Index

GENERAL PRECAUTIONS ... 2
MK4/WP SERIES – CORRECT USE OF INSTALLATION BRACKETS ... 2
MK4/WP SERIES – CORRECT USE OF THE PCUR039/PCUR202 FLOATING CURSOR ... 3
IK4/WRG/WRP/WRA/RK4 SERIES - MOUNTING INSIDE A CYLINDER .. 4
RK2 SERIES - MOUNTING INSIDE A CYLINDER ... 5
IK4/WRG/WRP/WRA/RK2/RK4 - MAGNET INSTALLATION SEAT ... 5
INSTRUCTIONS FOR ELECTRICAL INSTALLATION OF MAGNETOSTRICTIVE TRANSDUCERS .. 6
DETAILS ON MODELS WITH SSI OUTPUT (MK4-S/WPP-S/WPA-S E IK4-S/WRP-S/WRA-S) ... 6
DATA FORMAT ... 6
ERROR MESSAGES .. 7
OVERSAMPLING OPTION .. 7
DETAILS ON MODELS WITH CANOPEN OUTPUT (MK4-C AND IK4-C) ... 8
DETAILS ON MODELS WITH PROFIBUS OUTPUT (MK4-P/IK4-P) ... 9
DIAGNOSTICS OF MODELS WITH LEDS .. 10
GENERAL PRECAUTIONS

• The transducer must be installed away from sources of magnetic fields, both static and 50 Hz (electric motors, solenoids, etc.).
• The transducer connection cable must be wired separately from power cables and/or solenoid controls, drives, or remote switches.
• The line used for power supply must be dedicated to the transducers or must be drawn directly from the power terminals and as near as possible.
• When choosing a cursor for the MK4/WP profile magnetostrictive transducer, remember that the transducer’s cursor is a magnet. Therefore, if there are iron filings or small magnetic metal fragments in proximity of the transducer, avoid the use of sliding cursors, as there would be a risk of material accumulation on the cursor, creating problems for sliding. Use a floating cursor instead.

MK4/WP SERIES – CORRECT USE OF INSTALLATION BRACKETS

Use PKIT09x brackets (to be ordered separately) to correctly install the MK4/WP magnetostrictive transducer. Choose the best model based on the material, on the attachment holes interaxis and on the dimension of the screws included in the package. Each package has two brackets. We recommend to install one bracket every 250-300 mm.
To guarantee the correct electrical insulation of the transducer from the machine, always assemble the brackets using the plastic washers provided in the package as shown in the fig. a and fig. b.
To prevent damages to the isolating bushes and to the brackets, tighten the fastening screws with a maximum torque of 1.1 Nm.

<table>
<thead>
<tr>
<th>Brackets code</th>
<th>Interaxis (i)</th>
<th>Screw (V)</th>
<th>Dimension (A)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PKIT090/093</td>
<td>42.5</td>
<td>M4</td>
<td>56</td>
</tr>
<tr>
<td>PKIT091/092</td>
<td>50</td>
<td>M5</td>
<td>63.5</td>
</tr>
</tbody>
</table>

fig. a

fig. b
Under standard conditions (Fig. 1), the cursor PCUR039/PCUR202 must be installed on a support made of non-magnetic material (such as brass, aluminium, or AISI316 stainless steel).
The installation kit, consisting of two screws, two nuts, and two washers (all made of brass), is included in the package.
The cursor (Fig. 2) must be installed with maximum attention to horizontal alignment with the transducer axis (maximum tolerance is ± 2 mm), as well as to the distance from the transducer surface from 2 to 7 mm.
If there is no alternative to a magnetic support, it’s necessary to prevent the support from changing the magnetic field generated by the cursor, because this could cause problems with the correct measurement of the cursor position.
For this reason, a non-magnetic spacer must be added between the cursor and the magnetic support (Fig. 3 - Sol. 1).
The recommended spacer thickness is 15 mm.
If the application does not permit the installation of a non-magnetic spacer, it’s possible to install the cursor directly on the magnetic support, being careful not to let the support make direct contact with the part of the cursor containing the magnet (Fig. 3 - Sol. 2).
If the application requires installation of multiple cursors (two or more), the cursors must be minimum 75 mm apart (Fig. 4).
Remember that in order to ensure precise measurement, each magnet must be installed at the same distance from the transducer surface.
In addition, all cursors must be kept at the same working temperature.
For the correct installation of rod-type magnetostrictive transducers in hydraulic cylinders, remember that the cylinder head, must be made of non-magnetic material where the threaded hole will be drilled to install the transducer. If not, the residual magnetisation caused by drilling the threaded hole must be less than 4 Gauss.

Rod-type magnetostrictive transducers are available with two types of threads: M18x1.5 or 3/4”-16 UNF. Refer to the drawings in figures 5 and 6 for the dimensions and tolerances to be respected when drilling the threaded holes and the related sealing surfaces. The sealing surface must be free of spiral or longitudinal scratches.

- Ro 1,6 µm for O-rings with NON-pulsing pressure
- Ro 0,8 µm for O-rings with pulsing pressure

Rod-type magnetostrictive transducers are always supplied with an O-ring. If you need to replace the supplied O-ring, see the O-rings shown in figures 6 and 7.

Version with thread M18x1,5

<table>
<thead>
<tr>
<th>Suggested O-Ring:</th>
<th>PARKER 6-349 15,4x2,1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Material</td>
<td>Viton 90° Shore-A</td>
</tr>
<tr>
<td>Mixes</td>
<td>PARKER N552-90</td>
</tr>
</tbody>
</table>

![Fig. 5](image)

Version with thread 3/4”-16UNF

<table>
<thead>
<tr>
<th>Suggested O-Ring:</th>
<th>PARKER 3-908 16,36x2,21</th>
</tr>
</thead>
<tbody>
<tr>
<td>Material</td>
<td>Viton 90° Shore-A</td>
</tr>
<tr>
<td>Mixes</td>
<td>PARKER N552-90</td>
</tr>
</tbody>
</table>

![Fig. 6](image)

![Fig. 7](image)
For the correct installation of the rod/flange magnetostrictive transducers RK2 series, please refer to the drawings shown in Figure 5a for what concerns the dimensions and tolerances to be observed in the construction of the seat sensor and its sealing surfaces. The sealing surface must be free from scratches spiral or longitudinal.

IK4/WRG/WRP/WRA/RK2/RK4 - MAGNET INSTALLATION SEAT

PCUR022/PCUR610/PCUR095

PCUR023/PCUR096

PCUR024/PCUR600/PCUR097
INSTRUCTIONS FOR ELECTRICAL INSTALLATION OF MAGNETOSTRICTIVE TRANSDUCERS

The magnetostrictive transducers conform to the following directives:
- Electromagnetic Compatibility EMC 2014/30/EU
- RoHS 2011/65/EU

For a correct electrical installation of the transducers, refer to the “Manual for Electrical Installation of Magnetostrictives.”

The manual and certificates of conformity can be downloaded from the website www.gefran.com.

DETAILS ON MODELS WITH SSI OUTPUT (MK4-S/WPP-S/WPA-S E IK4-S/WRP-S/WRA-S)

The diagram shows the operation of a sensor with SSI Synchronous Serial Interface.

The position of the magnet on the sensor is defined by the signal provided by the sensor using the magnetostrictive technology.

The displacement signal is supplied in binary or in Gray Code (24-25 bit) and transmitted to the controller by mean of the SSI interface.

The refresh rate can be up to 1000 measurements/second (depending on the transducer’s stroke).

The output is absolute, meaning that the data related to the magnet position are immediately available when the system is turned on again.

DATA FORMAT

![Fig. 9](image)

<table>
<thead>
<tr>
<th>Cable length</th>
<th>< 3 m</th>
<th>< 50 m</th>
<th>< 100 m</th>
<th>< 200 m</th>
<th>< 400 m</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baud Rate</td>
<td>1 Mbaud</td>
<td>400 kbaud</td>
<td>300 kbaud</td>
<td>200 kbaud</td>
<td>100 kbaud</td>
</tr>
</tbody>
</table>

Max frequency: 1 MHz
Min frequency: 50 kHz
ERROR MESSAGES

The SSI output goes to 0 if the echo is absent (magnet out of measurement range or internal device error).

OVERSAMPLING OPTION

The position of the magnet on the sensor is defined by the magnetostrictive technology. Internal position sampling can vary from 2 kHz to 500 Hz depending on the stroke.

The displacement signal is supplied in binary or Gray code and transmitted to the controller via SSI.

Normally, when data are available, they are transmitted to the SSI shift register, where they are available to the controller. Therefore, the shift register refresh rate is equal to the internal interrogation rate.

In the version with “oversampling,” the transducer control electronics is synchronised with the SSI clock trains and provides an output before each interrogation.

The supplied data are calculated via a first-order interpolation and are equal to:

\[
\text{Out} = M + V * T
\]

\[M = \text{last internal measurement}\]
\[V = \text{magnet speed}\]
\[T = \text{time elapsed since last measurement}\]

The data is supplied to the shift register considering possible Jitter in the controller interrogation time (40 µSec is currently considered).

Lower Jitter levels ensure better interpolation results (see Figure 10).

To maintain synchronism between SSI clock and shift register refresh, the interrogation rate can vary from a maximum of 5.5 KHz to a minimum of 125 Hz.

Typical value considered = 4KHz.
The series of magnetostrictive transducers with CANopen output integrates a microprocessor to process measurement and communication with the CAN field bus by using the CANopen DS-301 protocol and Device Profile DS-406.

By connecting multiple transducers in a CANopen network, it’s possible to choose between models with one connector or with two connectors.

When using a transducer with single connector, the connection must be in the form of “T” connections, as shown in Fig. 11. In order to avoid the use of “T” connections, it’s possible to opt for the 2-connectors model (available with the IK4-C series) to make a connection as shown in Fig. 12.

If the CANopen network terminates with a transducer, that transducer must contain a termination resistor.

The termination resistor integrated in the transducer is an option that can be ordered by specifying it in the order code for the chosen model (see “Order code” on the datasheet).

Each device connected in the CANopen network must have a unique node number that identifies it.

Each magnetostrictive transducer is factory programmed with a standard node number of “127”.

A few changes to the settings of transducers with CANopen output (such as node number, baud rate, etc.) can be performed by connecting them to a CAN master and programming the parameters in the proper way.

The communication protocol, the list, and the description of the transducer’s parameters are shown in the manual, that can be downloaded from the website www.gefran.com.

Fig. 11

Fig. 12
DETAILS ON MODELS WITH PROFIBUS OUTPUT (MK4-P/IK4-P)

A Profibus network lets you connect peripheral Slave devices (transducers or actuators) to Class 1 Master central control units (typically PLCs).

The network software is installed with a Class 2 Master containing a database with the GSD files of all connected devices. The network is designed and parameterized with a graphics tool, then the configuration is downloaded to the Class 1 Masters in the network.

The Class 1 Master(s) start(s) the communication process with the peripheral devices according to the configuration received from the Class 2 Master.

This process includes an initial Data-Exchange regarding Slave identification, parameterization, and configuration. When this phase is done, application management begins with exchange of process data on the network.

The GSD file contains all information on device identification, supported functions, and length/format of data packets.

Connection with two M12 connectors + 1 M8 connector:
- no T connection required
- standard M12 and M8 connectors
- separate power supply line (ideal for use of programmer)
- for power supply: use a shielded cable with metal connector and shield connected to connector case
Some magnetostrictive transducers have LEDs to display some simple diagnostic functions. Based on the model, the state of the LEDs may have different meanings, as shown in the following table.

IK4-A Series (analogue output)

<table>
<thead>
<tr>
<th>Red LED</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>on</td>
<td>Transducer powered and working correctly</td>
</tr>
<tr>
<td>flashing</td>
<td>Echo absent (magnet out of measurement range or internal device error)</td>
</tr>
<tr>
<td>off</td>
<td>Transducer not powered</td>
</tr>
</tbody>
</table>

IK4-S Series (SSI output) and IK4-C Series (CANopen output)

<table>
<thead>
<tr>
<th>Red LED</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>on</td>
<td>Echo absent (magnet out of measurement range or internal device error)</td>
</tr>
<tr>
<td>off</td>
<td>Transducer working correctly</td>
</tr>
</tbody>
</table>

MK4P / IK4P Series (Profibus output)

<table>
<thead>
<tr>
<th>Red LED</th>
<th>Green LED</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>off</td>
<td>off</td>
<td>Transducer not powered</td>
</tr>
<tr>
<td>off</td>
<td>flashing (f= 1 HZ)</td>
<td>Transducer ready to initiate communication with the Master (state =Walt Parm)</td>
</tr>
<tr>
<td>off</td>
<td>acceso</td>
<td>Transducer in cyclic communication with the master (state= Data_Exch).</td>
</tr>
<tr>
<td>on</td>
<td>on</td>
<td>1. ON: signaling correct functioning of the LEDs,</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2. In “Data-Exchange” modality, reporting error magnet</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(the number of magnets detected is not compatible with the current parameter setting).</td>
</tr>
</tbody>
</table>

WRP-A / WRA-A Series (analogue output)

<table>
<thead>
<tr>
<th>Blue LED</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>on</td>
<td>Transducer powered and working correctly</td>
</tr>
<tr>
<td>flashing</td>
<td>Echo absent (magnet out of measurement range or internal device error)</td>
</tr>
<tr>
<td>off</td>
<td>Transducer not powered</td>
</tr>
</tbody>
</table>

WRP-S / WRA-S Series (SSI output)

<table>
<thead>
<tr>
<th>Blue LED</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>on</td>
<td>Transducer powered and working correctly</td>
</tr>
<tr>
<td>flashing</td>
<td>Echo absent (magnet out of measurement range or internal device error)</td>
</tr>
<tr>
<td>off</td>
<td>Transducer not powered</td>
</tr>
</tbody>
</table>