<td>22.11.13</td>
</tr>
<tr>
<td>3726</td>
<td>Pad 14</td>
<td>22.11.14</td>
</tr>
<tr>
<td>3728</td>
<td>Pad 15</td>
<td>22.11.15</td>
</tr>
<tr>
<td>3730</td>
<td>Pad 16</td>
<td>22.11.16</td>
</tr>
<tr>
<td>6004</td>
<td>Stato lim velocità</td>
<td>0.0 (*)</td>
</tr>
<tr>
<td>6006</td>
<td>Stato lim corrente</td>
<td>0.0 (*)</td>
</tr>
<tr>
<td>764</td>
<td>Stato rampa decel</td>
<td>0.0 (*)</td>
</tr>
<tr>
<td>766</td>
<td>Stato rampa decel</td>
<td>0.0 (*)</td>
</tr>
<tr>
<td>4780</td>
<td>Allarme PLC</td>
<td></td>
</tr>
<tr>
<td>3676</td>
<td>Uscita comparatore</td>
<td>22.10.8</td>
</tr>
</tbody>
</table>

(2) il parametro XXXX cambia in funzione del parametro “Sorg” che la utilizza:

1014 Sorg Locale/Remoto

(2) = 1012 Locale/Remoto dig 11.7

L_MLTREF

<table>
<thead>
<tr>
<th>PAR</th>
<th>Descrizione</th>
<th>Menu</th>
</tr>
</thead>
<tbody>
<tr>
<td>1500</td>
<td>Mon ing analogico 1</td>
<td>14.1</td>
</tr>
<tr>
<td>1550</td>
<td>Mon ing analogico 2</td>
<td>14.17</td>
</tr>
<tr>
<td>852</td>
<td>Mon uscita multi rif</td>
<td>7.24</td>
</tr>
<tr>
<td>894</td>
<td>Monitor uscita Mpot</td>
<td>8.13</td>
</tr>
<tr>
<td>2150</td>
<td>Velocità encoder 1</td>
<td>17.11</td>
</tr>
<tr>
<td>5150</td>
<td>Velocità encoder 2</td>
<td>17.21</td>
</tr>
<tr>
<td>250</td>
<td>Corrente di uscita</td>
<td>1.1</td>
</tr>
<tr>
<td>252</td>
<td>Tensione di uscita</td>
<td>1.2</td>
</tr>
<tr>
<td>254</td>
<td>Frequenza di uscita</td>
<td>1.3</td>
</tr>
<tr>
<td>280</td>
<td>Riff cor di coppia</td>
<td>1.10</td>
</tr>
<tr>
<td>282</td>
<td>Riff cor magnetiz</td>
<td>1.11</td>
</tr>
<tr>
<td>284</td>
<td>Corrente di coppia</td>
<td>1.12</td>
</tr>
<tr>
<td>286</td>
<td>Corr magnetizzzizing</td>
<td>1.13</td>
</tr>
<tr>
<td>2360</td>
<td>Lim pos coppia att</td>
<td>20.6</td>
</tr>
<tr>
<td>2362</td>
<td>Lim neg coppia att</td>
<td>20.7</td>
</tr>
<tr>
<td>2386</td>
<td>Riferimento coppia %</td>
<td>20.11</td>
</tr>
<tr>
<td>2388</td>
<td>Riff coraggio no filtro</td>
<td>0.0 (*)</td>
</tr>
<tr>
<td>270</td>
<td>Tensione DC link</td>
<td>1.8</td>
</tr>
<tr>
<td>2162</td>
<td>Posizione encoder 1</td>
<td>17.12</td>
</tr>
<tr>
<td>2154</td>
<td>Pos enc virtuale1</td>
<td>27.32</td>
</tr>
<tr>
<td>2156</td>
<td>Rivoluzione encoder1</td>
<td>27.33</td>
</tr>
<tr>
<td>3006</td>
<td>Uscita rapp velocità</td>
<td>0.0 (*)</td>
</tr>
<tr>
<td>3070</td>
<td>Monitor uscita Droop</td>
<td>22.25</td>
</tr>
<tr>
<td>852</td>
<td>Mon uscita multi rif</td>
<td>7.24</td>
</tr>
<tr>
<td>870</td>
<td>Setpoint valore Mpot</td>
<td>8.1</td>
</tr>
<tr>
<td>894</td>
<td>Monitor uscita Mpot</td>
<td>8.13</td>
</tr>
<tr>
<td>920</td>
<td>Monitor uscita jog</td>
<td>9.6</td>
</tr>
<tr>
<td>3104</td>
<td>Monitor comp inerzica</td>
<td>22.33</td>
</tr>
<tr>
<td>1500</td>
<td>Mon ing analogico 1</td>
<td>14.1</td>
</tr>
<tr>
<td>1550</td>
<td>Mon ing analogico 2</td>
<td>14.17</td>
</tr>
<tr>
<td>1600</td>
<td>Mon ing analogico 1X</td>
<td>14.33</td>
</tr>
<tr>
<td>1650</td>
<td>Mon ing analogico 2X</td>
<td>14.44</td>
</tr>
<tr>
<td>368</td>
<td>Accum sovracc drive</td>
<td>1.15</td>
</tr>
<tr>
<td>3212</td>
<td>Accum sovracc motore</td>
<td>1.14</td>
</tr>
<tr>
<td>3260</td>
<td>Accum sovr res fren</td>
<td>1.16</td>
</tr>
<tr>
<td>272</td>
<td>Temp dissipatore</td>
<td>1.9</td>
</tr>
<tr>
<td>6000</td>
<td>Zero</td>
<td>0.0 (*)</td>
</tr>
<tr>
<td>1500</td>
<td>Mon ing analogico 1</td>
<td>14.1</td>
</tr>
<tr>
<td>1550</td>
<td>Mon ing analogico 2</td>
<td>14.17</td>
</tr>
</tbody>
</table>

(3) il parametro XXXX cambia in funzione del parametro “Sorg” che la utilizza:

1510 Sorg Locale/Remoto

(3) = 1012 Locale/Remoto dig 11.7

L_LIM

<table>
<thead>
<tr>
<th>PAR</th>
<th>Descrizione</th>
<th>Menu</th>
</tr>
</thead>
<tbody>
<tr>
<td>1500</td>
<td>Mon ing analogico 1</td>
<td>14.1</td>
</tr>
<tr>
<td>1550</td>
<td>Mon ing analogico 2</td>
<td>14.17</td>
</tr>
<tr>
<td>4340</td>
<td>DS402 cw src</td>
<td>23.33</td>
</tr>
<tr>
<td>4346</td>
<td>PFDrv word 1</td>
<td>23.33</td>
</tr>
<tr>
<td>4348</td>
<td>PFDrv word 2</td>
<td>23.33</td>
</tr>
</tbody>
</table>

1500 Mon ing analogico 1X 14.33

1550 Mon ing analogico 2X 14.44

1600 Mon ing analogico 1X 14.33

1650 Mon ing analogico 2X 14.44

368 Accum sovracc drive 1.15

3212 Accum sovracc motore 1.14

3260 Accum sovr res fren 1.16

272 Temp dissipatore 1.9

6000 Zero 0.0 (*)

1500 Mon ing analogico 1 14.1

1550 Mon ing analogico 2 14.17

2162 Posizione encoder 1 17.12

2154 Pos enc virtuale1 27.32

2156 Rivoluzione encoder1 27.33

3006 Uscita rapp velocità 0.0 (*)

3070 Monitor uscita Droop 22.25

852 Mon uscita multi rif 7.24

870 Setpoint valore Mpot 8.1

894 Monitor uscita Mpot 8.13

920 Monitor uscita jog 9.6

3104 Monitor comp inerzica 22.33

1500 Mon ing analogico 1 14.1

1550 Mon ing analogico 2 14.17

1600 Mon ing analogico 1X 14.33

1650 Mon ing analogico 2X 14.44

368 Accum sovracc drive 1.15

3212 Accum sovracc motore 1.14

3260 Accum sovr res fren 1.16

272 Temp dissipatore 1.9

6000 Zero 0.0 (*)

1500 Mon ing analogico 1 14.1

1550 Mon ing analogico 2 14.17

6000 Stato lim velocità 0.0 (*)

6006 Stato lim corrente 0.0 (*)

764 Stato rampa decel 0.0 (*)

766 Stato rampa decel 0.0 (*)

4780 Allarme PLC | |

3676 Uscita comparatore 22.10.8

(3) il parametro XXXX cambia in funzione del parametro “Sorg” che la utilizza:

1510 Sorg Locale/Remoto

(3) = 1012 Locale/Remoto dig 11.7

ADV200 • Liste di selezione

151
<table>
<thead>
<tr>
<th>PAR</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>4154</td>
<td>Mon M->S14 bus campo</td>
</tr>
<tr>
<td>4164</td>
<td>Mon M->S15 bus campo</td>
</tr>
<tr>
<td>4174</td>
<td>Mon M->S16 bus campo</td>
</tr>
<tr>
<td>3700</td>
<td>Pad 1</td>
</tr>
<tr>
<td>3702</td>
<td>Pad 2</td>
</tr>
<tr>
<td>3704</td>
<td>Pad 3</td>
</tr>
<tr>
<td>3706</td>
<td>Pad 4</td>
</tr>
<tr>
<td>3708</td>
<td>Pad 5</td>
</tr>
<tr>
<td>3710</td>
<td>Pad 6</td>
</tr>
<tr>
<td>3712</td>
<td>Pad 7</td>
</tr>
<tr>
<td>3714</td>
<td>Pad 8</td>
</tr>
<tr>
<td>3716</td>
<td>Pad 9</td>
</tr>
<tr>
<td>3718</td>
<td>Pad 10</td>
</tr>
<tr>
<td>3720</td>
<td>Pad 11</td>
</tr>
<tr>
<td>3722</td>
<td>Pad 12</td>
</tr>
<tr>
<td>3724</td>
<td>Pad 13</td>
</tr>
<tr>
<td>3726</td>
<td>Pad 14</td>
</tr>
<tr>
<td>3728</td>
<td>Pad 15</td>
</tr>
<tr>
<td>3730</td>
<td>Pad 16</td>
</tr>
<tr>
<td>5008</td>
<td>Uscita test gener</td>
</tr>
</tbody>
</table>

- **L_PLIM**

<table>
<thead>
<tr>
<th>PAR</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>6000</td>
<td>Zero 0.0</td>
</tr>
<tr>
<td>1500</td>
<td>Mon ing analogico 1 14.1</td>
</tr>
<tr>
<td>1550</td>
<td>Mon ing analogico 2 14.17</td>
</tr>
<tr>
<td>2380</td>
<td>Rif dig coppia 1 20.11</td>
</tr>
<tr>
<td>2372</td>
<td>Lim pos coppia 20.6</td>
</tr>
<tr>
<td>1600</td>
<td>Mon ing analogico 1X 14.33</td>
</tr>
<tr>
<td>1650</td>
<td>Mon ing analogico 2X 14.44</td>
</tr>
<tr>
<td>4024</td>
<td>Mon M->S1 bus campo 23.3.3</td>
</tr>
<tr>
<td>4034</td>
<td>Mon M->S2 bus campo 23.3.7</td>
</tr>
<tr>
<td>4044</td>
<td>Mon M->S3 bus campo 23.3.11</td>
</tr>
<tr>
<td>4054</td>
<td>Mon M->S4 bus campo 23.3.15</td>
</tr>
<tr>
<td>4064</td>
<td>Mon M->S5 bus campo 23.3.19</td>
</tr>
<tr>
<td>4074</td>
<td>Mon M->S6 bus campo 23.3.23</td>
</tr>
<tr>
<td>4084</td>
<td>Mon M->S7 bus campo 23.3.27</td>
</tr>
<tr>
<td>3700</td>
<td>Pad 1</td>
</tr>
<tr>
<td>3702</td>
<td>Pad 2</td>
</tr>
<tr>
<td>3704</td>
<td>Pad 3</td>
</tr>
<tr>
<td>3706</td>
<td>Pad 4</td>
</tr>
<tr>
<td>3708</td>
<td>Pad 5</td>
</tr>
<tr>
<td>3710</td>
<td>Pad 6</td>
</tr>
<tr>
<td>3712</td>
<td>Pad 7</td>
</tr>
<tr>
<td>3714</td>
<td>Pad 8</td>
</tr>
<tr>
<td>3716</td>
<td>Pad 9</td>
</tr>
<tr>
<td>3718</td>
<td>Pad 10</td>
</tr>
<tr>
<td>3720</td>
<td>Pad 11</td>
</tr>
<tr>
<td>3722</td>
<td>Pad 12</td>
</tr>
<tr>
<td>3724</td>
<td>Pad 13</td>
</tr>
<tr>
<td>3726</td>
<td>Pad 14</td>
</tr>
<tr>
<td>3728</td>
<td>Pad 15</td>
</tr>
<tr>
<td>3730</td>
<td>Pad 16</td>
</tr>
<tr>
<td>5008</td>
<td>Uscita test gener</td>
</tr>
</tbody>
</table>

- **L_SCOPE**

<table>
<thead>
<tr>
<th>PAR</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>6000</td>
<td>Zero 0.0</td>
</tr>
<tr>
<td>3104</td>
<td>Monitor comp inerzia 22.3.3</td>
</tr>
<tr>
<td>3374</td>
<td>Uscita ripresa Vf 0.0 (*)</td>
</tr>
</tbody>
</table>

- **L_VREF**

<table>
<thead>
<tr>
<th>PAR</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>4084</td>
<td>Mon M->S7 bus campo 23.3.27</td>
</tr>
<tr>
<td>4074</td>
<td>Mon M->S6 bus campo 23.3.23</td>
</tr>
<tr>
<td>4064</td>
<td>Mon M->S5 bus campo 23.3.19</td>
</tr>
<tr>
<td>4054</td>
<td>Mon M->S4 bus campo 23.3.15</td>
</tr>
<tr>
<td>4044</td>
<td>Mon M->S3 bus campo 23.3.11</td>
</tr>
<tr>
<td>4034</td>
<td>Mon M->S2 bus campo 23.3.7</td>
</tr>
<tr>
<td>4024</td>
<td>Mon M->S1 bus campo 23.3.3</td>
</tr>
<tr>
<td>1600</td>
<td>Mon ing analogico 1X 14.33</td>
</tr>
<tr>
<td>1650</td>
<td>Mon ing analogico 2X 14.44</td>
</tr>
<tr>
<td>4024</td>
<td>Mon M->S1 bus campo 23.3.3</td>
</tr>
<tr>
<td>4034</td>
<td>Mon M->S2 bus campo 23.3.7</td>
</tr>
<tr>
<td>4044</td>
<td>Mon M->S3 bus campo 23.3.11</td>
</tr>
<tr>
<td>4054</td>
<td>Mon M->S4 bus campo 23.3.15</td>
</tr>
<tr>
<td>4064</td>
<td>Mon M->S5 bus campo 23.3.19</td>
</tr>
<tr>
<td>4074</td>
<td>Mon M->S6 bus campo 23.3.23</td>
</tr>
<tr>
<td>4084</td>
<td>Mon M->S7 bus campo 23.3.27</td>
</tr>
<tr>
<td>3700</td>
<td>Pad 1</td>
</tr>
<tr>
<td>3702</td>
<td>Pad 2</td>
</tr>
<tr>
<td>3704</td>
<td>Pad 3</td>
</tr>
<tr>
<td>3706</td>
<td>Pad 4</td>
</tr>
<tr>
<td>3708</td>
<td>Pad 5</td>
</tr>
<tr>
<td>3710</td>
<td>Pad 6</td>
</tr>
<tr>
<td>3712</td>
<td>Pad 7</td>
</tr>
<tr>
<td>3714</td>
<td>Pad 8</td>
</tr>
<tr>
<td>3716</td>
<td>Pad 9</td>
</tr>
<tr>
<td>3718</td>
<td>Pad 10</td>
</tr>
<tr>
<td>3720</td>
<td>Pad 11</td>
</tr>
<tr>
<td>3722</td>
<td>Pad 12</td>
</tr>
<tr>
<td>3724</td>
<td>Pad 13</td>
</tr>
<tr>
<td>3726</td>
<td>Pad 14</td>
</tr>
<tr>
<td>3728</td>
<td>Pad 15</td>
</tr>
<tr>
<td>3730</td>
<td>Pad 16</td>
</tr>
<tr>
<td>5008</td>
<td>Uscita test gener</td>
</tr>
</tbody>
</table>

- **(4)** il parametro XXXX cambia in funzione del parametro "Sorg" che la utilizza.
<table>
<thead>
<tr>
<th>PAR</th>
<th>Descrizione</th>
<th>Menu</th>
<th>PAR</th>
<th>Descrizione</th>
<th>Menu</th>
<th>PAR</th>
<th>Descrizione</th>
<th>Menu</th>
</tr>
</thead>
<tbody>
<tr>
<td>1500</td>
<td>Mon ing analogico 1</td>
<td>14.1</td>
<td>4064</td>
<td>Mon M->S5 bus campo</td>
<td>23.3.19</td>
<td>1550</td>
<td>Mon ing analogico 2</td>
<td>14.17</td>
</tr>
<tr>
<td>1600</td>
<td>Mon ing analogico 1X</td>
<td>14.33</td>
<td>4074</td>
<td>Mon M->S6 bus campo</td>
<td>23.3.23</td>
<td>1650</td>
<td>Mon ing analogico 2X</td>
<td>14.44</td>
</tr>
<tr>
<td>4024</td>
<td>Mon M->S1 bus campo</td>
<td>23.3.3</td>
<td>4084</td>
<td>Mon M->S7 bus campo</td>
<td>23.3.27</td>
<td>4034</td>
<td>Mon M->S2 bus campo</td>
<td>23.3.7</td>
</tr>
<tr>
<td>4044</td>
<td>Mon M->S3 bus campo</td>
<td>23.3.11</td>
<td>4094</td>
<td>Mon M->S8 bus campo</td>
<td>23.3.31</td>
<td>4054</td>
<td>Mon M->S4 bus campo</td>
<td>23.3.15</td>
</tr>
<tr>
<td>4064</td>
<td>Mon M->S5 bus campo</td>
<td>23.3.15</td>
<td>4104</td>
<td>Mon M->S9 bus campo</td>
<td>23.3.35</td>
<td>4074</td>
<td>Mon M->S6 bus campo</td>
<td>23.3.23</td>
</tr>
<tr>
<td>4084</td>
<td>Mon M->S7 bus campo</td>
<td>23.3.19</td>
<td>4114</td>
<td>Mon M->S10 bus campo</td>
<td>23.3.39</td>
<td>4094</td>
<td>Mon M->S8 bus campo</td>
<td>23.3.31</td>
</tr>
<tr>
<td>4104</td>
<td>Mon M->S9 bus campo</td>
<td>23.3.35</td>
<td>4124</td>
<td>Mon M->S11 bus campo</td>
<td>23.3.43</td>
<td>4114</td>
<td>Mon M->S10 bus campo</td>
<td>23.3.39</td>
</tr>
<tr>
<td>4124</td>
<td>Mon M->S11 bus campo</td>
<td>23.3.43</td>
<td>4134</td>
<td>Mon M->S12 bus campo</td>
<td>23.3.47</td>
<td>4144</td>
<td>Mon M->S13 bus campo</td>
<td>23.3.51</td>
</tr>
<tr>
<td>4134</td>
<td>Mon M->S12 bus campo</td>
<td>23.3.47</td>
<td>4154</td>
<td>Mon M->S14 bus campo</td>
<td>23.3.55</td>
<td>4154</td>
<td>Mon M->S14 bus campo</td>
<td>23.3.55</td>
</tr>
<tr>
<td>4144</td>
<td>Mon M->S13 bus campo</td>
<td>23.3.51</td>
<td>4164</td>
<td>Mon M->S15 bus campo</td>
<td>23.3.59</td>
<td>4174</td>
<td>Mon M->S16 bus campo</td>
<td>23.3.63</td>
</tr>
<tr>
<td>4174</td>
<td>Mon M->S16 bus campo</td>
<td>23.3.63</td>
<td>3700</td>
<td>Pad 1</td>
<td>22.11.1</td>
<td>4114</td>
<td>Mon M->S10 bus campo</td>
<td>23.3.39</td>
</tr>
<tr>
<td>3702</td>
<td>Pad 2</td>
<td>22.11.2</td>
<td>3704</td>
<td>Pad 3</td>
<td>22.11.3</td>
<td>4124</td>
<td>Mon M->S11 bus campo</td>
<td>23.3.43</td>
</tr>
<tr>
<td>3706</td>
<td>Pad 4</td>
<td>22.11.4</td>
<td>3708</td>
<td>Pad 5</td>
<td>22.11.5</td>
<td>4134</td>
<td>Mon M->S12 bus campo</td>
<td>23.3.47</td>
</tr>
<tr>
<td>3710</td>
<td>Pad 6</td>
<td>22.11.6</td>
<td>3712</td>
<td>Pad 7</td>
<td>22.11.7</td>
<td>4144</td>
<td>Mon M->S13 bus campo</td>
<td>23.3.51</td>
</tr>
<tr>
<td>3714</td>
<td>Pad 8</td>
<td>22.11.8</td>
<td>3716</td>
<td>Pad 9</td>
<td>22.11.9</td>
<td>4154</td>
<td>Mon M->S14 bus campo</td>
<td>23.3.55</td>
</tr>
<tr>
<td>3718</td>
<td>Pad 10</td>
<td>22.11.10</td>
<td>3720</td>
<td>Pad 11</td>
<td>22.11.11</td>
<td>4164</td>
<td>Mon M->S15 bus campo</td>
<td>23.3.59</td>
</tr>
<tr>
<td>3722</td>
<td>Pad 12</td>
<td>22.11.12</td>
<td>3724</td>
<td>Pad 13</td>
<td>22.11.13</td>
<td>4174</td>
<td>Mon M->S16 bus campo</td>
<td>23.3.63</td>
</tr>
<tr>
<td>3726</td>
<td>Pad 14</td>
<td>22.11.14</td>
<td>3728</td>
<td>Pad 15</td>
<td>22.11.15</td>
<td>3730</td>
<td>Pad 16</td>
<td>22.11.16</td>
</tr>
<tr>
<td>3730</td>
<td>Pad 16</td>
<td>22.11.16</td>
<td>6000</td>
<td>Zero</td>
<td>0.0 (*)</td>
<td>4452</td>
<td>Sorgente word decomp</td>
<td>23.6.1</td>
</tr>
<tr>
<td>5008</td>
<td>Uscita test gener</td>
<td>27.1.5</td>
<td>(*)</td>
<td>Parametro non visibile sul tastierino, per informazioni fare riferimento al capitolo “PARAMETRI INSERITI NELLE LISTE DI SELEZIONE NON VISIBILI SUL TASTIERINO”</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(5) il parametro XXXX cambia in funzione del parametro “Sorg” che la utilizza:

2382 Sorg rif coppia 1
(5) = 2380 Rf dig coppia 1 20.8

2492 Sorgente scala Vf
(5) = 2490 Scala digitale Vf 21.22

3002 Sorg rapp velocità
(5) = 3000 Rapp dig velocità 22.1.1

L_WDECOMP

<table>
<thead>
<tr>
<th>XXXX</th>
<th>(6)</th>
</tr>
</thead>
<tbody>
<tr>
<td>6000</td>
<td>Zero</td>
</tr>
<tr>
<td>6002</td>
<td>Uno</td>
</tr>
<tr>
<td>4432</td>
<td>Monitor word comp</td>
</tr>
<tr>
<td>4024</td>
<td>Mon M->S1 bus campo</td>
</tr>
<tr>
<td>4034</td>
<td>Mon M->S2 bus campo</td>
</tr>
<tr>
<td>4044</td>
<td>Mon M->S3 bus campo</td>
</tr>
<tr>
<td>4054</td>
<td>Mon M->S4 bus campo</td>
</tr>
</tbody>
</table>
Nota
Per il reset degli allarmi vedere il Manuale “Guida rapida all’installazione”, capitolo 6.6.1.
Nella tabella seguente il Codice è visibile solo da linea seriale.

<table>
<thead>
<tr>
<th>Codice</th>
<th>Messaggio di errore visualizzato sul display</th>
<th>Sottocodice</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Nessun allarme</td>
<td></td>
<td>Condizione: Nessun allarme presente</td>
</tr>
</tbody>
</table>
| 1 | Sovratensione | | Condizione: Allarme di sovratensione nel DC link dovuta all’energia recuperata dal motore. La tensione che giunge alla parte di potenza del drive è troppo alta rispetto alla soglia massima relativa all’impostazione del parametro PAR 560 Tensione di rete.
Soluzione:
- Allungare la rampa di decelerazione.
- Utilizzare una resistenza di frenatura tra i morsetti BR1 e BR2 per dissipare l’energia di recupero
- Utilizzare la funzione Controllo VDC |
| 2 | Sottotensione | | Condizione: Allarme di sottotensione nel DC link.
La tensione che giunge alla parte di potenza del drive è troppo bassa rispetto alla soglia minima relativa all’impostazione del parametro PAR 560 Tensione di rete dovuta a:
- tensione di rete troppo bassa oppure cadute di tensione troppo prolungate.
- cattivo collegamento dei conduttori (ad esempio morsetti di contattore, induttanza, filtro, ecc, non ben serrati):
Soluzione: Controllare i collegamenti. |
| 3 | Guasto terra | | Condizione: Allarme di cortocircuito verso massa
Soluzione:
- Verificare i cablaggi del drive e del motore.
- Verificare che il motore non sia a massa. |
| 4 | Sovracorrente | | Condizione: Allarme d’intervento protezione sovracorrente istantanea.
La causa può essere l’impostazione non corretta dei parametri del regolatore di corrente o un corto circuito tra le fasi o verso terra sull’uscita del drive.
Soluzione:
- Controllare i parametri del regolatore di corrente
- Verificare i cablaggi verso il motore |
| 5 | Desaturazione | | Condizione: Allarme di sovracorrente istantanea interna al ponte IGBT.
Soluzione: Speggere e riaccendere il drive.
In caso di persistenza dell’allarme contattare il servizio assistenza tecnica |
| 6 | Sottotens Mult | | Condizione: Sono stati eseguiti un numero di tentativi di riavvio automatici dopo l’allarme Sottotensione superiore al valore impostato nel PAR 4650 Tentativi riavvio UV nell’intervallo di tempo nel PAR 4652 Ritardo tentativi UV.
Soluzione: Si sono verificati troppi allarmi di Sottotensione.
Applicare le soluzioni suggerite per l’allarme Sottotensione. |
| 7 | Sovracc Mult | | Condizione: Sono stati eseguiti 2 tentativi di riavvio automatico dopo l’allarme di Sovracorrente nell’intervallo di tempo di 30 secondi. Se intercorrono più di 30 secondi dopo l’intervento dell’allarme Sovracorrente il conteggio di tentativi già eseguiti viene azzerato
Soluzione: Si sono verificati troppi allarmi di Sovracorrente.
Applicare le soluzioni suggerite per l’allarme Sovracorrente. |
| 8 | Desatur Mult | | Condizione: Sono stati eseguiti 2 tentativi di riavvio automatico dopo l’allarme di Desaturazione nell’intervallo di tempo di 30 secondi. Se intercorrono più di 30 secondi dopo l’intervento dell’allarme Desaturazione il conteggio di tentativi già eseguiti viene azzerato
Soluzione: Si sono verificati troppi allarmi di Desaturazione.
Applicare le soluzioni suggerite per l’allarme Desaturazione. |
| 9 | Sovrat dissip | | Condizione: Allarme temperatura dissipatore troppo elevata
Soluzione:
- Verificare che la ventola di raffreddamento funzioni regolarmente.
- Verificare che i dissipatori non siano intasati |
| 10 | Sovrat lin dis | | Condizione: Allarme temperatura dissipatore troppo elevata e troppo bassa.
La temperatura ha superato il limite superiore o inferiore di temperatura impostato per il traduttore di temperatura lineare.
Soluzione:
- Verificare che la ventola di raffreddamento funzioni regolarmente.
- Verificare che i dissipatori non siano intasati.
- Verificare che le aperture per l’aria di raffreddamento del quadro non siano ostruite. |
<table>
<thead>
<tr>
<th>Codice</th>
<th>Messaggio di errore visualizzato sul display</th>
<th>Sottocodice</th>
<th>Descrizione</th>
</tr>
</thead>
</table>
| 11 | Sovratemp aria | | Condizione: Allarme temperatura aria in ingresso troppo alta.
Soluzione: Verificare il funzionamento della ventola |
| 12 | Sovrat Motore | | Condizione: Allarme sovratemperatura del motore. Possibili cause possono essere:
- Ciclo di carico applicato troppo gravoso
- Temperatura dell'ambiente in cui è installato il motore troppo elevata
- Se il motore è dotato di ventilazione assistita: non funziona il ventilatore
- Se il motore non è dotato di ventilazione assistita: carico troppo elevato a basse velocità. Il raffreddameto della ventola montata sull'albero motore non è sufficiente per questo ciclo di carico.
- Il motore è utilizzato ad una frequenza inferiore alla nominale, causando delle perdite magnetiche supplementari.
Soluzione:
- Modificare il ciclo di lavorazione.
- Servoventilare il motore. |
| 13 | Sovracc Drive | | Condizione: Allarme sovraccarico drive.
E' provocato dal superamento della soglia di sovraccarico dell'accumulator dell'immagine termica Pt del drive.
Soluzione: Verificare che la taglia del drive sia adeguata all'applicazione. |
| 14 | Sovracc motore | | Condizione: Allarme sovraccarico motore.
La corrente assorbita durante il funzionamento è superiore al valore di targa del motore. E' provocato dal superamento della soglia di sovraccarico dell'accumulatore dell'immagine termica Pt del motore.
Soluzione:
- Diminuire il carico del motore.
- Aumentare la taglia del motore. |
| 15 | Sovracc res frente | | Condizione: Allarme sovraccarico resistenza di frenatura.
La corrente assorbita dalla resistenza è superiore a quella nominale. E' provocato dal superamento della soglia di sovraccarico dell'accumulatore dell'immagine termica Pt della resistenza di frenatura.
Soluzione: Aumentare il valore in Watt delle resistenze di frenatura |
| 16 | Mancanza fase | | Condizione: Allarme mancanza fase di alimentazione.
Soluzione: Verificare la tensione della linea di alimentazione e l’eventuale intervento delle protezioni a monte del drive. |
| 17 | Guasto opz Bus | XXX0H-X | Condizione: Errore in fase di configurazione oppure errore di comunicazione.
Se la prima cifra a sinistra di “H” del sottocodice di allarme è uguale a 0, l’errore è relativo ad un problema di comunicazione.
XXXH-X | Se la prima cifra a sinistra di “H” del sottocodice di allarme è diverso da 0, l’errore è relativo ad un problema di configurazione.
Soluzione: Per errori di configurazione verificare la configurazione della comunicazione con Bus, tipo di Bus, Baudrate, address, impostazione parametri.
Per errori di comunicazione verificare cablaggi, resistenze di terminazione, immunità ai disturbi, impostazioni delle tempistiche dei timeout.
Per maggiori dettagli consultare il manuale della scheda bus utilizzata. |
| 18 | Guast opz I/O1 | | Condizione: Errore nella comunicazione tra Regolazione e scheda di espansione I/O nello slot 1
Soluzione: Verificare la corretta inserzione, vedere capitolo 11.5. |
| 19 | Guast opz I/O2 | | Condizione: Errore nella comunicazione tra Regolazione e scheda di espansione I/O nello slot 2 oppure 3
Soluzione: Verificare la corretta inserzione, vedere capitolo 11.5. |
| 20 | Guasto opz enc | | Condizione: Errore nella comunicazione tra Regolazione e scheda retroazione Encoder
Soluzione: Verificare la corretta inserzione, vedere capitolo 11.5. |
| 21 | Guasto esterno | | Condizione: Allarme esterno presente.
Un ingresso digitale è stato programmatato come allarme esterno, ma la tensione +24V non è disponibile sul morsetto.
Soluzione: Verificare il corretto serraggio delle viti dei morsetti |
<table>
<thead>
<tr>
<th>Codice</th>
<th>Messaggio di errore visualizzato sul display</th>
<th>Sottocodice</th>
<th>Descrizione</th>
</tr>
</thead>
</table>
| 22 | Perd Retroaz | | **Condizione:** Allarme perdita della retroazione di velocità. L'encoder non è collegato, collegato in modo non corretto oppure non è alimentato: verificare il funzionamento dell'encoder selezionando il parametro **Velocità motore** nel menu **VISUALIZZAZIONE**.
Soluzione:
- Verificare l’integrità del cablaggio dell’encoder.
- Controllare che l’encoder sia alimentato.
- Con il drive disabilitato ruotare il motore in senso orario (visto dal lato albero motore). Il valore indicato deve essere positivo.
- Se il valore indicato non cambia oppure vengono indicati dei valori a caso, controllare l’alimentazione e il sistema di cavi dell’encoder.
- Se il valore indicato è negativo, invertire le connessioni dell’encoder. Cambiare canale A+ e A- oppure B+ e B-.
- Verificare il corretto tipo di elettronica dell’encoder con quello della relativa scheda di espansione.
- Viene generato in caso di anomalia dell’encoder. Ogni tipo di encoder genera un allarme "Perdita retroazione" in modo differente. Fare riferimento al parametro 2172 **Codice perd ret vel** per l’informazione sulla causa dell’allarme ed al capitolo D.1 Allarme perdita retroazione.
| 23 | Sovravelocità | | **Condizione:** Allarme sovravelocità motore. La velocità del motore supera i limiti impostati nei parametri **Lim super trif veloc** e **Lim infer trif veloc**.
Soluzione:
- Limitare il riferimento di velocità.
- Verificare che il motore non venga trascinato in sovravelocità durante la rotazione.
| 24 | Perd Riferim | | **Condizione:** Allarme perdita del riferimento di velocità. Interviene se la differenza tra il riferimento del regolatore di velocità e quella attuale del motore è maggiore a 100rpm. La condizione si verifica perché il drive è andato in limite di corrente. È disponibile soltanto in modalità Vett Flusso OL e Vett Flusso OC.
Soluzione:
- Verificare le condizioni di carico del drive
- Controllare il numero degli impulsi dell’encoder
| 25 | All stop Emerg | | **Condizione:** Allarme arresto d’emergenza. E’ stato premuto il pulsante di Arresto sul tastierino con il parametro **Modal tasto arresto impostato a ArrEmer&Allarm** in caso di modalità Remoto->Morsettiera o Remoto->Digitale o Locale->Morsettiera.
Soluzione: Rimuovere la causa per cui è stato necessario premere il tasto Arresto sul tastierino ed eseguire il reset del drive.
| 26 | Disalimentaz | | **Condizione:** Il drive è stato abilitato in assenza della tensione di alimentazione della parte di potenza.
Soluzione: Controllare l’alimentazione del drive
| 27 ... 32 | Non usato 1... 6 | | |
| 33 ... 40 | Guasto Plc 1 ... Plc 8 | | **Condizione:** Applicazione attiva sviluppata in ambiente IEC 61131-3 ha trovato vere le condizioni per generare questo specifico allarme. Il significato dell’allarme è in funzione del tipo di applicazione. Per maggiori funzioni consultare la documentazione relativa all’applicazione specifica.
Soluzione: Consultare la documentazione relativa all’applicazione attiva.
| 41 | Watchdog | | **Condizione:** si può verificare durante il funzionamento quando si attiva la protezione watchdog del micro; l’allarme viene inserito nella lista allarmi e storico allarmi. Dopo questo allarme:
- il drive esegue automaticamente un reset
- il controllo del motore non è disponibile.
Soluzione: Se allarme è stata una conseguenza di una variazione di configurazione del drive (impostazione parametro, installazione opzione, scaricamento di una applicazione Plc) rimuoverla. Spegnere e riacccendere il drive.
<p>|</p>
<table>
<thead>
<tr>
<th>Codice</th>
<th>Messaggio di errore visualizzato sul display</th>
<th>Sottocodice</th>
<th>Descrizione</th>
</tr>
</thead>
</table>
| 42 | Errore trapp | XXXXH-X | **Condizione:** si può verificare durante il funzionamento quando si attiva la protezione trap del micro; l’allarme viene inserito nella lista allarmi e storico allarmi. Dopo questo allarme:
- il drive esegue automaticamente un reset
- il controllo del motore non è disponibile.
Soluzione: Se allarme è stata una conseguenza di una variazione di configurazione del drive (impostazione parametro, installazione opzione, scaricamento di una applicazione Plc) rimuoverla. Spegnerlo e riaccenderlo il drive. |
| 43 | Err di sistema | XXXXH-X | **Condizione:** si può verificare durante il funzionamento quando si attiva la protezione del sistema operativo; l’allarme viene inserito nella lista allarmi e alarm log. Dopo questo allarme:
- il drive esegue automaticamente un reset
- il controllo del motore non è disponibile.
Soluzione: Se allarme è stata una conseguenza di una variazione di configurazione del drive (impostazione parametro, installazione opzione, scaricamento di una applicazione Plc) rimuoverla. Spegnerlo e riaccenderlo il drive. |
| 44 | Errore utente | XXXXH-X | **Condizione:** si può verificare durante il funzionamento quando si attiva la protezione del software; l’allarme viene inserito nella lista allarmi e storico allarmi. Dopo questo allarme:
- il drive esegue automaticamente un reset
- il controllo del motore non è disponibile.
Soluzione: Se allarme è stata una conseguenza di una variazione di configurazione del drive (impostazione parametro, installazione opzione, scaricamento di una applicazione Plc) rimuoverla. Spegnerlo e riaccenderlo il drive. |
| 45 | Errore param | XXXXH-X | **Condizione:** se si verifica un errore durante l’attivazione del database parametri salvato in flash; l’allarme viene inserito nella lista allarmi e storico allarmi.
Soluzione: Impostare il parametro che provoca l’errore ad un valore entro i limiti d’impostazione ed eseguire Salva parametri, spegnere e riaccendere il drive. Nel caso l’IPA del parametro non sia indicato sul manuale contattare il servizio assistenza. |
| 46 | Caric par fabbr | | **Condizione:** si può verificare durante il caricamento del database parametri salvato in flash. È normale se appare nelle seguenti condizioni: alla prima accensione, quando si scarica una nuova versione di firmware, quando si installa la regolazione su una nuova taglia, quando si cambia la region.
Se questo messaggio appare quando il drive è già in servizio significa che si è verificato un problema nel database parametri salvati in Flash.
Se appare questo messaggio il drive ripristina il database di default, cioè quello scaricato in fase di download.
0001H-1 Il database salvato non è valido
0002H-2 Il database salvato non è compatibile
0003H-3 Il database salvato è relativo ad una taglia differente dalla taglia attuale
0004H-4 Il database salvato è relativo ad una regione differente dalla regione attuale
Soluzione: Impostare i parametri al valore desiderato ed eseguire Salva parametri |
| 47 | Err config plc | | **Condizione:** si può verificare durante il caricamento dell’applicazione Mdplc. L’applicazione Mdplc presente sul drive non è eseguita.
0004H-4 Applicazione scaricata ha il Crc su DataBlock e Function table differente
0065H-101 L’applicazione scaricata ha un identificativo non valido (Info)
0066H-102 L’applicazione scaricata usa un numero di task errato (Info)
0067H-103 Applicazione scaricata ha una configurazione software errata
0068H-104 Applicazione scaricata ha il Crc su DataBlock e Function table differente
0069H-105 Si è verificato un Trap error o un Err di sistema. Il drive ha eseguito automaticamente una operazione di Power-up. Applicazione non è eseguita. Vedere in Alarm List ulteriori informazioni riguardo ad errore che si è verificato
Soluzione: Impostare i parametri al valore desiderato ed eseguire Salva parametri |
<table>
<thead>
<tr>
<th>Codice</th>
<th>Messaggio di errore visualizzato sul display</th>
<th>Sottocodice</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>006AH-106</td>
<td>Applicazione scaricata ha un identificativo non valido (Task)</td>
<td>006AH-106</td>
<td></td>
</tr>
<tr>
<td>006BH-107</td>
<td>Applicazione scaricata usa un numero di task errato (Task)</td>
<td>006BH-107</td>
<td></td>
</tr>
<tr>
<td>006CH-108</td>
<td>Applicazione scaricata ha il Crc errato (Tabella + Codice)</td>
<td>006CH-108</td>
<td></td>
</tr>
<tr>
<td>006AH-106</td>
<td>Applicazione scaricata ha un identificativo non valido (Task)</td>
<td>006AH-106</td>
<td>Soluzione: Rimuovere applicazione Mdplc o scaricare una applicazione Mdplc corretta.</td>
</tr>
<tr>
<td>48</td>
<td>Car plc fabr</td>
<td>0001H-1</td>
<td>Condizione: si può verificare durante il caricamento del database parametri salvato nella Flash dell’applicazione Mdplc. È normale se appare appare alla prima accensione, dopo aver scaricato una nuova applicazione. Se questo messaggio appare quando il drive è già in servizio significa che si è verificato un problema nel database parametri salvati in Flash. Se appare questo messaggio il drive esegue automaticamente il comando Parametri di default PAR 580.</td>
</tr>
<tr>
<td>48</td>
<td>Car plc fabr</td>
<td>0001H-1</td>
<td>Soluzione: Impostare i parametri al valore desiderato ed eseguire Salva parametri</td>
</tr>
<tr>
<td>49</td>
<td>Chiave errata</td>
<td>0001H-1</td>
<td>Condizione: Si può verificare in fase di power-on del drive nel caso in cui si è inserita la chiave di abilitazione errata per una data funzione firmware.</td>
</tr>
<tr>
<td>49</td>
<td>Chiave errata</td>
<td>0001H-1</td>
<td>Soluzione: Chiedere a Gefran la corretta chiave di abilitazione della funzione firmware desiderata.</td>
</tr>
<tr>
<td>100H-256</td>
<td>Causa: Durante la fase di setup si è verificato un errore; le informazioni ricevute dall'encoder non sono attendibili. Se l'encoder è usato per retroazione viene generato anche l'allarme Perd Retroaz [22].</td>
<td>100H-256</td>
<td>Condizione: si può verificare all'alimentazione del Drive durante la fase di setup encoder eseguito per ogni configurazione del parametro 552 Modalità regolazione.</td>
</tr>
<tr>
<td>100H-256</td>
<td>Causa: Durante la fase di setup si è verificato un errore; le informazioni ricevute dall'encoder non sono attendibili. Se l'encoder è usato per retroazione viene generato anche l'allarme Perd Retroaz [22].</td>
<td>100H-256</td>
<td>Soluzione: Eseguire azioni suggerite per allarme Perd Retroaz [22]</td>
</tr>
<tr>
<td>50</td>
<td>Errore Encoder</td>
<td>0003H-3</td>
<td>Condizione: si può verificare in fase di alimentazione del drive nel caso in cui sia stata rimossa o sostituita una scheda di espansione. inserita la chiave di abilitazione errata per una data funzione firmware.</td>
</tr>
<tr>
<td>50</td>
<td>Errore Encoder</td>
<td>0003H-3</td>
<td>Soluzione: Verificare la configurazione hardware, poi premere il tasto ESC. Per salvare la nuova configurazione hardware eseguire un salvataggio dei parametri (Salva parametri, menu 04.01 par 550).</td>
</tr>
<tr>
<td>006AH-100</td>
<td>Rimossa scheda dallo slot 1.</td>
<td>006AH-100</td>
<td></td>
</tr>
<tr>
<td>006AH-100</td>
<td>Rimossa scheda dallo slot 1.</td>
<td>006AH-100</td>
<td></td>
</tr>
<tr>
<td>006AH-100</td>
<td>Rimossa scheda dallo slot 1.</td>
<td>006AH-100</td>
<td></td>
</tr>
<tr>
<td>0017H-23</td>
<td>Rimossa scheda dallo slot 2 e dallo slot 3.</td>
<td>0017H-23</td>
<td></td>
</tr>
<tr>
<td>006BH-120</td>
<td>Rimossa scheda dallo slot 1 e dallo slot 2.</td>
<td>006BH-120</td>
<td></td>
</tr>
<tr>
<td>006BH-120</td>
<td>Rimossa scheda dallo slot 1 e dallo slot 2.</td>
<td>006BH-120</td>
<td></td>
</tr>
<tr>
<td>006BH-120</td>
<td>Rimossa scheda dallo slot 1 e dallo slot 2.</td>
<td>006BH-120</td>
<td></td>
</tr>
<tr>
<td>0067H-103</td>
<td>Rimossa scheda dallo slot 1 e dallo slot 3.</td>
<td>0067H-103</td>
<td></td>
</tr>
<tr>
<td>0067H-103</td>
<td>Rimossa scheda dallo slot 1 e dallo slot 3.</td>
<td>0067H-103</td>
<td></td>
</tr>
<tr>
<td>0067H-103</td>
<td>Rimossa scheda dallo slot 1 e dallo slot 3.</td>
<td>0067H-103</td>
<td></td>
</tr>
<tr>
<td>0003H-3</td>
<td>Rimossa scheda dallo slot 1.</td>
<td>0003H-3</td>
<td></td>
</tr>
<tr>
<td>0003H-3</td>
<td>Rimossa scheda dallo slot 1.</td>
<td>0003H-3</td>
<td></td>
</tr>
<tr>
<td>0003H-3</td>
<td>Rimossa scheda dallo slot 1.</td>
<td>0003H-3</td>
<td></td>
</tr>
<tr>
<td>0078H-120</td>
<td>Rimossa scheda dallo slot 1 e dallo slot 2.</td>
<td>0078H-120</td>
<td></td>
</tr>
<tr>
<td>0078H-120</td>
<td>Rimossa scheda dallo slot 1 e dallo slot 2.</td>
<td>0078H-120</td>
<td></td>
</tr>
<tr>
<td>0078H-120</td>
<td>Rimossa scheda dallo slot 1 e dallo slot 2.</td>
<td>0078H-120</td>
<td></td>
</tr>
<tr>
<td>0078H-120</td>
<td>Rimossa scheda dallo slot 1 e dallo slot 2.</td>
<td>0078H-120</td>
<td></td>
</tr>
<tr>
<td>007BH-123</td>
<td>Rimossa scheda dallo slot 1, dallo slot 2 e dallo slot 3.</td>
<td>007BH-123</td>
<td></td>
</tr>
<tr>
<td>007BH-123</td>
<td>Rimossa scheda dallo slot 1, dallo slot 2 e dallo slot 3.</td>
<td>007BH-123</td>
<td></td>
</tr>
<tr>
<td>007BH-123</td>
<td>Rimossa scheda dallo slot 1, dallo slot 2 e dallo slot 3.</td>
<td>007BH-123</td>
<td></td>
</tr>
<tr>
<td>007BH-123</td>
<td>Rimossa scheda dallo slot 1, dallo slot 2 e dallo slot 3.</td>
<td>007BH-123</td>
<td></td>
</tr>
<tr>
<td>007BH-123</td>
<td>Rimossa scheda dallo slot 1, dallo slot 2 e dallo slot 3.</td>
<td>007BH-123</td>
<td></td>
</tr>
<tr>
<td>007BH-123</td>
<td>Rimossa scheda dallo slot 1, dallo slot 2 e dallo slot 3.</td>
<td>007BH-123</td>
<td></td>
</tr>
<tr>
<td>007BH-123</td>
<td>Rimossa scheda dallo slot 1, dallo slot 2 e dallo slot 3.</td>
<td>007BH-123</td>
<td></td>
</tr>
</tbody>
</table>

Condizione: si può verificare in fase di alimentazione del drive nel caso in cui sia stata rimossa o sostituita una scheda di espansione. inserita la chiave di abilitazione errata per una data funzione firmware.
D-1 Allarme Perd Retroaz in funzione del tipo di retroazione

Nota!
Per la corretta interpretazione delle cause che hanno provocato l’allarme, è necessario trasformare il codice esadecimale scritto nel parametro 17.29 Codice perd retr vel, PAR 2172, nel corrispondente binario e verificare quindi nella tabella dell’encoder utilizzato i vari bit attivi e la relativa descrizione.

Esempio con encoder Endat:
PAR 2172 = A0H (valore esadecimale)
Nella tabella "Allarme Perd Retroaz [22] con encoder assoluto EnDat" A0 non è presente nella colonna valore. A0 deve essere visto come una bitword che significa A0 -> 10100000 -> bit 5 e bit 7. Sono quindi intervenute contemporaneamente le seguenti cause:
Bit 5 = 20H Causa: segnali SSI disturbati causano un errore CKS oppure Parity
Bit 7 = 80H Causa: Encoder ha rilevato un suo malfunzionamento e lo segnala al Drive tramite Error bit. Nei bit 16..31 è presente il tipo di malfunzionamento rilevato da encoder.

● Allarme Perd Retroaz [22] con encoder incrementale Digitale

<table>
<thead>
<tr>
<th>Bit</th>
<th>Valore</th>
<th>Nome</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0x01</td>
<td>CHA</td>
<td>Causa: mancano impulsi o sono presenti disturbi sul canale A incrementale.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Soluzione: Verificare il collegamento del canale A encoder-Drive, verificare il collegamento dello schermo, verificare la tensione di alimentazione encoder, verificare il parametro 2102 Alimentaz encoder 1, verificare il parametro 2104 Config ingr encoder1.</td>
</tr>
<tr>
<td>1</td>
<td>0x02</td>
<td>CHB</td>
<td>Causa: mancano impulsi o sono presenti disturbi sul canale B incrementale.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Soluzione: Verificare il collegamento del canale B encoder-Drive, verificare il collegamento dello schermo, verificare la tensione di alimentazione encoder, verificare il parametro 2102 Alimentaz encoder 1, verificare il parametro 2104 Config ingr encoder1.</td>
</tr>
<tr>
<td>2</td>
<td>0x04</td>
<td>CHZ</td>
<td>Causa: mancano impulsi o sono presenti disturbi sul canale Z incrementale.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Soluzione: Verificare il collegamento del canale Z encoder-Drive, verificare il collegamento dello schermo, verificare la tensione di alimentazione encoder, verificare il parametro 2102 Alimentaz encoder 1, verificare il parametro 2104 Config ingr encoder1, verificare il parametro 2110 Errore segnali enc 1</td>
</tr>
</tbody>
</table>

● Allarme Perd Retroaz [22] con encoder incrementale Sinus

<table>
<thead>
<tr>
<th>Bit</th>
<th>Valore</th>
<th>Nome</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>0x08</td>
<td>MOD_INCR</td>
<td>Causa: livello di tensione non corretto o sono presenti dei disturbi sui segnali dei canali A-B incrementali.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Soluzione: Verificare il collegamento dei canali A-B encoder-Drive, verificare il collegamento dello schermo, verificare la tensione di alimentazione encoder, verificare il parametro 2102 Alimentaz encoder 1, verificare il parametro 2108 Segnale enc 1 Vpp.</td>
</tr>
</tbody>
</table>

● Allarme Perd Retroaz [22] con encoder SinCos

<table>
<thead>
<tr>
<th>Bit</th>
<th>Valore</th>
<th>Nome</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>0x08</td>
<td>MOD_INCR</td>
<td>Causa: livello di tensione dei non corretto o sono presenti dei disturbi sui segnali dei canali A-B incrementali.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Soluzione: Verificare il collegamento dei canali A-B encoder-Drive, verificare il collegamento dello schermo, verificare la tensione di alimentazione encoder, verificare il parametro 2102 Alimentaz encoder 1, verificare il parametro 2108 Segnale enc 1 Vpp.</td>
</tr>
<tr>
<td>4</td>
<td>0x10</td>
<td>MOD_ABS</td>
<td>Causa: livello di tensione dei non corretto o sono presenti dei disturbi sui segnali dei canali SinCos assoluti.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Soluzione: Verificare il collegamento dei canali A-B encoder-Drive, verificare il collegamento dello schermo, verificare la tensione di alimentazione encoder, verificare il parametro 2102 Alimentaz encoder 1, verificare il parametro 2108 Segnale enc 1 Vpp.</td>
</tr>
</tbody>
</table>
Allarme Perd Retroaz [22] con encoder assoluto SSI

<table>
<thead>
<tr>
<th>Bit</th>
<th>Valore</th>
<th>Nome</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>0x08</td>
<td>MOD_INCR</td>
<td>Causa: livello di tensione dei non corretto o sono presenti dei disturbi sui segnali dei canali A-B incrementali.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Soluzione: Verificare il collegamento dei canali A-B encoder-Drive, verificare il collegamento dello schermo, verificare la tensione di alimentazione encoder, verificare il parametro 2102 Alimentaz encoder 1, verificare il parametro 2108 Segnale enc 1 Vpp.</td>
</tr>
<tr>
<td>5</td>
<td>0x20</td>
<td>CRC_CKS_P</td>
<td>Causa: segnali SSI non presenti o disturbati.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Soluzione: Verificare il collegamento clock e data encoder-Drive, verificare il collegamento dello schermo, verificare la tensione di alimentazione encoder, verificare il parametro 2102 Alimentaz encoder 1, verificare il parametro 2112 Bits SSI encoder 1.</td>
</tr>
<tr>
<td>8</td>
<td>0x100</td>
<td>Setup error</td>
<td>Causa: Durante la fase di setup si è verificato un errore.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Soluzione: Verificare il collegamento clock e data encoder-Drive, verificare il collegamento dello schermo, verificare la tensione di alimentazione encoder, verificare il parametro 2102 Alimentaz encoder 1, verificare il parametro 2112 Bits SSI encoder 1.</td>
</tr>
</tbody>
</table>

Allarme Perd Retroaz [22] con encoder assoluto EnDat

<table>
<thead>
<tr>
<th>Bit</th>
<th>Valore</th>
<th>Nome</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>0x08</td>
<td>MOD_INCR</td>
<td>Causa: livello di tensione dei non corretto o sono presenti dei disturbi sui segnali dei canali A-B incrementali.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Soluzione: Verificare il collegamento dei canali A-B encoder-Drive, verificare il collegamento dello schermo, verificare la tensione di alimentazione encoder, verificare il parametro 2102 Alimentaz encoder 1, verificare il parametro 2108 Segnale enc 1 Vpp.</td>
</tr>
<tr>
<td>5</td>
<td>0x20</td>
<td>CRC_CKS_P</td>
<td>Causa: segnali SSI non presenti o disturbati causano un errore su CRC.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Soluzione: Verificare il collegamento clock e data encoder-Drive, verificare il collegamento dello schermo, verificare la tensione di alimentazione encoder, verificare il parametro 2102 Alimentaz encoder 1.</td>
</tr>
<tr>
<td>8</td>
<td>0x100</td>
<td>Setup error</td>
<td>Causa: Durante la fase di setup si è verificato un errore.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Soluzione: Verificare il collegamento clock e data encoder-Drive, verificare il collegamento dello schermo, verificare la tensione di alimentazione encoder, verificare il parametro 2102 Alimentaz encoder 1.</td>
</tr>
</tbody>
</table>

Le seguenti condizioni si verificano durante fase di encoder reset in seguito all’attivazione di **Perd Retroaz [22]**

<table>
<thead>
<tr>
<th>Bit</th>
<th>Valore</th>
<th>Nome</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>0x40</td>
<td>ACK_TMO</td>
<td>Causa: segnali SSI non presenti o disturbati causano un errore su CRC</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Soluzione: Verificare il collegamento clock e data encoder-Drive, verificare il collegamento dello schermo, verificare la tensione di alimentazione encoder, verificare il parametro 2102 Alimentaz encoder 1.</td>
</tr>
<tr>
<td>7</td>
<td>0x80</td>
<td>DT1_ERR</td>
<td>Causa: Encoder ha rilevato un suo malfunzionamento e lo segnala al Drive tramite bit DT1. Nei bit 16..31 è presente il tipo di malfunzionamento rilevato da encoder.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Soluzione: Vedere manuale tecnico del costruttore encoder.</td>
</tr>
</tbody>
</table>

Le seguenti condizioni si verificano durante fase di encoder reset in seguito all’attivazione di **Perd Retroaz [22]**

<table>
<thead>
<tr>
<th>16.31</th>
<th>Bit</th>
<th>Valore</th>
<th>Nome</th>
<th>=0</th>
<th>=1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
<td></td>
<td>Light source</td>
<td>OK</td>
<td>Failure (1)</td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td>Signal amplitude</td>
<td>OK</td>
<td>Erroneous (1)</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td>Position value</td>
<td>OK</td>
<td>Erroneous (1)</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td>Over voltage</td>
<td>NO</td>
<td>Yes (1)</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td>Under voltage</td>
<td>NO</td>
<td>Under voltage supply (1)</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td>Over current</td>
<td>NO</td>
<td>Yes (1)</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td>Battery</td>
<td>OK</td>
<td>Change the battery (2)</td>
</tr>
</tbody>
</table>

(1) Can also be set after the power supply is switched off or on.
(2) Only for battery-buffered encoders
Allarme Perd Retroaz [22] con encoder assoluto Hiperface

<table>
<thead>
<tr>
<th>Bit</th>
<th>Valore</th>
<th>Descrizione</th>
<th>Nome</th>
<th>Causa: livello di tensione dei non corretto o sono presenti dei disturbi sui segnali dei canali A-B incrementali.</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>0x08</td>
<td></td>
<td></td>
<td>Soluzione: Verificare il collegamento dei canali A-B encoder-Drive, verificare il collegamento dello schermo, verificare la tensione di alimentazione encoder, verificare il parametro 2102 Alimentaz encoder 1, verificare il parametro 2108 Segnale enc 1 Vpp.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Bit</th>
<th>Valore</th>
<th>Descrizione</th>
<th>Nome</th>
<th>Causa: segnali SSI disturbati causano un errore CKS oppure Parity</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>0x20</td>
<td></td>
<td></td>
<td>Soluzione: Verificare il collegamento clock e data encoder-Drive, verificare il collegamento dello schermo, verificare la tensione di alimentazione encoder, verificare il parametro 2102 Alimentaz encoder 1.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Bit</th>
<th>Valore</th>
<th>Descrizione</th>
<th>Nome</th>
<th>Causa: Encoder non riconosce il comando che gli è stato inviato e risponde con ACK. I segnali SSI non presenti causano un errore TMO.</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>0x40</td>
<td></td>
<td></td>
<td>Soluzione: Verificare il collegamento clock e data encoder-Drive, verificare il collegamento dello schermo, verificare la tensione di alimentazione encoder, verificare il parametro 2102 Alimentaz encoder 1.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Bit</th>
<th>Valore</th>
<th>Descrizione</th>
<th>Nome</th>
<th>Causa: Durante la fase di setup si è verificato un errore.</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>0x100</td>
<td></td>
<td></td>
<td>Soluzione: Verificare il collegamento clock e data encoder-Drive, verificare il collegamento dello schermo, verificare la tensione di alimentazione encoder, verificare il parametro 2102 Alimentaz encoder 1.</td>
</tr>
</tbody>
</table>

Le seguenti condizioni si verificano durante fase di encoder reset in seguito all’attivazione di **Perd Retroaz [22]**.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>0x80</td>
<td></td>
<td></td>
<td>Soluzione: Vedere manuale tecnico del costruttore encoder.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>16.31</th>
<th>Tipo</th>
<th>Codice</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Transmission</td>
<td>09h</td>
<td>Transmitted parity bit is incorrect</td>
</tr>
<tr>
<td></td>
<td>0AH</td>
<td>Checksum of transmitted data is wrong</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0BH</td>
<td>Incorrect command code</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0CH</td>
<td>Wrong number of transmitted data</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0DH</td>
<td>Illegal transmitted command argument</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0FH</td>
<td>Wrong access authorization specified</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0EH</td>
<td>Selected field has READ ONLY status</td>
<td></td>
</tr>
<tr>
<td></td>
<td>10H</td>
<td>Data field (re) definition not executable due to field size</td>
<td></td>
</tr>
<tr>
<td></td>
<td>11H</td>
<td>Specified address is not available in selected field</td>
<td></td>
</tr>
<tr>
<td></td>
<td>12H</td>
<td>Selected field does not yet exist</td>
<td></td>
</tr>
<tr>
<td></td>
<td>00H</td>
<td>No encoder error, no error message</td>
<td></td>
</tr>
<tr>
<td></td>
<td>03H</td>
<td>Data field operations disabled</td>
<td></td>
</tr>
<tr>
<td></td>
<td>04H</td>
<td>Analog monitoring inoperative</td>
<td></td>
</tr>
<tr>
<td></td>
<td>08H</td>
<td>Counting register overflow</td>
<td></td>
</tr>
<tr>
<td></td>
<td>01H</td>
<td>Encoder analog signal are unreliable</td>
<td></td>
</tr>
<tr>
<td></td>
<td>02H</td>
<td>Wrong synchronization or offset</td>
<td></td>
</tr>
<tr>
<td></td>
<td>05H-07H</td>
<td>Encoder-internal hardware fault, no operation possible</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1CH-1DH</td>
<td>Error in sampling, no operation possible</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1EH</td>
<td>Permissible operation temperature is exceeded</td>
<td></td>
</tr>
</tbody>
</table>

(1) Can also be set after the power supply is switched off or on.
(2) Only for battery-buffered encoders

D.1.1 Reset allarme Perd Retroaz

Le cause di attivazione dell’allarme **Perd Retroaz [22]** e le informazioni acquisite dall’encoder vengono mostrate nel parametro 2172 **Codice perd retr vel.**
Se nessuna scheda è montata scatta allarme **Perd Retroaz [22]** e il parametro 2172 **Codice perd retr vel** non riporta nessuna causa. Possono essere attive più cause contemporaneamente.

Nel caso non si riconosce nessuna scheda viene chiamata una routine che ritorna sempre **Perd Retroaz [22]** attivo senza specificare una causa.

D.1.2 Allarme Errore encoder

Ad ogni accensione del Drive indipendentemente dalla modalità di regolazione selezionata, viene eseguita una fase di setup. Se durante la fase di setup si rileva un errore allora viene generato l’allarme **Errore encoder** con i seguenti codici:

<table>
<thead>
<tr>
<th>Bit</th>
<th>Valore</th>
<th>Nome</th>
<th>Descrizione</th>
</tr>
</thead>
</table>
| 8 | 0x100 | Setup error | **Causa:** Durante la fase di setup si è verificato un errore. In seguito a questa segnalazione le informazioni ricavate da encoder non sono attendibili.
Soluzione: Eseguire azioni suggerite per allarme **Perd Retroaz [22]** in funzione del tipo encoder. |
| 9 | 0x200 | Compatibility error| **Causa:** Firmware su scheda opzione non compatibile con firmware su scheda regolazione.
In seguito a questa segnalazione le informazioni ricavate da encoder non sono attendibili.
Soluzione: Contattare Gefran per procedere all’aggiornamento del firmware della scheda opzione. |
Nota Per ulteriori informazioni vedere il Manuale “Guida rapida all’installazione”, al capitolo 6.7.

<table>
<thead>
<tr>
<th>Index</th>
<th>Messaggio di errore visualizzato sul display</th>
<th>Sottocodice</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Carica param fabbrica</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Condizione: si può verificare durante il caricamento del database parametri salvato in flash
È normale se appare nelle seguenti condizioni: alla prima accensione, quando si scarica una nuova versione di firmware, quando si installa la regolazione su una nuova taglia, quando si cambia la regione.
Se questo messaggio appare quando il drive è già in servizio significa che si è verificato un problema nel database parametri salvati in Flash.
Se appare questo messaggio il drive ripristina il database di default cioè quello scaricato in fase di download.</td>
<td>0001H-1</td>
<td>Il database salvato non è valido</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0002H-2</td>
<td>Il database salvato non è compatibile</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0003H-3</td>
<td>Il database salvato è relativo ad una taglia differente dalla taglia attuale</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0004H-4</td>
<td>Il database salvato è relativo ad una regione differente dalla regione attuale</td>
</tr>
<tr>
<td></td>
<td>Soluzione: Impostare i parametri al valore desiderato ed eseguire Salva parametri</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Opzione rilev Slot1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Opzione rilev Slot2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Opzione rilev Slot3</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Condizione: all’accensione il drive riconosce la presenza di una scheda opzionale su uno dei tre slot di espansione.
Viene visualizzato per alcuni secondi uno dei tre messaggi sul display</td>
<td>0H-0</td>
<td>Nessuna</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0004H-4</td>
<td>Can/DeviceNet</td>
</tr>
<tr>
<td></td>
<td></td>
<td>00FFH-255</td>
<td>Sconosciuta</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0104H-260</td>
<td>Profibus</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0204H-516</td>
<td>Rte</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0208H-520</td>
<td>Enc 3 EXP-SESC-11R1F2-ADV</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0301H-769</td>
<td>1_0_1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0308H-776</td>
<td>Enc 4 EXP-EN/SSI-11R1F2-ADV</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0408H-1032</td>
<td>Enc 5 EXP-HIP-11R1F2-ADV</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0608H-1544</td>
<td>Enc 1 EXP-DE-11R1F2-ADV</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0701H-1793</td>
<td>1_0_2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0108H-1800</td>
<td>Enc 2 EXP-SE-11R1F2-ADV</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0808H-2056</td>
<td>Enc 7 EXP-DE-I2R1F2-ADV</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0901H-2305</td>
<td>1_0_3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0D01H-3329</td>
<td>1_0_4</td>
</tr>
<tr>
<td></td>
<td>Soluzione:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Autoapprendimento</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Condizione: si può verificare durante la procedura di Autoapprendimento</td>
<td>0</td>
<td>Nessun errore</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1</td>
<td>I comandi non sono configurati in modalità Local.
Soluzione: Eseguire la configurazione richiesta</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>Il parametro Sel comandi locali non è configurato da tastierino.
Soluzione: Eseguire la configurazione richiesta</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>I parametri dati targa motore sono cambiati ma non è stato eseguito il comando Acquisisci parametri PAR 2020
Soluzione: Eseguire il comando Acquisisci parametri.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4</td>
<td>Il motore non è collegato
Soluzione: Collegare il motore</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5</td>
<td>Durante esecuzione autotune si è premuto tasto ESC oppure si è aperto il contatto di abilitazione oppure è intervento un allarme. Con drive in allarme è stato dato il comando Autoapprendimento.
Soluzione: Rimuovere causa dell’intervento allarme, rimuovere causa apertura contatto di abilitazione, resettare allarme.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6</td>
<td>Una taratura eseguita dall’Autoapprendimento ha prodotto il valore di un parametro fuori dai range min o max.
Soluzione: Verificare dati di targa del motore oppure l’abbinamento taglia drive e taglia del motore non è corretto.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>7</td>
<td>Si è fornito il comando Autoapprendimento senza abilitazione.
Soluzione: Prima di fornire il comando Autoapprendimento chiudere il contatto di abilitazione</td>
</tr>
<tr>
<td></td>
<td></td>
<td>8 ... 21</td>
<td>Una taratura eseguita da Autoapprendimento ha raggiunto un limite del metodo di misura
Soluzione: Verificare dati di targa del motore oppure l’abbinamento taglia drive e taglia del motore non è corretto.</td>
</tr>
<tr>
<td>Index</td>
<td>Messaggio di errore visualizzato sul display</td>
<td>Sottocodice</td>
<td>Descrizione</td>
</tr>
<tr>
<td>-------</td>
<td>---</td>
<td>-------------</td>
<td>-------------</td>
</tr>
<tr>
<td>Soluzione: Se si presenta il messaggio con un valore diverso da 0 seguire le indicazioni fornite caso per caso e ripetere l’Autoapprendimento. E’ consigliato eseguire l’Autoapprendimento utilizzando la procedura di wizard disponibile da tastierino (STARTUP WIZARD) e da software Tool su PC. Prestare attenzione a tutti i parametri dei dati di targa del motore in modo speciale a: - Velocità nominale. Velocità nominale del motore in rpm. - Frequenza nominale. Frequenza nominale del motore in Hz. - Coppie polari. Paia poli del motore. Fare attenzione a non impostare il parametro Velocità nominale alla velocità sincrona. Il parametro Velocità nominale deve avere un valore inferiore a: ((\text{Frequenza nominale} \times 60) / \text{Coppie polari}). Se dopo aver eseguito le indicazioni fornite il problema persiste si deve confermare il valore dei parametri dei dati di targa del motore, eseguire comando Acquisisci parametri ma non eseguire l’Autoapprendimento.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Configuraz potenza</td>
<td>Condizione: si può verificare durante il riconoscimento delle schede di potenza. In presenza di questo messaggio non è possibile comandare il motore.</td>
<td>0020H-32</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0021H-33</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0017H-23</td>
</tr>
<tr>
<td>Soluzione: Scaricare sulla scheda di potenza la configurazione corretta.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Salv param fallito</td>
<td>Condizione: durante il trasferimento dei parametri dal drive alla memoria del tastierino.</td>
<td>0H-0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0025H-37</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0026H-38</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0027H-39</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0028H-40</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0029H-41</td>
</tr>
<tr>
<td>Soluzione:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Car param fallito</td>
<td>Condizione: durante il trasferimento dei parametri dalla memoria del tastierino al drive.</td>
<td>0H-0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0025H-37</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0026H-38</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0027H-39</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0028H-40</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0029H-41</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>002AH-42</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>002BH-43</td>
</tr>
<tr>
<td>Soluzione: Recuperare un set di parametri da un drive compatibile (modello e taglia).</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Car par incompleto</td>
<td>Condizione: durante il trasferimento dei parametri dalla memoria del tastierino al drive.</td>
<td>0H-0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0025H-37</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0026H-38</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0027H-39</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0028H-40</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0029H-41</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>002AH-42</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>002BH-43</td>
</tr>
<tr>
<td>Soluzione: Recuperare un set di parametri da un drive compatibile (modello e taglia).</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Errore conf opzioni</td>
<td>Condizione: si può verificare all’accensione del drive, durante il riconoscimento delle schede opzionali installate.</td>
<td>0001H-1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0002H-2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0004H-4</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0010H-16</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0020H-32</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0040H-64</td>
</tr>
<tr>
<td>Index</td>
<td>Messaggio di errore visualizzato sul display</td>
<td>Sottocodice</td>
<td>Descrizione</td>
</tr>
<tr>
<td>-------</td>
<td>---</td>
<td>-------------</td>
<td>-------------</td>
</tr>
<tr>
<td>11</td>
<td>Car plc di fabbrica</td>
<td>0001H-1</td>
<td>Il database salvato non è valido</td>
</tr>
<tr>
<td></td>
<td>Soluzione: Rimuovere le schede opzionali dagli slot errati ed inserirle negli slot corretti</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>Errore config plc</td>
<td>0004H-4, 0065H-101, 0066H-102, 0067H-103, 0068H-104, 0069H-105</td>
<td>Applicazione scaricata ha il Crc su DataBlock e Function table differente, L’applicazione scaricata ha un identificativo non valido (Info), L’applicazione scaricata usa un numero di task errato (Info), Applicazione scaricata ha una configurazione software errata, Si è verificato un Trap error o un System error.</td>
</tr>
<tr>
<td></td>
<td>Soluzione: Impostare i parametri al valore desiderato ed eseguire Salva parametri</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>006AH-106, 006BH-107, 006CH-108</td>
<td>Applicazione scaricata ha un identificativo non valido (Task), Applicazione scaricata usa un numero di task errato (Task), Applicazione scaricata ha il Crc errato (Tabelle + Codice)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Soluzione: Rimuovere applicazione Mdplc o scaricare una applicazione Mdplc corretta</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>006DH-109</td>
<td>Applicazione scaricata ha un identificativo invalido (Info)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0070H-110</td>
<td>Applicazione scaricata usa un numero di task errato (Info)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0071H-111</td>
<td>Applicazione scaricata ha una configurazione software errata</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0072H-112</td>
<td>Applicazione scaricata ha il Crc su DataBlock e Function table differente</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0073H-113</td>
<td>Applicazione scaricata ha un identificativo non valido (Task)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0074H-114</td>
<td>Applicazione scaricata usa un numero di task errato (Task)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0075H-115</td>
<td>Applicazione scaricata ha il Crc errato (Tabelle + Codice)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Soluzione: Rimuovere applicazione Mdplc o scaricare una applicazione Mdplc corretta</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>Plc 1</td>
<td>Messaggi riservati e dedicati all’applicazione PLC, fare riferimento al manuale dell’applicazione.</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>Plc 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>Plc 3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>Plc 4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>Guasto opz Bus</td>
<td>XXX0H-X</td>
<td>Se la prima cifra a sinistra di “H” del sottocodice di allarme è uguale a 0, l’errore è relativo ad un problema di comunicazione.</td>
</tr>
<tr>
<td></td>
<td>XXX0H-X</td>
<td>Se la prima cifra a sinistra di “H” del sottocodice di allarme è diverso da 0, l’errore è relativo ad un problema di configurazione.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Soluzione: Per errori di configurazione verificare la configurazione della comunicazione con Bus, tipo di Bus, Baudrate, address, impostazione parametri, Per errori di comunicazione verificare cablaggi, resistenze di terminazione, immunità ai disturbi, impostazioni delle tempistiche dei timeout. Per maggiori dettagli consultare il manuale della scheda bus utilizzata.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>Chiave errata</td>
<td>0001H-1</td>
<td>Chiave per PLC errata. Non disponibile applicazione PLC.</td>
</tr>
<tr>
<td></td>
<td>Soluzione: Chiedere a Gefran la corretta chiave di abilitazione della funzione firmware desiderata.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>Chiave a tempo</td>
<td>xxxxxxH-X</td>
<td>Numero di ore ancora disponibili per le quali è permesso utilizzare liberamente la funzione firmware.</td>
</tr>
<tr>
<td></td>
<td>Soluzione: Chiedere a Gefran la corretta chiave di abilitazione della funzione firmware desiderata.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>Errore param</td>
<td>XXX0H-X</td>
<td>Il codice XXX0H-X indica l’IPA del parametro che risulta impostato fuori dai limiti consentiti all’attivazione del database.</td>
</tr>
<tr>
<td></td>
<td>Soluzione: Impostare il parametro che provoca l’errore ad un valore entro i limiti d’impostazione ed eseguire Salva parametri, spegnere e riacendere il drive. Nel caso l’IPA del parametro non sia indicato sul manuale contattare il servizio assistenza.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>Errore encoder</td>
<td>100H-2564</td>
<td>Causa: Durante la fase di setup si è verificato un errore; le informazioni ricevute dall’encoder non sono attendibili. Se l’encoder è usato per retroazione viene generato anche l’allarme (22) Perd Retroazione.</td>
</tr>
<tr>
<td></td>
<td>Soluzione: Eseguire azioni suggerite per allarme (22) Perd Retroazione.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Index</td>
<td>Messaggio di errore visualizzato sul display</td>
<td>Sottocodice</td>
<td>Descrizione</td>
</tr>
<tr>
<td>-------</td>
<td>---</td>
<td>-------------</td>
<td>-------------</td>
</tr>
<tr>
<td>200H-512</td>
<td>Causa: Il firmware sulla scheda opzionale encoder non è compatibile con quello sulla scheda di regolazione. Le informazioni ricevute dall'encoder non sono attendibili.</td>
<td>Soluzione: Consultare il personale Gefran per procedere all'aggiornamento del firmware della scheda opzionale encoder.</td>
<td></td>
</tr>
</tbody>
</table>
| 22 Mod config opz | **Condizione:** Si può verificare in fase di alimentazione del drive nel caso in cui sia stata rimossa o sostituita una scheda di espansione, inserita la chiave di abilitazione errata per una data funzione firmware. | 0064H-100 Rimossa scheda dallo slot 1.
0014H-20 Rimossa scheda dallo slot 2.
0003H-3 Rimossa scheda dallo slot 3.
0078H-120 Rimossa scheda dallo slot 1 e dallo slot 2.
0067H-103 Rimossa scheda dallo slot 1 e dallo slot 3.
0017H-23 Rimossa scheda dallo slot 2 e dallo slot 3.
007BH-123 Rimossa scheda dallo slot 1, dallo slot 2 e dallo slot 3. | **Soluzione:** Verificare la configurazione hardware, poi premere il tasto ESC. Per salvare la nuova configurazione hardware eseguire un salvataggio dei parametri (Salva parametri, menu 04.01 par 550). |

Nota!
 Se vengono visualizzati sul display messaggi non presenti in questo elenco, fare riferimento al manuale dell’applicazione utilizzata dal drive.

Panoramica drive (Drive Overview)
Riferimenti (References)

RIFERIMENTO DI RAMPA [RifRamp]
RIFERIMENTO DI VELOCITÀ [RifVeloc]

Diagramma 1

Diagramma 2
Rampe (Ramps)
Riferimento multiplo (Multi reference)
Motopotenziometro (Motorpotentiometer)

Funzione Jog (Jog function)
Funzione monitor (Monitor function)

ZERO VELOCITÀ/RIEF
SOGLIA VELOCITÀ 1-2
SOGLIA VELOCITÀ 3
VELOCITÀ IMPOSTATA
SOGLIA DI CORRENTE

Schemi a blocchi

AVVISO

Il sistema di controllo di velocità deve essere configurato correttamente per funzionare correttamente. Assicurarsi di impostare la soglia di velocità appropriata per il proprio ambiente operativo.

Guida alla configurazione

1. **Scegliere il tipo di monitor:**
 - ZERO VELOCITÀ/RIEF
 - SOGLIA VELOCITÀ 1-2
 - SOGLIA VELOCITÀ 3
 - VELOCITÀ IMPOSTATA
 - SOGLIA DI CORRENTE

2. **Configurazione dettagliata:**
 - **Riferimento Zero:**
 - Impostare il riferimento zero per velocità e accelerazione.
 - **Velocità:**
 - Impostare la soglia di velocità per mantenere la velocità controllata.
 - **Ritardo della velocità:**
 - Impostare il ritardo della velocità per prevenire oscillazioni anormali.

Interior Design Notes:

- **Riferimento Zero:**
 - Impostare il riferimento zero per velocità e accelerazione.
- **Velocità:**
 - Impostare la soglia di velocità per mantenere la velocità controllata.
- **Ritardo della velocità:**
 - Impostare il ritardo della velocità per prevenire oscillazioni anormali.

Technical Specifications:

- **Soglia di Velocità:**
 - Impostare la soglia di velocità per mantenere la velocità controllata.
- **Ritardo di Velocità:**
 - Impostare il ritardo di velocità per prevenire oscillazioni anormali.

Important Considerations:

- **Riferimento Zero:**
 - Assicurarsi di impostare il riferimento zero per velocità e accelerazione.
- **Velocità:**
 - Impostare la soglia di velocità per mantenere la velocità controllata.
- **Ritardo della Velocità:**
 - Impostare il ritardo della velocità per prevenire oscillazioni anormali.

Conclusion:

La configurazione corretta del sistema di controllo di velocità è cruciale per garantire un funzionamento efficace e sicuro. Assicurarsi di seguire attentamente le istruzioni per ottenere i risultati desiderati.
Ingressi digitali (Digital Inputs)

INGRESSI DIGITALI STANDARD IngDigStd

INGRESSI DIGITALI SCHEDA DI ESPANSIONE IngDigEsp

Monitor

1100° - Mon ing digitale E

Destinazioni

1150° - Dest ing digitale E
Non usato
1152° - Dest ing digitale 1
Sorgente Avanti FR
1154° - Dest ing digitale 2
Sorgente Indietro FR
1156° - Dest ing digitale 3
Non usato
1158° - Dest ing digitale 4
Non usato
1160° - Dest ing digitale 5
Sorg. reat allami

Morsetto ingresso standard

1122 - Inv ing digitale 1

1134 - Inv ing digitale 2

1136 - Inv ing digitale 3

1138 - Inv ing digitale 4

1140 - Inv ing digitale 5

1116° - Mon ing digitale 1

1114° - Mon ing digitale 2

1112° - Mon ing digitale 3

1110° - Mon ing digitale 4

1110° - Mon ing digitale 5

Morsetto ingresso scheda di espansione

1240 - Inv ing digitale 1X

1242 - Inv ing digitale 2X

1244 - Inv ing digitale 3X

1246 - Inv ing digitale 4X

1248 - Inv ing digitale 5X

1250 - Inv ing digitale 6X

1252 - Inv ing digitale 7X

1254 - Inv ing digitale 8X

1216° - Mon ing digitale 1X

1214° - Mon ing digitale 2X

1212° - Mon ing digitale 3X

1210° - Mon ing digitale 4X

1210° - Mon ing digitale 5X

1210° - Mon ing digitale 6X

1210° - Mon ing digitale 7X

1210° - Mon ing digitale 8X
Uscite digitali (Digital Outputs)

Uscite digitali standard

Uscite digitali scheda di espansione

1310 - Sorg. uscita dig 1
Azionamento OK

1312 - Sorg. uscita dig 2
Azionamento pronto

1314 - Sorg. uscita dig 3
Fattore velocità = 0

1316 - Sorg. uscita dig 4
Fattore n/f = 0

1330 - Inv. uscita dig 1

1332 - Inv. uscita dig 2

1334 - Inv. uscita dig 3

1336 - Inv. uscita dig 4

1300ª - Mon. uscita digitali

1410ª - Mon. uscita digitali

Null

1412 - Sorg. uscita dig 2X

1414 - Sorg. uscita dig 3X

1416 - Sorg. uscita dig 4X

1420 - Sorg. uscita dig 6X

1422 - Sorg. uscita dig 7X

1424 - Sorg. uscita dig 8X

1430 - Inv. uscita dig 1X

1432 - Inv. uscita dig 2X

1434 - Inv. uscita dig 3X

1436 - Inv. uscita dig 4X

1438 - Inv. uscita dig 5X

1440 - Inv. uscita dig 6X

1442 - Inv. uscita dig 7X

1444 - Inv. uscita dig 8X

Uscita terminale standard
Ingressi analogici (Analog inputs)

INGRESSO ANALOGICO 1 STANDARD

INGRESSO ANALOGICO 2 STANDARD

INGRESSO ANALOGICO 1 SCHEDA DI ESPANSIONE

INGRESSO ANALOGICO 2 SCHEDA DI ESPANSIONE
Uscite analogiche (Analog outputs)

USCITA ANALOGICA 1 STANDARD

USCITA ANALOGICA 2 STANDARD

USCITA ANALOGICA 1 SCHEDA DI ESPANSIONE

USCITA ANALOGICA 2 SCHEDA DI ESPANSIONE
Guadagni regolatore velocità (Speed reg gains)
Configurazione Coppia (Torque config)
Parametri VF (VF parameters)

Parametri reg limiti VF
- 2450 - Cond. Lim. cor. VF
 - 0.159 Hz/A
- 2462 - Tempo Lim. cor. VF
 - 10.0 ms

Compressa, Stirrimento
- 664° - Setpoint velocità
 - 0 rpm
- 260° - Velocità motore
 - 0 rpm

Limiti V/f
- Calcolo limiti corrente di coppia
- 2400 - Boost tensione
 - 2409 - Boost tens fluo
 - 0.0 %
 - 2402 - Quad boost tensione
 - 2404 - Boost tens corri
 - 0.0 %
 - 2404 - Boost tens corri
 - 1.5 %

2410 - Tensione 1 VF
- 2410 - Tensione 1 VF
 - 200.0 V

Curva V/f
- 2420 - Scala digitale VF
 - 25.0 Hz

LimCoppiaVF
- LimCoppiaVF
 - 2469 - Lim pos corri coppia
 - 10.5 A
 - Lim neg corri coppia
 - 10.5 A

Off
- 2354 - Sal Lim corri coppia
 - 2356 - Lim pes corri coppia
 - 10.5 A

Mot/Gen
- 2350 - Lim pos corri att
 - 10.5 A
 - 2352 - Lim neg corri att
 - 10.5 A

Velocità motore
- DrOverrun
Funzioni (Functions)

- **DROOP** (Droop)
- **COMPENS INERZIA** (CompInerzia)
- **FRENATURA DC** (FrenatCC)
- **SOVRACC MOTORE** (SovrMot)
- **SOVRACC RES FRE** (SovrResFren)
- **DOPPIO SET PAR** (DoubleParSet)
- **PERDITA POTENZA** (PerditaPot)
- **COMPARAZIONE** (Confronta)
- **CONTROLLO FRENO** (CtrlFreno)
- **FATTORE DIMENS.** (FattDimens)